Home | History | Annotate | Download | only in Geometry

Lines Matching full:affine

95   *              - #Affine: the transformation is stored as a (Dim+1)^2 matrix,
110 * Therefore, an affine transformation matrix M is shaped like this:
151 * \b Affine \b Matrix A (Dim)x(Dim+1):
179 * transformation of non homogeneous vectors by an affine transformation. In
226 /** type of read/write reference to the affine part of the transformation */
230 /** type of read reference to the affine part of the transformation */
244 enum { TransformTimeDiagonalMode = ((Mode==int(Isometry))?Affine:int(Mode)) };
255 * If Mode==Affine, then the last row is set to [0 ... 0 1] */
259 internal::transform_make_affine<(int(Mode)==Affine) ? Affine : AffineCompact>::run(m_matrix);
325 // Affine | AffineCompact | Isometry = Projective
330 // Isometry = Affine | AffineCompact
331 EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(OtherMode==int(Affine)||OtherMode==int(AffineCompact), Mode!=int(Isometry)),
355 // So the only possibility is that OtherMode == Affine
404 /** \returns a read-only expression of the Dim x HDim affine part of the transformation */
405 EIGEN_DEVICE_FUNC inline ConstAffinePart affine() const { return take_affine_part::run(m_matrix); }
406 /** \returns a writable expression of the Dim x HDim affine part of the transformation */
407 affine() { return take_affine_part::run(m_matrix); }
421 * Moreover, if \c *this represents an affine transformation (i.e., Mode!=Projective), then \a other can also be:
427 * If you want to interpret \a other as a linear or affine transformation, then first convert it to a Transform<> type,
430 * Finally, if you want to apply Affine transformations to vectors, then explicitly apply the linear part only:
448 * \li an affine transformation matrix of size Dim x Dim+1,
458 * The rhs diagonal matrix is interpreted as an affine scaling transformation. The
473 * The lhs diagonal matrix is interpreted as an affine scaling transformation. The
658 * \returns the Dim x Dim linear part if the transformation is affine,
664 * \returns the Dim x Dim linear part if the transformation is affine,
671 * \returns the translation part if the transformation is affine,
677 * \returns the translation part if the transformation is affine,
708 typedef Transform<float,2,Affine> Affine2f;
710 typedef Transform<float,3,Affine> Affine3f;
712 typedef Transform<double,2,Affine> Affine2d;
714 typedef Transform<double,3,Affine> Affine3d;
770 * \warning this conversion might loss data if \c *this is not affine
875 affine().noalias() = (other.asDiagonal() * affine());
916 affine() += other * m_matrix.row(Dim);
1187 * - #Projective if the transformation is not necessarily affine, i.e., if the
1189 * - #Affine if the last row can be assumed to be [0 ... 0 1]
1215 else if(hint&Affine)
1234 *** Specializations of take affine part ***
1274 transform->affine() = other;
1304 (LhsMode == (int)Affine || RhsMode == (int)Affine ) ? Affine :
1340 TopLeftLhs(res, 0, 0, Dim, other.cols()).noalias() = T.affine() * other;
1426 // affine matrix * T
1436 res.affine().noalias() = other * tr.matrix();
1442 // affine matrix * AffineCompact