/external/eigen/doc/snippets/ |
MatrixBase_computeInverseAndDetWithCheck.cpp | 5 double determinant; variable 6 m.computeInverseAndDetWithCheck(inverse,determinant,invertible); 7 cout << "Its determinant is " << determinant << endl;
|
/external/eigen/test/ |
determinant.cpp | 14 template<typename MatrixType> void determinant(const MatrixType& m) function 17 Determinant.h 27 VERIFY_IS_APPROX(MatrixType::Identity(size, size).determinant(), Scalar(1)); 28 VERIFY_IS_APPROX((m1*m2).eval().determinant(), m1.determinant() * m2.determinant()); 37 VERIFY_IS_APPROX(m2.determinant(), -m1.determinant()); 40 VERIFY_IS_APPROX(m2.determinant(), -m1.determinant()); [all...] |
inverse.cpp | 56 VERIFY_IS_APPROX(det, m1.determinant()); 68 VERIFY_IS_MUCH_SMALLER_THAN(abs(det-m3.determinant()), RealScalar(1));
|
dontalign.cpp | 40 VERIFY(square.determinant() != Scalar(0));
|
umeyama.cpp | 15 #include <Eigen/LU> // required for MatrixBase::determinant 84 // tweak the first column to make the determinant be 1 85 Q.col(0) *= numext::conj(Q.determinant());
|
/external/eigen/test/eigen2/ |
eigen2_determinant.cpp | 14 template<typename MatrixType> void determinant(const MatrixType& m) function 17 Determinant.h 26 VERIFY_IS_APPROX(MatrixType::Identity(size, size).determinant(), Scalar(1)); 27 VERIFY_IS_APPROX((m1*m2).determinant(), m1.determinant() * m2.determinant()); 36 VERIFY_IS_APPROX(m2.determinant(), -m1.determinant()); 39 VERIFY_IS_APPROX(m2.determinant(), -m1.determinant()); [all...] |
eigen2_sparse_solvers.cpp | 150 Scalar refDet = refLu.determinant(); 164 // std::cerr << refDet << " == " << slu.determinant() << "\n"; 166 VERIFY_IS_APPROX(refDet,slu.determinant()); // FIXME det is not very stable for complex 182 VERIFY_IS_APPROX(refDet,slu.determinant());
|
eigen2_inverse.cpp | 30 while(ei_abs(m1.determinant()) < RealScalar(0.1) && rows <= 8)
|
/external/eigen/doc/examples/ |
TutorialLinAlgInverseDeterminant.cpp | 14 cout << "The determinant of A is " << A.determinant() << endl;
|
/external/eigen/Eigen/ |
LU | 9 * This module includes %LU decomposition and related notions such as matrix inversion and determinant. 12 * - MatrixBase::determinant() 27 #include "src/LU/Determinant.h"
|
/external/eigen/Eigen/src/LU/ |
Inverse.h | 54 typename ResultType::Scalar& determinant, 59 determinant = matrix.coeff(0,0); 60 invertible = abs(determinant) > absDeterminantThreshold; 61 if(invertible) result.coeffRef(0,0) = typename ResultType::Scalar(1) / determinant; 86 const Scalar invdet = typename MatrixType::Scalar(1) / matrix.determinant(); 98 typename ResultType::Scalar& determinant, 104 determinant = matrix.determinant(); 105 invertible = abs(determinant) > absDeterminantThreshold; 107 const Scalar invdet = Scalar(1) / determinant; 364 (derived(), absDeterminantThreshold, inverse, determinant, invertible); local 392 RealScalar determinant; local [all...] |
Determinant.h | 41 return m.partialPivLu().determinant(); 89 * \returns the determinant of this matrix 92 inline typename internal::traits<Derived>::Scalar MatrixBase<Derived>::determinant() const function in class:Eigen::MatrixBase
|
/external/vulkan-validation-layers/libs/glm/gtc/ |
matrix_inverse.inl | 69 T Determinant = m[0][0] * m[1][1] - m[1][0] * m[0][1]; 72 + m[1][1] / Determinant, 73 - m[0][1] / Determinant, 74 - m[1][0] / Determinant, 75 + m[0][0] / Determinant); 86 T Determinant = 101 Inverse /= Determinant; 153 T Determinant = 159 Inverse /= Determinant;
|
/external/apache-commons-math/src/main/java/org/apache/commons/math/linear/ |
CholeskyDecomposition.java | 60 * Return the determinant of the matrix 61 * @return determinant of the matrix
|
FieldLUDecomposition.java | 83 * Return the determinant of the matrix 84 * @return determinant of the matrix
|
LUDecomposition.java | 81 * Return the determinant of the matrix 82 * @return determinant of the matrix
|
/external/eigen/Eigen/src/SparseLU/ |
SparseLU.h | 249 * \returns the absolute value of the determinant of the matrix of which 252 * \warning a determinant can be very big or small, so for matrices 261 // Initialize with the determinant of the row matrix 280 /** \returns the natural log of the absolute value of the determinant of the matrix 284 * inherent to the determinant computation. 308 /** \returns A number representing the sign of the determinant 315 // Initialize with the determinant of the row matrix 336 /** \returns The determinant of the matrix. 340 Scalar determinant() function in class:Eigen::SparseLU 343 // Initialize with the determinant of the row matri [all...] |
/external/eigen/doc/ |
TutorialLinearAlgebra.dox | 146 \section TutorialLinAlgInverse Computing inverse and determinant 148 First of all, make sure that you really want this. While inverse and determinant are fundamental mathematical concepts, 150 advantageously replaced by solve() operations, and the determinant is often \em not a good way of checking if a matrix 153 However, for \em very \em small matrices, the above is not true, and inverse and determinant can be very useful. 155 While certain decompositions, such as PartialPivLU and FullPivLU, offer inverse() and determinant() methods, you can also 156 call inverse() and determinant() directly on a matrix. If your matrix is of a very small fixed size (at most 4x4) this
|
/external/eigen/Eigen/src/QR/ |
HouseholderQR.h | 153 /** \returns the absolute value of the determinant of the matrix of which 160 * \warning a determinant can be very big or small, so for matrices 164 * \sa logAbsDeterminant(), MatrixBase::determinant() 168 /** \returns the natural log of the absolute value of the determinant of the matrix of which 176 * to determinant computation. 178 * \sa absDeterminant(), MatrixBase::determinant() 209 eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); 217 eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
|
/external/llvm/test/Transforms/InstCombine/ |
2006-12-08-Phi-ICmp-Op-Fold.ll | 33 %tmp13 = call i32 @determinant( i64 %tmp.upgrd.3, i64 %tmp9, i64 %tmp12 ) ; <i32> [#uses=2] 51 declare i32 @determinant(i64, i64, i64)
|
2006-12-08-Select-ICmp.ll | 33 %tmp13 = call i32 @determinant( i64 %tmp.upgrd.3, i64 %tmp9, i64 %tmp12 ) ; <i32> [#uses=2] 41 declare i32 @determinant(i64, i64, i64)
|
/development/perftests/panorama/feature_mos/src/mosaic/ |
trsMatrix.h | 25 // Calculate the determinant of a matrix
|
/external/libgdx/extensions/gdx-bullet/jni/src/bullet/BulletDynamics/ConstraintSolver/ |
btSolve2LinearConstraint.cpp | 105 //[c d] inverse = (1 / determinant) * [-b a] where determinant is (ad - bc) 189 //[c d] inverse = (1 / determinant) * [-b a] where determinant is (ad - bc)
|
/external/vulkan-validation-layers/libs/glm/detail/ |
func_matrix.hpp | 156 /// Return the determinant of a squared matrix. 160 /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/determinant.xml">GLSL determinant man page</a> 163 GLM_FUNC_DECL T determinant(matType<T, P> const & m);
|
/packages/apps/LegacyCamera/jni/feature_mos/src/mosaic/ |
trsMatrix.h | 25 // Calculate the determinant of a matrix
|