HomeSort by relevance Sort by last modified time
    Searched full:determinant (Results 1 - 25 of 188) sorted by null

1 2 3 4 5 6 7 8

  /external/eigen/doc/snippets/
MatrixBase_computeInverseAndDetWithCheck.cpp 5 double determinant; variable
6 m.computeInverseAndDetWithCheck(inverse,determinant,invertible);
7 cout << "Its determinant is " << determinant << endl;
  /external/eigen/test/
determinant.cpp 14 template<typename MatrixType> void determinant(const MatrixType& m) function
17 Determinant.h
27 VERIFY_IS_APPROX(MatrixType::Identity(size, size).determinant(), Scalar(1));
28 VERIFY_IS_APPROX((m1*m2).eval().determinant(), m1.determinant() * m2.determinant());
37 VERIFY_IS_APPROX(m2.determinant(), -m1.determinant());
40 VERIFY_IS_APPROX(m2.determinant(), -m1.determinant());
    [all...]
inverse.cpp 56 VERIFY_IS_APPROX(det, m1.determinant());
68 VERIFY_IS_MUCH_SMALLER_THAN(abs(det-m3.determinant()), RealScalar(1));
dontalign.cpp 40 VERIFY(square.determinant() != Scalar(0));
umeyama.cpp 15 #include <Eigen/LU> // required for MatrixBase::determinant
84 // tweak the first column to make the determinant be 1
85 Q.col(0) *= numext::conj(Q.determinant());
  /external/eigen/test/eigen2/
eigen2_determinant.cpp 14 template<typename MatrixType> void determinant(const MatrixType& m) function
17 Determinant.h
26 VERIFY_IS_APPROX(MatrixType::Identity(size, size).determinant(), Scalar(1));
27 VERIFY_IS_APPROX((m1*m2).determinant(), m1.determinant() * m2.determinant());
36 VERIFY_IS_APPROX(m2.determinant(), -m1.determinant());
39 VERIFY_IS_APPROX(m2.determinant(), -m1.determinant());
    [all...]
eigen2_sparse_solvers.cpp 150 Scalar refDet = refLu.determinant();
164 // std::cerr << refDet << " == " << slu.determinant() << "\n";
166 VERIFY_IS_APPROX(refDet,slu.determinant()); // FIXME det is not very stable for complex
182 VERIFY_IS_APPROX(refDet,slu.determinant());
eigen2_inverse.cpp 30 while(ei_abs(m1.determinant()) < RealScalar(0.1) && rows <= 8)
  /external/eigen/doc/examples/
TutorialLinAlgInverseDeterminant.cpp 14 cout << "The determinant of A is " << A.determinant() << endl;
  /external/eigen/Eigen/
LU 9 * This module includes %LU decomposition and related notions such as matrix inversion and determinant.
12 * - MatrixBase::determinant()
27 #include "src/LU/Determinant.h"
  /external/eigen/Eigen/src/LU/
Inverse.h 54 typename ResultType::Scalar& determinant,
59 determinant = matrix.coeff(0,0);
60 invertible = abs(determinant) > absDeterminantThreshold;
61 if(invertible) result.coeffRef(0,0) = typename ResultType::Scalar(1) / determinant;
86 const Scalar invdet = typename MatrixType::Scalar(1) / matrix.determinant();
98 typename ResultType::Scalar& determinant,
104 determinant = matrix.determinant();
105 invertible = abs(determinant) > absDeterminantThreshold;
107 const Scalar invdet = Scalar(1) / determinant;
364 (derived(), absDeterminantThreshold, inverse, determinant, invertible); local
392 RealScalar determinant; local
    [all...]
Determinant.h 41 return m.partialPivLu().determinant();
89 * \returns the determinant of this matrix
92 inline typename internal::traits<Derived>::Scalar MatrixBase<Derived>::determinant() const function in class:Eigen::MatrixBase
  /external/vulkan-validation-layers/libs/glm/gtc/
matrix_inverse.inl 69 T Determinant = m[0][0] * m[1][1] - m[1][0] * m[0][1];
72 + m[1][1] / Determinant,
73 - m[0][1] / Determinant,
74 - m[1][0] / Determinant,
75 + m[0][0] / Determinant);
86 T Determinant =
101 Inverse /= Determinant;
153 T Determinant =
159 Inverse /= Determinant;
  /external/apache-commons-math/src/main/java/org/apache/commons/math/linear/
CholeskyDecomposition.java 60 * Return the determinant of the matrix
61 * @return determinant of the matrix
FieldLUDecomposition.java 83 * Return the determinant of the matrix
84 * @return determinant of the matrix
LUDecomposition.java 81 * Return the determinant of the matrix
82 * @return determinant of the matrix
  /external/eigen/Eigen/src/SparseLU/
SparseLU.h 249 * \returns the absolute value of the determinant of the matrix of which
252 * \warning a determinant can be very big or small, so for matrices
261 // Initialize with the determinant of the row matrix
280 /** \returns the natural log of the absolute value of the determinant of the matrix
284 * inherent to the determinant computation.
308 /** \returns A number representing the sign of the determinant
315 // Initialize with the determinant of the row matrix
336 /** \returns The determinant of the matrix.
340 Scalar determinant() function in class:Eigen::SparseLU
343 // Initialize with the determinant of the row matri
    [all...]
  /external/eigen/doc/
TutorialLinearAlgebra.dox 146 \section TutorialLinAlgInverse Computing inverse and determinant
148 First of all, make sure that you really want this. While inverse and determinant are fundamental mathematical concepts,
150 advantageously replaced by solve() operations, and the determinant is often \em not a good way of checking if a matrix
153 However, for \em very \em small matrices, the above is not true, and inverse and determinant can be very useful.
155 While certain decompositions, such as PartialPivLU and FullPivLU, offer inverse() and determinant() methods, you can also
156 call inverse() and determinant() directly on a matrix. If your matrix is of a very small fixed size (at most 4x4) this
  /external/eigen/Eigen/src/QR/
HouseholderQR.h 153 /** \returns the absolute value of the determinant of the matrix of which
160 * \warning a determinant can be very big or small, so for matrices
164 * \sa logAbsDeterminant(), MatrixBase::determinant()
168 /** \returns the natural log of the absolute value of the determinant of the matrix of which
176 * to determinant computation.
178 * \sa absDeterminant(), MatrixBase::determinant()
209 eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
217 eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
  /external/llvm/test/Transforms/InstCombine/
2006-12-08-Phi-ICmp-Op-Fold.ll 33 %tmp13 = call i32 @determinant( i64 %tmp.upgrd.3, i64 %tmp9, i64 %tmp12 ) ; <i32> [#uses=2]
51 declare i32 @determinant(i64, i64, i64)
2006-12-08-Select-ICmp.ll 33 %tmp13 = call i32 @determinant( i64 %tmp.upgrd.3, i64 %tmp9, i64 %tmp12 ) ; <i32> [#uses=2]
41 declare i32 @determinant(i64, i64, i64)
  /development/perftests/panorama/feature_mos/src/mosaic/
trsMatrix.h 25 // Calculate the determinant of a matrix
  /external/libgdx/extensions/gdx-bullet/jni/src/bullet/BulletDynamics/ConstraintSolver/
btSolve2LinearConstraint.cpp 105 //[c d] inverse = (1 / determinant) * [-b a] where determinant is (ad - bc)
189 //[c d] inverse = (1 / determinant) * [-b a] where determinant is (ad - bc)
  /external/vulkan-validation-layers/libs/glm/detail/
func_matrix.hpp 156 /// Return the determinant of a squared matrix.
160 /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/determinant.xml">GLSL determinant man page</a>
163 GLM_FUNC_DECL T determinant(matType<T, P> const & m);
  /packages/apps/LegacyCamera/jni/feature_mos/src/mosaic/
trsMatrix.h 25 // Calculate the determinant of a matrix

Completed in 497 milliseconds

1 2 3 4 5 6 7 8