HomeSort by relevance Sort by last modified time
    Searched full:polynomial (Results 1 - 25 of 408) sorted by null

1 2 3 4 5 6 7 8 91011>>

  /external/bouncycastle/bcprov/src/main/java/org/bouncycastle/math/field/
PolynomialExtensionField.java 5 Polynomial getMinimalPolynomial();
Polynomial.java 3 public interface Polynomial
GenericPolynomialExtensionField.java 10 protected final Polynomial minimalPolynomial;
12 GenericPolynomialExtensionField(FiniteField subfield, Polynomial polynomial)
15 this.minimalPolynomial = polynomial;
38 public Polynomial getMinimalPolynomial()
  /external/eigen/unsupported/doc/examples/
PolynomialUtils1.cpp 11 Eigen::Matrix<double,5,1> polynomial; local
12 roots_to_monicPolynomial( roots, polynomial );
13 cout << "Polynomial: ";
14 for( int i=0; i<4; ++i ){ cout << polynomial[i] << ".x^" << i << "+ "; }
15 cout << polynomial[4] << ".x^4" << endl;
18 evaluation[i] = poly_eval( polynomial, roots[i] ); }
19 cout << "Evaluation of the polynomial at the roots: " << evaluation.transpose();
  /external/eigen/unsupported/Eigen/src/Polynomials/
PolynomialUtils.h 16 * \returns the evaluation of the polynomial at x using Horner algorithm.
18 * \param[in] poly : the vector of coefficients of the polynomial ordered
19 * by degrees i.e. poly[i] is the coefficient of degree i of the polynomial
21 * \param[in] x : the value to evaluate the polynomial at.
37 * \returns the evaluation of the polynomial at x using stabilized Horner algorithm.
39 * \param[in] poly : the vector of coefficients of the polynomial ordered
40 * by degrees i.e. poly[i] is the coefficient of degree i of the polynomial
42 * \param[in] x : the value to evaluate the polynomial at.
64 * \returns a maximum bound for the absolute value of any root of the polynomial.
66 * \param[in] poly : the vector of coefficients of the polynomial ordere
    [all...]
  /external/ceres-solver/internal/ceres/
polynomial_test.cc 32 #include "ceres/polynomial.h"
49 // Return the constant polynomial p(x) = 1.23.
56 // Return the polynomial p(x) = poly(x) * (x - root).
65 // Return the polynomial
85 // Run a test with the polynomial defined by the N real roots in roots_real.
118 TEST(Polynomial, InvalidPolynomialOfZeroLengthIsRejected) {
129 TEST(Polynomial, ConstantPolynomialReturnsNoRoots) {
140 TEST(Polynomial, LinearPolynomialWithPositiveRootWorks) {
145 TEST(Polynomial, LinearPolynomialWithNegativeRootWorks) {
150 TEST(Polynomial, QuadraticPolynomialWithPositiveRootsWorks)
321 const Vector polynomial = FindInterpolatingPolynomial(samples); local
339 const Vector polynomial = FindInterpolatingPolynomial(samples); local
367 Vector polynomial = FindInterpolatingPolynomial(samples); local
397 const Vector polynomial = FindInterpolatingPolynomial(samples); local
440 const Vector polynomial = FindInterpolatingPolynomial(samples); local
477 const Vector polynomial = FindInterpolatingPolynomial(samples); local
508 const Vector polynomial = FindInterpolatingPolynomial(samples); local
    [all...]
polynomial.cc 32 #include "ceres/polynomial.h"
102 void BuildCompanionMatrix(const Vector& polynomial,
107 const int degree = polynomial.size() - 1;
112 companion_matrix.col(degree - 1) = -polynomial.reverse().head(degree);
124 void FindLinearPolynomialRoots(const Vector& polynomial,
127 CHECK_EQ(polynomial.size(), 2);
130 (*real)(0) = -polynomial(1) / polynomial(0);
138 void FindQuadraticPolynomialRoots(const Vector& polynomial,
141 CHECK_EQ(polynomial.size(), 3)
190 Vector polynomial = RemoveLeadingZeros(polynomial_in); local
377 const Vector polynomial = FindInterpolatingPolynomial(samples); local
    [all...]
polynomial.h 44 // sum_{i=0}^N polynomial(i) x^{N-i}.
48 // Evaluate the polynomial at x using the Horner scheme.
49 inline double EvaluatePolynomial(const Vector& polynomial, double x) {
51 for (int i = 0; i < polynomial.size(); ++i) {
52 v = v * x + polynomial(i);
58 // polynomial.
61 // Failure indicates that the polynomial is invalid (of size 0) or
66 bool FindPolynomialRoots(const Vector& polynomial,
70 // Return the derivative of the given polynomial. It is assumed that
71 // the input polynomial is at least of degree zero
    [all...]
  /external/fec/
init_rs.c 26 * gfpoly = Field generator polynomial coefficients
27 * fcr = first root of RS code generator polynomial, index form
28 * prim = primitive element to generate polynomial roots
29 * nroots = RS code generator polynomial degree (number of roots)
init_rs_char.c 22 * gfpoly = Field generator polynomial coefficients
23 * fcr = first root of RS code generator polynomial, index form
24 * prim = primitive element to generate polynomial roots
25 * nroots = RS code generator polynomial degree (number of roots)
init_rs_int.c 22 * gfpoly = Field generator polynomial coefficients
23 * fcr = first root of RS code generator polynomial, index form
24 * prim = primitive element to generate polynomial roots
25 * nroots = RS code generator polynomial degree (number of roots)
  /external/apache-commons-math/src/main/java/org/apache/commons/math/analysis/polynomials/
PolynomialFunction.java 29 * Immutable representation of a real polynomial function with real coefficients.
44 * The coefficients of the polynomial, ordered by degree -- i.e.,
46 * coefficient of x^n where n is the degree of the polynomial.
51 * Construct a polynomial with the given coefficients. The first element
53 * coefficients follow in sequence. The degree of the resulting polynomial
60 * @param c polynomial coefficients
85 * @return the value of the polynomial at the given point
94 * Returns the degree of the polynomial
96 * @return the degree of the polynomial
106 * the polynomial.</p
    [all...]
PolynomialsUtils.java 83 * Create a Chebyshev polynomial of the first kind.
92 * @param degree degree of the polynomial
93 * @return Chebyshev polynomial of specified degree
107 * Create a Hermite polynomial.
117 * @param degree degree of the polynomial
118 * @return Hermite polynomial of specified degree
134 * Create a Laguerre polynomial.
143 * @param degree degree of the polynomial
144 * @return Laguerre polynomial of specified degree
161 * Create a Legendre polynomial
    [all...]
  /external/eigen/unsupported/Eigen/
Polynomials 29 * \brief This module provides a QR based polynomial solver.
44 and a QR based polynomial solver.
48 polynomials, computing estimates about polynomials and next the QR based polynomial
55 void roots_to_monicPolynomial( const RootVector& rv, Polynomial& poly )
68 evaluates a polynomial at a given point using stabilized H&ouml;rner method.
70 The following code: first computes the coefficients in the monomial basis of the monic polynomial that has the provided roots;
71 then, it evaluates the computed polynomial, using a stabilized H&ouml;rner method.
79 Real cauchy_max_bound( const Polynomial& poly )
81 provides a maximum bound (the Cauchy one: \f$C(p)\f$) for the absolute value of a root of the given polynomial i.e.
89 Real cauchy_min_bound( const Polynomial& poly
    [all...]
  /prebuilts/gcc/linux-x86/host/x86_64-linux-glibc2.11-4.8/x86_64-linux/include/c++/4.8/tr1/
poly_hermite.tcc 54 * @brief This routine returns the Hermite polynomial
57 * The Hermite polynomial is defined by:
62 * @param __n The order of the Hermite polynomial.
63 * @param __x The argument of the Hermite polynomial.
64 * @return The value of the Hermite polynomial of order n
96 * @brief This routine returns the Hermite polynomial
99 * The Hermite polynomial is defined by:
104 * @param __n The order of the Hermite polynomial.
105 * @param __x The argument of the Hermite polynomial.
106 * @return The value of the Hermite polynomial of order
    [all...]
  /prebuilts/gcc/linux-x86/host/x86_64-linux-glibc2.15-4.8/x86_64-linux/include/c++/4.8/tr1/
poly_hermite.tcc 54 * @brief This routine returns the Hermite polynomial
57 * The Hermite polynomial is defined by:
62 * @param __n The order of the Hermite polynomial.
63 * @param __x The argument of the Hermite polynomial.
64 * @return The value of the Hermite polynomial of order n
96 * @brief This routine returns the Hermite polynomial
99 * The Hermite polynomial is defined by:
104 * @param __n The order of the Hermite polynomial.
105 * @param __x The argument of the Hermite polynomial.
106 * @return The value of the Hermite polynomial of order
    [all...]
  /prebuilts/gcc/linux-x86/host/x86_64-w64-mingw32-4.8/x86_64-w64-mingw32/include/c++/4.8.3/tr1/
poly_hermite.tcc 54 * @brief This routine returns the Hermite polynomial
57 * The Hermite polynomial is defined by:
62 * @param __n The order of the Hermite polynomial.
63 * @param __x The argument of the Hermite polynomial.
64 * @return The value of the Hermite polynomial of order n
96 * @brief This routine returns the Hermite polynomial
99 * The Hermite polynomial is defined by:
104 * @param __n The order of the Hermite polynomial.
105 * @param __x The argument of the Hermite polynomial.
106 * @return The value of the Hermite polynomial of order
    [all...]
  /prebuilts/ndk/current/sources/cxx-stl/gnu-libstdc++/4.9/include/tr1/
poly_hermite.tcc 54 * @brief This routine returns the Hermite polynomial
57 * The Hermite polynomial is defined by:
62 * @param __n The order of the Hermite polynomial.
63 * @param __x The argument of the Hermite polynomial.
64 * @return The value of the Hermite polynomial of order n
96 * @brief This routine returns the Hermite polynomial
99 * The Hermite polynomial is defined by:
104 * @param __n The order of the Hermite polynomial.
105 * @param __x The argument of the Hermite polynomial.
106 * @return The value of the Hermite polynomial of order
    [all...]
  /external/apache-commons-math/src/main/java/org/apache/commons/math/optimization/fitting/
PolynomialFitter.java 26 * <p>Polynomial fitting is a very simple case of curve fitting. The
27 * estimated coefficients are the polynomial coefficients. They are
38 /** Polynomial degree. */
42 * <p>The polynomial fitter built this way are complete polynomials,
43 * ie. a n-degree polynomial has n+1 coefficients.</p>
44 * @param degree maximal degree of the polynomial
70 /** Get the polynomial fitting the weighted (x, y) points.
71 * @return polynomial function best fitting the observed points
83 /** Dedicated parametric polynomial class. */
  /external/eigen/unsupported/test/
polynomialsolver.cpp 30 template<int Deg, typename POLYNOMIAL, typename SOLVER>
31 bool aux_evalSolver( const POLYNOMIAL& pols, SOLVER& psolve )
33 typedef typename POLYNOMIAL::Index Index;
34 typedef typename POLYNOMIAL::Scalar Scalar;
51 cerr << "Polynomial: " << pols.transpose() << endl;
53 cerr << "Abs value of the polynomial at the roots: " << evr.transpose() << endl;
78 template<int Deg, typename POLYNOMIAL>
79 void evalSolver( const POLYNOMIAL& pols )
81 typedef typename POLYNOMIAL::Scalar Scalar;
86 aux_evalSolver<Deg, POLYNOMIAL, PolynomialSolverType>( pols, psolve )
    [all...]
  /prebuilts/go/darwin-x86/src/hash/crc32/
crc32.go 25 // IEEE is by far and away the most common CRC-32 polynomial.
29 // Castagnoli's polynomial, used in iSCSI.
34 // Koopman's polynomial.
40 // Table is a 256-word table representing the polynomial for efficient processing.
44 // polynomial. MakeTable will always return this value when asked to make a
46 // using this polynomial.
54 // IEEETable is the table for the IEEE polynomial.
64 // MakeTable returns the Table constructed from the specified polynomial.
76 // makeTable returns the Table constructed from the specified polynomial.
93 // makeTable8 returns slicing8Table constructed from the specified polynomial
    [all...]
  /prebuilts/go/linux-x86/src/hash/crc32/
crc32.go 25 // IEEE is by far and away the most common CRC-32 polynomial.
29 // Castagnoli's polynomial, used in iSCSI.
34 // Koopman's polynomial.
40 // Table is a 256-word table representing the polynomial for efficient processing.
44 // polynomial. MakeTable will always return this value when asked to make a
46 // using this polynomial.
54 // IEEETable is the table for the IEEE polynomial.
64 // MakeTable returns the Table constructed from the specified polynomial.
76 // makeTable returns the Table constructed from the specified polynomial.
93 // makeTable8 returns slicing8Table constructed from the specified polynomial
    [all...]
  /external/mesa3d/src/gallium/auxiliary/gallivm/
f.cpp 13 * This file allows to compute the minimax polynomial coefficients we use
34 * - For example, to compute exp2 5th order polynomial between [0, 1] do:
44 * - To compute log2 4th order polynomial between [0, 1/9] do:
58 #include <boost/math/tools/polynomial.hpp>
88 const boost::math::tools::polynomial<boost::math::ntl::RR>& n,
89 const boost::math::tools::polynomial<boost::math::ntl::RR>& d,
  /prebuilts/go/darwin-x86/src/hash/crc64/
crc64.go 17 // The ISO polynomial, defined in ISO 3309 and used in HDLC.
20 // The ECMA polynomial, defined in ECMA 182.
24 // Table is a 256-word table representing the polynomial for efficient processing.
27 // MakeTable returns the Table constructed from the specified polynomial.
51 // using the polynomial represented by the Table.
86 // using the polynomial represented by the Table.
  /prebuilts/go/linux-x86/src/hash/crc64/
crc64.go 17 // The ISO polynomial, defined in ISO 3309 and used in HDLC.
20 // The ECMA polynomial, defined in ECMA 182.
24 // Table is a 256-word table representing the polynomial for efficient processing.
27 // MakeTable returns the Table constructed from the specified polynomial.
51 // using the polynomial represented by the Table.
86 // using the polynomial represented by the Table.

Completed in 345 milliseconds

1 2 3 4 5 6 7 8 91011>>