/frameworks/av/media/libcpustats/ |
CentralTendencyStatistics.cpp | 52 double CentralTendencyStatistics::variance() const function in class:CentralTendencyStatistics 54 double variance; local 58 variance = mM2 / (mN - 1); 60 variance = NAN; 62 mVariance = variance; 65 variance = mVariance; 67 return variance; 74 stddev = sqrt(variance());
|
/external/apache-commons-math/src/main/java/org/apache/commons/math/stat/descriptive/moment/ |
StandardDeviation.java | 26 * is the positive square root of the variance. This implementation wraps a 27 * {@link Variance} instance. The <code>isBiasCorrected</code> property of the 28 * wrapped Variance instance is exposed, so that this class can be used to 30 * bias-corrected "sample variance") or the "population standard deviation" 31 * (the square root of the non-bias-corrected "population variance"). See 32 * {@link Variance} for more information. 47 /** Wrapped Variance instance */ 48 private Variance variance = null; field in class:StandardDeviation 51 * Constructs a StandardDeviation. Sets the underlying {@link Variance} [all...] |
Variance.java | 27 * Computes the variance of the available values. By default, the unbiased 28 * "sample variance" definitional formula is used: 30 * variance = sum((x_i - mean)^2) / (n - 1) </p> 38 * <li> The <code>getResult</code> method computes the variance using 46 * Chan, Golub, Levesque, <i>Algorithms for Computing the Sample Variance</i>, 54 * The "population variance" ( sum((x_i - mean)^2) / n ) can also 68 public class Variance extends AbstractStorelessUnivariateStatistic implements Serializable, WeightedEvaluation { 73 /** SecondMoment is used in incremental calculation of Variance*/ 77 * Boolean test to determine if this Variance should also increment 78 * the second moment, this evaluates to false when this Variance i [all...] |
Kurtosis.java | 111 double variance = moment.m2 / (moment.n - 1); local 112 if (moment.n <= 3 || variance < 10E-20) { 119 ((n - 1) * (n -2) * (n -3) * variance * variance); 171 Variance variance = new Variance(); local 172 variance.incrementAll(values, begin, length); 173 double mean = variance.moment.m1; 174 double stdDev = FastMath.sqrt(variance.getResult()) [all...] |
/external/guava/guava-tests/benchmark/com/google/common/math/ |
StatsBenchmark.java | 28 * Benchmarks for various algorithms for computing the mean and/or variance. 75 private final double variance; field in class:StatsBenchmark.MeanAndVariance 77 MeanAndVariance(double mean, double variance) { 79 this.variance = variance; 84 return Doubles.hashCode(mean) * 31 + Doubles.hashCode(variance); 91 MeanAndVariance variance(double[] values, MeanAlgorithm meanAlgorithm) { method 97 MeanAndVariance variance(double[] values, MeanAlgorithm meanAlgorithm) { method 109 MeanAndVariance variance(double[] values, MeanAlgorithm meanAlgorithm) { method 126 MeanAndVariance variance(double[] values, MeanAlgorithm meanAlgorithm) method 141 abstract MeanAndVariance variance(double[] values, MeanAlgorithm meanAlgorithm); method in class:StatsBenchmark.VarianceAlgorithm [all...] |
/tools/test/connectivity/acts/tests/google/wifi/ |
WifiNewSetupAutoJoinTest.py | 184 variance = 5 185 attenuations = ([att0 + variance * 2, att1, att2, att3], 186 [att0 + variance, att1, att2, att3], [att0, att1, att2, att3], 187 [att0 - variance, att1, att2, att3]) 208 variance = 5 209 attenuations = ([att0 + variance * 2, att1, att2, attn3], 210 [att0 + variance, att1, att2, attn3], [att0, att1, att2, attn3]) 231 variance = 5 232 attenuations = ([att0 - variance, att1 + variance, att2, attn3] [all...] |
WifiAutoJoinTest.py | 177 variance = 5 178 attenuations = ([att0+variance*2, att1, att2], [att0+variance, att1, att2], 179 [att0, att1, att2], [att0-variance, att1, att2]) 199 variance = 5 200 attenuations = ([att0+variance*2, att1, att2], [att0+variance, att1, att2], 222 variance = 5 223 attenuations = ([att0-variance, att1+variance, att2], [att0, att1, att2] [all...] |
/external/chromium-trace/catapult/tracing/tracing/base/ |
running_statistics_test.html | 94 test('variance', function() { 97 assert.equal(Statistics.variance(data), run(data).variance); 99 assert.equal(Statistics.variance(data), run(data).variance); 101 assert.closeTo(Statistics.variance(data), run(data).variance, 1e-6); 103 assert.closeTo(Statistics.variance(data), run(data).variance, 1e-6); 129 assert.equal(Statistics.variance(data), stats.variance) [all...] |
/external/libmpeg2/common/ |
icv_variance.c | 26 * This file contains the functions to compute variance 60 * Computes variance of a given 8x4 block 63 * Compute variance of a given 8x4 block 78 * Variance 104 /* variance */ 110 /* calculates the variance only for field area not frame one. */
|
/external/autotest/server/tests/netpipe/ |
control.srv | 19 variance - NetPIPE chooses the message sizes at regular intervals, 32 variance = 17 36 upper_bound=upper_bound, variance=variance)
|
control.stress.srv | 21 variance - NetPIPE chooses the message sizes at regular intervals, 43 variance = 17 50 upper_bound=upper_bound, variance=variance)
|
/external/apache-commons-math/src/main/java/org/apache/commons/math/stat/descriptive/ |
StatisticalSummaryValues.java | 38 /** The sample variance */ 39 private final double variance; field in class:StatisticalSummaryValues 57 * @param variance the sample variance 63 public StatisticalSummaryValues(double mean, double variance, long n, 67 this.variance = variance; 113 return FastMath.sqrt(variance); 117 * @return Returns the variance. 120 return variance; [all...] |
/external/chromium-trace/catapult/telemetry/telemetry/value/ |
list_of_scalar_values.py | 13 def Variance(sample): 14 """ Compute the population variance. 32 return math.sqrt(Variance(sample)) 42 list_of_variances: a list of numbers, the i-th element is the variance of 44 Variance(sample) to get the variance of the i-th sample. 53 variance = list_of_variances[i] if list_of_variances else Variance(l) 54 pooled_variance += k * variance 102 def variance(self) member in class:ListOfScalarValues [all...] |
/external/webrtc/webrtc/modules/audio_processing/intelligibility/ |
intelligibility_utils_unittest.cc | 71 // Tests VarianceArray, for all variance step types. 87 EXPECT_EQ(0, variance_array.variance()[0]); 90 EXPECT_EQ(0, variance_array.variance()[0]); 100 EXPECT_GE(variance_array.variance()[j], 0.0f); 101 EXPECT_LE(variance_array.variance()[j], 1.0f); 105 EXPECT_EQ(0, variance_array.variance()[0]); 141 EXPECT_EQ(0, variance_array.variance()[j]); 143 EXPECT_NEAR(kTestVarianceBufferNotFull, variance_array.variance()[j], 146 EXPECT_NEAR(kTestVarianceBufferFull1, variance_array.variance()[j], 149 EXPECT_NEAR(kTestVarianceBufferFull2, variance_array.variance()[j] [all...] |
/external/webrtc/webrtc/modules/audio_processing/test/ |
test_utils.h | 107 float ComputeSNR(const T* ref, const T* test, size_t length, float* variance) { 110 *variance = 0; 114 *variance += ref[i] * ref[i]; 118 *variance /= length; 120 *variance -= mean * mean; 124 snr = 10 * log10(*variance / mse);
|
/external/chromium-trace/catapult/dashboard/dashboard/ |
math_utils.py | 28 def Variance(values): 29 """Returns the population variance, or NaN if the input is empty.""" 40 return math.sqrt(Variance(values))
|
math_utils_test.py | 42 self.assertTrue(math.isnan(math_utils.Variance([]))) 45 self.assertEqual(0.0, math_utils.Variance([0])) 46 self.assertEqual(0.0, math_utils.Variance([4.3])) 50 self.assertAlmostEqual(6.25, math_utils.Variance([-3, 0, 1, 4]))
|
/frameworks/av/include/cpustats/ |
CentralTendencyStatistics.h | 45 // return the variance of all samples so far 46 double variance() const; 65 // cached variance, and n at time of caching
|
/external/apache-commons-math/src/main/java/org/apache/commons/math/stat/regression/ |
MultipleLinearRegression.java | 43 * Estimates the variance of the regression parameters, ie Var(b). 45 * @return The [k,k] array representing the variance of b 57 * Returns the variance of the regressand, ie Var(y). 59 * @return The double representing the variance of y
|
GLSMultipleLinearRegression.java | 36 * whose variance is 103 * Calculates the variance on the beta. 107 * @return The beta variance matrix 118 * Calculates the estimated variance of the error term using the formula 125 * @return error variance
|
/external/webrtc/webrtc/test/ |
statistics.cc | 31 double Statistics::Variance() const { 38 return sqrt(Variance());
|
/device/google/contexthub/firmware/inc/algos/ |
gyro_stillness_detect.h | 26 * is computed using non-overlapping windows of signal variance 45 // Variance threshold for the stillness confidence score. 48 // Delta about the variance threshold for calculation of the 69 // variance for the current window (used for stillness detection). 78 // Latest computed variance.
|
/external/autotest/client/site_tests/video_WebRtcCamera/ |
ssim.js | 29 // square root. The latter is actually an unbiased estimate of the variance, 30 // not the exact variance. 43 return {mean : meanA, variance : accu / a.length}; 70 var sigmaX2 = statsX.variance; 74 var sigmaY2 = statsY.variance;
|
/external/autotest/client/site_tests/video_WebRtcPeerConnectionWithCamera/ |
ssim.js | 29 // square root. The latter is actually an unbiased estimate of the variance, 30 // not the exact variance. 43 return {mean : meanA, variance : accu / a.length}; 70 var sigmaX2 = statsX.variance; 74 var sigmaY2 = statsY.variance;
|
/external/libmpeg2/common/x86/ |
icv_variance_ssse3.c | 26 * This file contains the functions to compute variance 60 * Computes variance of a given 8x4 block 63 * Compute variance of a given 8x4 block 78 * Variance 153 /* Compute variance */
|