/external/libopus/silk/float/ |
residual_energy_FLP.c | 47 silk_float tmp, nrg = 0.0f, regularization; local 52 regularization = REGULARIZATION_FACTOR * ( wXX[ 0 ] + wXX[ D * D - 1 ] ); 75 matrix_c_ptr( wXX, i, i, D ) += regularization; 78 regularization *= 2.0f;
|
/external/ceres-solver/internal/ceres/ |
schur_complement_solver_test.cc | 88 bool regularization, 109 if (regularization) { 115 if (regularization) {
|
dogleg_strategy.h | 108 // the next solve starts with a stronger regularization. 145 // and the regularization used to do the Gauss-Newton solve is
|
implicit_schur_complement_test.cc | 191 // We do this with and without regularization to check that the
|
minimizer.h | 127 // regularization making the linear least squares problem better
|
dogleg_strategy.cc | 624 // Reduce the regularization multiplier, in the hope that whatever
|
schur_eliminator_impl.h | 587 // typically arise from regularization terms in the original
|
/external/ceres-solver/examples/ |
fields_of_experts.h | 32 // model. The Fields of Experts regularization consists of terms of the type 75 // The loss function used to build the correct regularization. See above.
|
denoising.cc | 105 // Create Ceres cost and loss functions for regularization. One is needed for 114 // Add FoE regularization for each patch in the image.
|
ellipse_approximation.cc | 427 // Add regularization to minimize the length of the line segment contour.
|
/external/opencv3/modules/shape/include/opencv2/shape/ |
shape_transformer.hpp | 101 /** @brief Set the regularization parameter for relaxing the exact interpolation requirements of the TPS 104 @param beta value of the regularization parameter.
|
/frameworks/ml/bordeaux/learning/stochastic_linear_ranker/jni/ |
jni_stochastic_linear_ranker.h | 33 /* Ddetermines type of the regularization used in learning. 34 This regularization can be based on different norms.
|
jni_stochastic_linear_ranker.cpp | 129 ALOGE("Error: %s is not a Regularization Type", cValue);
|
/external/opencv3/modules/shape/src/ |
tps_trans.cpp | 85 << "regularization" << regularizationParameter; 91 regularizationParameter = (int)fn["regularization"];
|
sc_dis.cpp | 237 // regularization parameter with annealing rate annRate //
|
/external/libopus/silk/ |
tuning_parameters.h | 53 /* LPC analysis regularization */
|
/frameworks/ml/bordeaux/learning/stochastic_linear_ranker/native/ |
stochastic_linear_ranker.h | 234 // Note that a form of L2 regularization is built into this
|
sparse_weight_vector.cpp | 374 ALOGE("Unsupported regularization type requested");
|
/external/ceres-solver/include/ceres/ |
iteration_callback.h | 117 // the Levenberg-Marquardt algorithm, the regularization parameter
|
/external/opencv3/modules/cudaoptflow/include/opencv2/ |
cudaoptflow.hpp | 282 * It serves as a link between the attachment and the regularization terms.
|
/external/opencv3/modules/ml/doc/ |
ml_intro.markdown | 464 - In order to compensate for overfitting regularization is performed, which can be enabled with 466 kind of regularization has to be performed by passing one of @ref 467 cv::ml::LogisticRegression::RegKinds "regularization kinds" to this method.
|
/external/opencv3/modules/ml/src/ |
lr.cpp | 93 CV_IMPL_PROPERTY(int, Regularization, params.norm)
|
/external/chromium-trace/catapult/third_party/gsutil/third_party/boto/boto/machinelearning/ |
layer1.py | 528 + `sgd.l1RegularizationAmount` - Coefficient regularization L1 norm. It 536 + `sgd.l2RegularizationAmount` - Coefficient regularization L2 norm. It [all...] |
/external/opencv3/modules/video/include/opencv2/video/ |
tracking.hpp | 418 attachment and the regularization terms. In theory, it should have a small value in order
|
/external/opencv3/modules/ml/include/opencv2/ |
ml.hpp | [all...] |