HomeSort by relevance Sort by last modified time
    Searched full:regularization (Results 1 - 25 of 29) sorted by null

1 2

  /external/libopus/silk/float/
residual_energy_FLP.c 47 silk_float tmp, nrg = 0.0f, regularization; local
52 regularization = REGULARIZATION_FACTOR * ( wXX[ 0 ] + wXX[ D * D - 1 ] );
75 matrix_c_ptr( wXX, i, i, D ) += regularization;
78 regularization *= 2.0f;
  /external/ceres-solver/internal/ceres/
schur_complement_solver_test.cc 88 bool regularization,
109 if (regularization) {
115 if (regularization) {
dogleg_strategy.h 108 // the next solve starts with a stronger regularization.
145 // and the regularization used to do the Gauss-Newton solve is
implicit_schur_complement_test.cc 191 // We do this with and without regularization to check that the
minimizer.h 127 // regularization making the linear least squares problem better
dogleg_strategy.cc 624 // Reduce the regularization multiplier, in the hope that whatever
schur_eliminator_impl.h 587 // typically arise from regularization terms in the original
  /external/ceres-solver/examples/
fields_of_experts.h 32 // model. The Fields of Experts regularization consists of terms of the type
75 // The loss function used to build the correct regularization. See above.
denoising.cc 105 // Create Ceres cost and loss functions for regularization. One is needed for
114 // Add FoE regularization for each patch in the image.
ellipse_approximation.cc 427 // Add regularization to minimize the length of the line segment contour.
  /external/opencv3/modules/shape/include/opencv2/shape/
shape_transformer.hpp 101 /** @brief Set the regularization parameter for relaxing the exact interpolation requirements of the TPS
104 @param beta value of the regularization parameter.
  /frameworks/ml/bordeaux/learning/stochastic_linear_ranker/jni/
jni_stochastic_linear_ranker.h 33 /* Ddetermines type of the regularization used in learning.
34 This regularization can be based on different norms.
jni_stochastic_linear_ranker.cpp 129 ALOGE("Error: %s is not a Regularization Type", cValue);
  /external/opencv3/modules/shape/src/
tps_trans.cpp 85 << "regularization" << regularizationParameter;
91 regularizationParameter = (int)fn["regularization"];
sc_dis.cpp 237 // regularization parameter with annealing rate annRate //
  /external/libopus/silk/
tuning_parameters.h 53 /* LPC analysis regularization */
  /frameworks/ml/bordeaux/learning/stochastic_linear_ranker/native/
stochastic_linear_ranker.h 234 // Note that a form of L2 regularization is built into this
sparse_weight_vector.cpp 374 ALOGE("Unsupported regularization type requested");
  /external/ceres-solver/include/ceres/
iteration_callback.h 117 // the Levenberg-Marquardt algorithm, the regularization parameter
  /external/opencv3/modules/cudaoptflow/include/opencv2/
cudaoptflow.hpp 282 * It serves as a link between the attachment and the regularization terms.
  /external/opencv3/modules/ml/doc/
ml_intro.markdown 464 - In order to compensate for overfitting regularization is performed, which can be enabled with
466 kind of regularization has to be performed by passing one of @ref
467 cv::ml::LogisticRegression::RegKinds "regularization kinds" to this method.
  /external/opencv3/modules/ml/src/
lr.cpp 93 CV_IMPL_PROPERTY(int, Regularization, params.norm)
  /external/chromium-trace/catapult/third_party/gsutil/third_party/boto/boto/machinelearning/
layer1.py 528 + `sgd.l1RegularizationAmount` - Coefficient regularization L1 norm. It
536 + `sgd.l2RegularizationAmount` - Coefficient regularization L2 norm. It
    [all...]
  /external/opencv3/modules/video/include/opencv2/video/
tracking.hpp 418 attachment and the regularization terms. In theory, it should have a small value in order
  /external/opencv3/modules/ml/include/opencv2/
ml.hpp     [all...]

Completed in 1079 milliseconds

1 2