Home | History | Annotate | Download | only in Eigenvalues

Lines Matching defs:compute

67    * perform decompositions via compute().
85 * \param[in] nbrEigenvalues The number of eigenvalues / eigenvectors to compute.
96 * This constructor calls compute(const MatrixType&, const MatrixType&, Index, string, int, RealScalar)
97 * to compute the eigenvalues of the matrix \p A with respect to \p B. The eigenvectors are computed if
111 compute(A, B, nbrEigenvalues, eigs_sigma, options, tol);
119 * \param[in] nbrEigenvalues The number of eigenvalues / eigenvectors to compute.
130 * This constructor calls compute(const MatrixType&, Index, string, int, RealScalar)
131 * to compute the eigenvalues of the matrix \p A. The eigenvectors are computed if
146 compute(A, nbrEigenvalues, eigs_sigma, options, tol);
154 * \param[in] nbrEigenvalues The number of eigenvalues / eigenvectors to compute.
173 ArpackGeneralizedSelfAdjointEigenSolver& compute(const MatrixType& A, const MatrixType& B,
180 * \param[in] nbrEigenvalues The number of eigenvalues / eigenvectors to compute.
199 ArpackGeneralizedSelfAdjointEigenSolver& compute(const MatrixType& A,
260 * uses the eigendecomposition \f$ A = V D V^{-1} \f$ to compute the
284 * compute the inverse square root as \f$ V D^{-1/2} V^{-1} \f$. This is
335 ::compute(const MatrixType& A, Index nbrEigenvalues,
339 compute(A, B, nbrEigenvalues, eigs_sigma, options, tol);
348 ::compute(const MatrixType& A, const MatrixType& B, Index nbrEigenvalues,
421 // The user-specified number of eigenvalues/vectors to compute
430 // Note that this indicates that nev != n, and we cannot compute
476 OP.compute(B);
482 OP.compute(A);
494 OP.compute(AminusSigmaB);
499 OP.compute(AminusSigmaB);
586 // Do we compute eigenvectors or not?
594 // if howmny == "S", specifies the eigenvalues to compute (not implemented in ARPACK)
765 // Then compute out = A out