/external/apache-commons-math/src/main/java/org/apache/commons/math/stat/descriptive/moment/ |
Skewness.java | 107 double variance = moment.m2 / (moment.n - 1); local 108 if (variance < 10E-20) { 113 ((n0 - 1) * (n0 -2) * FastMath.sqrt(variance) * variance); 172 final double variance = (accum - (accum2 * accum2 / length)) / (length - 1); local 179 accum3 /= variance * FastMath.sqrt(variance);
|
/device/google/contexthub/firmware/src/algos/ |
gyro_stillness_detect.c | 35 // Set the delta about the variance threshold for calculation 43 // Set the variance threshold parameter for the stillness 62 // online mean and variance statistics: 92 // Reset current window mean and variance. 112 // Online window mean and variance ("one-pass" accumulation). 143 // Update the final calculation of variance. 155 // Define the variance thresholds. 167 // Sensor variance exceeds the upper threshold (i.e., motion detected). 177 // Sensor variance is below the lower threshold (i.e., stillness detected).
|
/external/apache-commons-math/src/main/java/org/apache/commons/math/stat/descriptive/ |
SummaryStatistics.java | 26 import org.apache.commons.math.stat.descriptive.moment.Variance; 45 * default implementation for the variance can be overridden by calling 67 /** SecondMoment is used to compute the mean and variance */ 91 /** variance of values that have been added */ 92 protected Variance variance = new Variance(); field in class:SummaryStatistics 115 /** Variance statistic implementation - can be reset by setter. */ 116 private StorelessUnivariateStatistic varianceImpl = variance; 154 // If mean, variance or geomean have been overridden [all...] |
StatisticalSummary.java | 33 * Returns the variance of the available values. 34 * @return The variance, Double.NaN if no values have been added
|
/external/autotest/server/tests/netpipe/ |
netpipe.py | 7 def run_once(self, pair, buffer, upper_bound, variance): 43 buffer, upper_bound, variance, 46 buffer, upper_bound, variance,
|
/external/libmpeg2/common/arm/ |
icv_variance_a9.s | 26 @* This file contains definitions of routines for variance caclulation 42 @* @brief computes variance of a 8x4 block 46 @* This functions computes variance of a 8x4 block 61 @* variance value in r0
|
/external/libmpeg2/common/armv8/ |
icv_variance_av8.s | 25 //* This file contains definitions of routines for variance caclulation 41 //* @brief computes variance of a 8x4 block 45 //* This functions computes variance of a 8x4 block 60 //* variance value in x0
|
/external/libmpeg2/common/ |
icv_variance.h | 26 * This file contains the functions to compute variance
|
/external/libvpx/libvpx/vp9/common/ |
vp9_mfqe.h | 23 // the current block and correlated block, the variance of the block
|
/external/webrtc/webrtc/test/ |
statistics.h | 25 double Variance() const;
|
/external/webrtc/webrtc/voice_engine/test/auto_test/standard/ |
video_sync_test.cc | 58 // Computes the standard deviation by first estimating the sample variance 66 float variance = 0; local 68 variance += (*start - mean) * (*start - mean) / (num_elements - 1); 70 return sqrt(variance);
|
/external/apache-commons-math/src/main/java/org/apache/commons/math/stat/clustering/ |
KMeansPlusPlusClusterer.java | 27 import org.apache.commons.math.stat.descriptive.moment.Variance; 41 /** Split the cluster with largest distance variance. */ 64 * algorithm iterations is to split the cluster with largest distance variance. 201 * Get a random point from the {@link Cluster} with the largest distance variance. 213 // compute the distance variance of the current cluster 215 final Variance stat = new Variance(); 219 final double variance = stat.getResult(); local 221 // select the cluster with the largest variance 222 if (variance > maxVariance) [all...] |
/cts/apps/CameraITS/tests/scene1/ |
test_dng_noise_model.py | 32 # defined as being within an absolute variance delta of 0.0005, or within 33 # 20% of the expected variance, whichever is larger; this is to allow the 77 # non-uniform lighting or vignetting doesn't affect the variance 87 # Calculate the expected variance based on the model, and the 88 # measured variance from the tile. 99 pylab.ylabel("Center patch variance")
|
/external/chromium-trace/catapult/tracing/tracing/base/ |
running_statistics.html | 64 get variance() { 75 return Math.sqrt(this.variance); 91 // and variance. See http://www.johndcook.com/blog/standard_deviation. 121 // Combine the mean and the variance using the formulas from 148 variance: this.variance_ 159 result.variance_ = d.variance;
|
/external/libvpx/libvpx/vp9/encoder/ |
vp9_blockiness.c | 23 static int variance(int sum, int sum_squared, int size) { function 45 // by dividing the blockiness by the variance of the pixels on either side 70 var_0 = variance(sum_0, sum_sq_0, size); 71 var_1 = variance(sum_1, sum_sq_1, size); 102 var_0 = variance(sum_0, sum_sq_0, size); 103 var_1 = variance(sum_1, sum_sq_1, size);
|
/frameworks/base/packages/SystemUI/src/com/android/systemui/classifier/ |
AnglesClassifier.java | 26 * A classifier which calculates the variance of differences between successive angles in a stroke. 30 * previously calculated angle. Then it calculates the variance of the differences from a stroke. 36 * angle is. It calculates the angle variance of the two parts and sums them up. The reason the 39 * final result is the minimum of angle variance of the whole stroke and the sum of angle variances 144 // the angle variance so far and start to count the values for the angle 145 // variance of the second part.
|
/external/apache-commons-math/src/main/java/org/apache/commons/math/stat/regression/ |
AbstractMultipleLinearRegression.java | 25 import org.apache.commons.math.stat.descriptive.moment.Variance; 289 * Estimates the variance of the error. 291 * @return estimate of the error variance 317 * Calculates the beta variance of multiple linear regression in matrix 320 * @return beta variance 326 * Calculates the variance of the y values. 328 * @return Y variance 331 return new Variance().evaluate(Y.getData()); 335 * <p>Calculates the variance of the error term.</p> 342 * @return error variance estimat [all...] |
/external/apache-commons-math/src/main/java/org/apache/commons/math/stat/ |
StatUtils.java | 25 import org.apache.commons.math.stat.descriptive.moment.Variance; 63 /** variance */ 64 private static final Variance VARIANCE = new Variance(); 301 * Returns the variance of the entries in the input array, or 304 * See {@link org.apache.commons.math.stat.descriptive.moment.Variance} for 312 * @return the variance of the values or Double.NaN if the array is empty 315 public static double variance(final double[] values) { method in class:StatUtils 316 return VARIANCE.evaluate(values) 339 public static double variance(final double[] values, final int begin, method in class:StatUtils 370 public static double variance(final double[] values, final double mean, method in class:StatUtils 397 public static double variance(final double[] values, final double mean) { method in class:StatUtils [all...] |
/external/opencv3/modules/flann/include/opencv2/flann/ |
kmeans_index.h | 537 DistanceType variance; local 540 int clusterCount = getMinVarianceClusters(root_, clusters, numClusters, variance); 580 * The cluster variance. 582 DistanceType variance; member in struct:cvflann::KMeansIndex::KMeansNode 660 * Computes the statistics of a node (mean, radius, variance). 670 DistanceType variance = 0; local 681 variance += distance_(vec, ZeroIterator<ElementType>(), veclen_); 686 variance /= size_; 687 variance -= distance_(mean, ZeroIterator<ElementType>(), veclen_); 697 node->variance = variance 850 DistanceType variance = 0; local 1074 DistanceType variance = meanVariance - clusters[i]->variance*clusters[i]->size; local [all...] |
/external/webrtc/webrtc/common_audio/ |
audio_converter_unittest.cc | 58 float variance = 0; local 64 variance += ref.channels()[i][j] * ref.channels()[i][j]; 71 variance /= length; 73 variance -= mean * mean; 76 snr = 10 * std::log10(variance / mse);
|
/external/apache-commons-math/src/main/java/org/apache/commons/math/stat/inference/ |
TTestImpl.java | 191 return t(StatUtils.mean(observed), mu, StatUtils.variance(observed), 235 * and <strong><code>var</code></strong> is the pooled variance estimate: 239 * with <strong><code>var1<code></strong> the variance of the first sample and 240 * <strong><code>var2</code></strong> the variance of the second sample. 256 StatUtils.variance(sample1), StatUtils.variance(sample2), 276 * <strong><code> var1</code></strong> is the variance of the first sample; 277 * <strong><code> var2</code></strong> is the variance of the second sample; 293 StatUtils.variance(sample1), StatUtils.variance(sample2) [all...] |
/hardware/intel/common/omx-components/videocodec/libvpx_internal/libvpx/vp9/encoder/ |
vp9_variance.c | 21 void variance(const uint8_t *src_ptr, function 174 variance(src_ptr, source_stride, ref_ptr, recon_stride, 64, 32, &var, &avg); 231 variance(src_ptr, source_stride, ref_ptr, recon_stride, 32, 64, &var, &avg); 288 variance(src_ptr, source_stride, ref_ptr, recon_stride, 32, 16, &var, &avg); 345 variance(src_ptr, source_stride, ref_ptr, recon_stride, 16, 32, &var, &avg); 402 variance(src_ptr, source_stride, ref_ptr, recon_stride, 64, 64, &var, &avg); 415 variance(src_ptr, source_stride, ref_ptr, recon_stride, 32, 32, &var, &avg); 428 variance(src_ptr, source_stride, ref_ptr, recon_stride, 16, 16, &var, &avg); 441 variance(src_ptr, source_stride, ref_ptr, recon_stride, 8, 16, &var, &avg); 454 variance(src_ptr, source_stride, ref_ptr, recon_stride, 16, 8, &var, &avg) [all...] |
/cts/apps/CameraITS/tests/scene0/ |
test_jitter.py | 31 MAX_VAR_FRAME_DELTA = 0.01 # variance of frame deltas 51 print "Variance:", var
|
/external/apache-commons-math/src/main/java/org/apache/commons/math/distribution/ |
WeibullDistributionImpl.java | 61 /** Cached numerical variance */ 64 /** Whether or not the numerical variance has been calculated */ 320 * Calculates the variance. 322 * The variance is 326 * @return the variance 355 * Returns the variance of the distribution. 357 * @return the variance (possibly Double.POSITIVE_INFINITY as 372 * Invalidates the cached mean and variance.
|
/external/opencv/cvaux/src/ |
cvbgfg_gaussmix.cpp | 79 icvMatchTest(...) assumes what all color channels component exhibit the same variance 120 //Rw is the learning rate for weight and Rg is leaning rate for mean and variance 126 //The list is maintained in sorted order using w/sqrt(variance) as a key 132 //v[n+1] = v[n] + Rg*((x[n+1] - u[n])*(x[n+1] - u[n])) - v[n]) variance 206 bg_model->g_point[n].g_values[0].variance[m] = var_init; 214 bg_model->g_point[n].g_values[k].variance[m] = var_init; 390 var_threshold += g_point->g_values[k].variance[m]; 420 sum_d2 += (d*d) / (g_point->g_values[k].variance[m] * g_point->g_values[k].variance[m]); 452 g_point->g_values[k].variance[m] = g_point->g_values[k].variance[m] [all...] |