/external/bouncycastle/bcprov/src/main/java/org/bouncycastle/math/field/ |
PolynomialExtensionField.java | 5 Polynomial getMinimalPolynomial();
|
Polynomial.java | 3 public interface Polynomial
|
GenericPolynomialExtensionField.java | 10 protected final Polynomial minimalPolynomial; 12 GenericPolynomialExtensionField(FiniteField subfield, Polynomial polynomial) 15 this.minimalPolynomial = polynomial; 38 public Polynomial getMinimalPolynomial()
|
/external/eigen/unsupported/doc/examples/ |
PolynomialUtils1.cpp | 11 Eigen::Matrix<double,5,1> polynomial; local 12 roots_to_monicPolynomial( roots, polynomial ); 13 cout << "Polynomial: "; 14 for( int i=0; i<4; ++i ){ cout << polynomial[i] << ".x^" << i << "+ "; } 15 cout << polynomial[4] << ".x^4" << endl; 18 evaluation[i] = poly_eval( polynomial, roots[i] ); } 19 cout << "Evaluation of the polynomial at the roots: " << evaluation.transpose();
|
/external/eigen/unsupported/Eigen/src/Polynomials/ |
PolynomialUtils.h | 16 * \returns the evaluation of the polynomial at x using Horner algorithm. 18 * \param[in] poly : the vector of coefficients of the polynomial ordered 19 * by degrees i.e. poly[i] is the coefficient of degree i of the polynomial 21 * \param[in] x : the value to evaluate the polynomial at. 37 * \returns the evaluation of the polynomial at x using stabilized Horner algorithm. 39 * \param[in] poly : the vector of coefficients of the polynomial ordered 40 * by degrees i.e. poly[i] is the coefficient of degree i of the polynomial 42 * \param[in] x : the value to evaluate the polynomial at. 64 * \returns a maximum bound for the absolute value of any root of the polynomial. 66 * \param[in] poly : the vector of coefficients of the polynomial ordere [all...] |
/external/ceres-solver/internal/ceres/ |
polynomial_test.cc | 32 #include "ceres/polynomial.h" 49 // Return the constant polynomial p(x) = 1.23. 56 // Return the polynomial p(x) = poly(x) * (x - root). 65 // Return the polynomial 85 // Run a test with the polynomial defined by the N real roots in roots_real. 118 TEST(Polynomial, InvalidPolynomialOfZeroLengthIsRejected) { 129 TEST(Polynomial, ConstantPolynomialReturnsNoRoots) { 140 TEST(Polynomial, LinearPolynomialWithPositiveRootWorks) { 145 TEST(Polynomial, LinearPolynomialWithNegativeRootWorks) { 150 TEST(Polynomial, QuadraticPolynomialWithPositiveRootsWorks) 321 const Vector polynomial = FindInterpolatingPolynomial(samples); local 339 const Vector polynomial = FindInterpolatingPolynomial(samples); local 367 Vector polynomial = FindInterpolatingPolynomial(samples); local 397 const Vector polynomial = FindInterpolatingPolynomial(samples); local 440 const Vector polynomial = FindInterpolatingPolynomial(samples); local 477 const Vector polynomial = FindInterpolatingPolynomial(samples); local 508 const Vector polynomial = FindInterpolatingPolynomial(samples); local [all...] |
polynomial.cc | 32 #include "ceres/polynomial.h" 102 void BuildCompanionMatrix(const Vector& polynomial, 107 const int degree = polynomial.size() - 1; 112 companion_matrix.col(degree - 1) = -polynomial.reverse().head(degree); 124 void FindLinearPolynomialRoots(const Vector& polynomial, 127 CHECK_EQ(polynomial.size(), 2); 130 (*real)(0) = -polynomial(1) / polynomial(0); 138 void FindQuadraticPolynomialRoots(const Vector& polynomial, 141 CHECK_EQ(polynomial.size(), 3) 190 Vector polynomial = RemoveLeadingZeros(polynomial_in); local 377 const Vector polynomial = FindInterpolatingPolynomial(samples); local [all...] |
polynomial.h | 44 // sum_{i=0}^N polynomial(i) x^{N-i}. 48 // Evaluate the polynomial at x using the Horner scheme. 49 inline double EvaluatePolynomial(const Vector& polynomial, double x) { 51 for (int i = 0; i < polynomial.size(); ++i) { 52 v = v * x + polynomial(i); 58 // polynomial. 61 // Failure indicates that the polynomial is invalid (of size 0) or 66 bool FindPolynomialRoots(const Vector& polynomial, 70 // Return the derivative of the given polynomial. It is assumed that 71 // the input polynomial is at least of degree zero [all...] |
/external/fec/ |
init_rs.c | 26 * gfpoly = Field generator polynomial coefficients 27 * fcr = first root of RS code generator polynomial, index form 28 * prim = primitive element to generate polynomial roots 29 * nroots = RS code generator polynomial degree (number of roots)
|
init_rs_char.c | 22 * gfpoly = Field generator polynomial coefficients 23 * fcr = first root of RS code generator polynomial, index form 24 * prim = primitive element to generate polynomial roots 25 * nroots = RS code generator polynomial degree (number of roots)
|
init_rs_int.c | 22 * gfpoly = Field generator polynomial coefficients 23 * fcr = first root of RS code generator polynomial, index form 24 * prim = primitive element to generate polynomial roots 25 * nroots = RS code generator polynomial degree (number of roots)
|
/external/apache-commons-math/src/main/java/org/apache/commons/math/analysis/polynomials/ |
PolynomialFunction.java | 29 * Immutable representation of a real polynomial function with real coefficients. 44 * The coefficients of the polynomial, ordered by degree -- i.e., 46 * coefficient of x^n where n is the degree of the polynomial. 51 * Construct a polynomial with the given coefficients. The first element 53 * coefficients follow in sequence. The degree of the resulting polynomial 60 * @param c polynomial coefficients 85 * @return the value of the polynomial at the given point 94 * Returns the degree of the polynomial 96 * @return the degree of the polynomial 106 * the polynomial.</p [all...] |
PolynomialsUtils.java | 83 * Create a Chebyshev polynomial of the first kind. 92 * @param degree degree of the polynomial 93 * @return Chebyshev polynomial of specified degree 107 * Create a Hermite polynomial. 117 * @param degree degree of the polynomial 118 * @return Hermite polynomial of specified degree 134 * Create a Laguerre polynomial. 143 * @param degree degree of the polynomial 144 * @return Laguerre polynomial of specified degree 161 * Create a Legendre polynomial [all...] |
/external/eigen/unsupported/Eigen/ |
Polynomials | 29 * \brief This module provides a QR based polynomial solver. 44 and a QR based polynomial solver. 48 polynomials, computing estimates about polynomials and next the QR based polynomial 55 void roots_to_monicPolynomial( const RootVector& rv, Polynomial& poly ) 68 evaluates a polynomial at a given point using stabilized Hörner method. 70 The following code: first computes the coefficients in the monomial basis of the monic polynomial that has the provided roots; 71 then, it evaluates the computed polynomial, using a stabilized Hörner method. 79 Real cauchy_max_bound( const Polynomial& poly ) 81 provides a maximum bound (the Cauchy one: \f$C(p)\f$) for the absolute value of a root of the given polynomial i.e. 89 Real cauchy_min_bound( const Polynomial& poly [all...] |
/prebuilts/gcc/linux-x86/host/x86_64-linux-glibc2.11-4.8/x86_64-linux/include/c++/4.8/tr1/ |
poly_hermite.tcc | 54 * @brief This routine returns the Hermite polynomial 57 * The Hermite polynomial is defined by: 62 * @param __n The order of the Hermite polynomial. 63 * @param __x The argument of the Hermite polynomial. 64 * @return The value of the Hermite polynomial of order n 96 * @brief This routine returns the Hermite polynomial 99 * The Hermite polynomial is defined by: 104 * @param __n The order of the Hermite polynomial. 105 * @param __x The argument of the Hermite polynomial. 106 * @return The value of the Hermite polynomial of order [all...] |
/prebuilts/gcc/linux-x86/host/x86_64-linux-glibc2.15-4.8/x86_64-linux/include/c++/4.8/tr1/ |
poly_hermite.tcc | 54 * @brief This routine returns the Hermite polynomial 57 * The Hermite polynomial is defined by: 62 * @param __n The order of the Hermite polynomial. 63 * @param __x The argument of the Hermite polynomial. 64 * @return The value of the Hermite polynomial of order n 96 * @brief This routine returns the Hermite polynomial 99 * The Hermite polynomial is defined by: 104 * @param __n The order of the Hermite polynomial. 105 * @param __x The argument of the Hermite polynomial. 106 * @return The value of the Hermite polynomial of order [all...] |
/prebuilts/gcc/linux-x86/host/x86_64-w64-mingw32-4.8/x86_64-w64-mingw32/include/c++/4.8.3/tr1/ |
poly_hermite.tcc | 54 * @brief This routine returns the Hermite polynomial 57 * The Hermite polynomial is defined by: 62 * @param __n The order of the Hermite polynomial. 63 * @param __x The argument of the Hermite polynomial. 64 * @return The value of the Hermite polynomial of order n 96 * @brief This routine returns the Hermite polynomial 99 * The Hermite polynomial is defined by: 104 * @param __n The order of the Hermite polynomial. 105 * @param __x The argument of the Hermite polynomial. 106 * @return The value of the Hermite polynomial of order [all...] |
/prebuilts/ndk/current/sources/cxx-stl/gnu-libstdc++/4.9/include/tr1/ |
poly_hermite.tcc | 54 * @brief This routine returns the Hermite polynomial 57 * The Hermite polynomial is defined by: 62 * @param __n The order of the Hermite polynomial. 63 * @param __x The argument of the Hermite polynomial. 64 * @return The value of the Hermite polynomial of order n 96 * @brief This routine returns the Hermite polynomial 99 * The Hermite polynomial is defined by: 104 * @param __n The order of the Hermite polynomial. 105 * @param __x The argument of the Hermite polynomial. 106 * @return The value of the Hermite polynomial of order [all...] |
/external/apache-commons-math/src/main/java/org/apache/commons/math/optimization/fitting/ |
PolynomialFitter.java | 26 * <p>Polynomial fitting is a very simple case of curve fitting. The 27 * estimated coefficients are the polynomial coefficients. They are 38 /** Polynomial degree. */ 42 * <p>The polynomial fitter built this way are complete polynomials, 43 * ie. a n-degree polynomial has n+1 coefficients.</p> 44 * @param degree maximal degree of the polynomial 70 /** Get the polynomial fitting the weighted (x, y) points. 71 * @return polynomial function best fitting the observed points 83 /** Dedicated parametric polynomial class. */
|
/external/eigen/unsupported/test/ |
polynomialsolver.cpp | 30 template<int Deg, typename POLYNOMIAL, typename SOLVER> 31 bool aux_evalSolver( const POLYNOMIAL& pols, SOLVER& psolve ) 33 typedef typename POLYNOMIAL::Index Index; 34 typedef typename POLYNOMIAL::Scalar Scalar; 51 cerr << "Polynomial: " << pols.transpose() << endl; 53 cerr << "Abs value of the polynomial at the roots: " << evr.transpose() << endl; 78 template<int Deg, typename POLYNOMIAL> 79 void evalSolver( const POLYNOMIAL& pols ) 81 typedef typename POLYNOMIAL::Scalar Scalar; 86 aux_evalSolver<Deg, POLYNOMIAL, PolynomialSolverType>( pols, psolve ) [all...] |
/prebuilts/go/darwin-x86/src/hash/crc32/ |
crc32.go | 25 // IEEE is by far and away the most common CRC-32 polynomial. 29 // Castagnoli's polynomial, used in iSCSI. 34 // Koopman's polynomial. 40 // Table is a 256-word table representing the polynomial for efficient processing. 44 // polynomial. MakeTable will always return this value when asked to make a 46 // using this polynomial. 54 // IEEETable is the table for the IEEE polynomial. 64 // MakeTable returns the Table constructed from the specified polynomial. 76 // makeTable returns the Table constructed from the specified polynomial. 93 // makeTable8 returns slicing8Table constructed from the specified polynomial [all...] |
/prebuilts/go/linux-x86/src/hash/crc32/ |
crc32.go | 25 // IEEE is by far and away the most common CRC-32 polynomial. 29 // Castagnoli's polynomial, used in iSCSI. 34 // Koopman's polynomial. 40 // Table is a 256-word table representing the polynomial for efficient processing. 44 // polynomial. MakeTable will always return this value when asked to make a 46 // using this polynomial. 54 // IEEETable is the table for the IEEE polynomial. 64 // MakeTable returns the Table constructed from the specified polynomial. 76 // makeTable returns the Table constructed from the specified polynomial. 93 // makeTable8 returns slicing8Table constructed from the specified polynomial [all...] |
/external/mesa3d/src/gallium/auxiliary/gallivm/ |
f.cpp | 13 * This file allows to compute the minimax polynomial coefficients we use 34 * - For example, to compute exp2 5th order polynomial between [0, 1] do: 44 * - To compute log2 4th order polynomial between [0, 1/9] do: 58 #include <boost/math/tools/polynomial.hpp> 88 const boost::math::tools::polynomial<boost::math::ntl::RR>& n, 89 const boost::math::tools::polynomial<boost::math::ntl::RR>& d,
|
/prebuilts/go/darwin-x86/src/hash/crc64/ |
crc64.go | 17 // The ISO polynomial, defined in ISO 3309 and used in HDLC. 20 // The ECMA polynomial, defined in ECMA 182. 24 // Table is a 256-word table representing the polynomial for efficient processing. 27 // MakeTable returns the Table constructed from the specified polynomial. 51 // using the polynomial represented by the Table. 86 // using the polynomial represented by the Table.
|
/prebuilts/go/linux-x86/src/hash/crc64/ |
crc64.go | 17 // The ISO polynomial, defined in ISO 3309 and used in HDLC. 20 // The ECMA polynomial, defined in ECMA 182. 24 // Table is a 256-word table representing the polynomial for efficient processing. 27 // MakeTable returns the Table constructed from the specified polynomial. 51 // using the polynomial represented by the Table. 86 // using the polynomial represented by the Table.
|