Home | History | Annotate | Download | only in pydoc_data

Lines Matching refs:garbage

25  'customization': '\nBasic customization\n*******************\n\nobject.__new__(cls[, ...])\n\n   Called to create a new instance of class *cls*.  ``__new__()`` is a\n   static method (special-cased so you need not declare it as such)\n   that takes the class of which an instance was requested as its\n   first argument.  The remaining arguments are those passed to the\n   object constructor expression (the call to the class).  The return\n   value of ``__new__()`` should be the new object instance (usually\n   an instance of *cls*).\n\n   Typical implementations create a new instance of the class by\n   invoking the superclass\'s ``__new__()`` method using\n   ``super(currentclass, cls).__new__(cls[, ...])`` with appropriate\n   arguments and then modifying the newly-created instance as\n   necessary before returning it.\n\n   If ``__new__()`` returns an instance of *cls*, then the new\n   instance\'s ``__init__()`` method will be invoked like\n   ``__init__(self[, ...])``, where *self* is the new instance and the\n   remaining arguments are the same as were passed to ``__new__()``.\n\n   If ``__new__()`` does not return an instance of *cls*, then the new\n   instance\'s ``__init__()`` method will not be invoked.\n\n   ``__new__()`` is intended mainly to allow subclasses of immutable\n   types (like int, str, or tuple) to customize instance creation.  It\n   is also commonly overridden in custom metaclasses in order to\n   customize class creation.\n\nobject.__init__(self[, ...])\n\n   Called when the instance is created.  The arguments are those\n   passed to the class constructor expression.  If a base class has an\n   ``__init__()`` method, the derived class\'s ``__init__()`` method,\n   if any, must explicitly call it to ensure proper initialization of\n   the base class part of the instance; for example:\n   ``BaseClass.__init__(self, [args...])``.  As a special constraint\n   on constructors, no value may be returned; doing so will cause a\n   ``TypeError`` to be raised at runtime.\n\nobject.__del__(self)\n\n   Called when the instance is about to be destroyed.  This is also\n   called a destructor.  If a base class has a ``__del__()`` method,\n   the derived class\'s ``__del__()`` method, if any, must explicitly\n   call it to ensure proper deletion of the base class part of the\n   instance.  Note that it is possible (though not recommended!) for\n   the ``__del__()`` method to postpone destruction of the instance by\n   creating a new reference to it.  It may then be called at a later\n   time when this new reference is deleted.  It is not guaranteed that\n   ``__del__()`` methods are called for objects that still exist when\n   the interpreter exits.\n\n   Note: ``del x`` doesn\'t directly call ``x.__del__()`` --- the former\n     decrements the reference count for ``x`` by one, and the latter\n     is only called when ``x``\'s reference count reaches zero.  Some\n     common situations that may prevent the reference count of an\n     object from going to zero include: circular references between\n     objects (e.g., a doubly-linked list or a tree data structure with\n     parent and child pointers); a reference to the object on the\n     stack frame of a function that caught an exception (the traceback\n     stored in ``sys.exc_traceback`` keeps the stack frame alive); or\n     a reference to the object on the stack frame that raised an\n     unhandled exception in interactive mode (the traceback stored in\n     ``sys.last_traceback`` keeps the stack frame alive).  The first\n     situation can only be remedied by explicitly breaking the cycles;\n     the latter two situations can be resolved by storing ``None`` in\n     ``sys.exc_traceback`` or ``sys.last_traceback``.  Circular\n     references which are garbage are detected when the option cycle\n     detector is enabled (it\'s on by default), but can only be cleaned\n     up if there are no Python-level ``__del__()`` methods involved.\n     Refer to the documentation for the ``gc`` module for more\n     information about how ``__del__()`` methods are handled by the\n     cycle detector, particularly the description of the ``garbage
51 'objects': '\nObjects, values and types\n*************************\n\n*Objects* are Python\'s abstraction for data. All data in a Python\nprogram is represented by objects or by relations between objects. (In\na sense, and in conformance to Von Neumann\'s model of a "stored\nprogram computer," code is also represented by objects.)\n\nEvery object has an identity, a type and a value. An object\'s\n*identity* never changes once it has been created; you may think of it\nas the object\'s address in memory. The \'``is``\' operator compares the\nidentity of two objects; the ``id()`` function returns an integer\nrepresenting its identity (currently implemented as its address). An\nobject\'s *type* is also unchangeable. [1] An object\'s type determines\nthe operations that the object supports (e.g., "does it have a\nlength?") and also defines the possible values for objects of that\ntype. The ``type()`` function returns an object\'s type (which is an\nobject itself). The *value* of some objects can change. Objects\nwhose value can change are said to be *mutable*; objects whose value\nis unchangeable once they are created are called *immutable*. (The\nvalue of an immutable container object that contains a reference to a\nmutable object can change when the latter\'s value is changed; however\nthe container is still considered immutable, because the collection of\nobjects it contains cannot be changed. So, immutability is not\nstrictly the same as having an unchangeable value, it is more subtle.)\nAn object\'s mutability is determined by its type; for instance,\nnumbers, strings and tuples are immutable, while dictionaries and\nlists are mutable.\n\nObjects are never explicitly destroyed; however, when they become\nunreachable they may be garbage-collected. An implementation is\nallowed to postpone garbage collection or omit it altogether --- it is\na matter of implementation quality how garbage collection is\nimplemented, as long as no objects are collected that are still\nreachable.\n\n**CPython implementation detail:** CPython currently uses a reference-\ncounting scheme with (optional) delayed detection of cyclically linked\ngarbage, which collects most objects as soon as they become\nunreachable, but is not guaranteed to collect garbage containing\ncircular references. See the documentation of the ``gc`` module for\ninformation on controlling the collection of cyclic garbage. Other\nimplementations act differently and CPython may change. Do not depend\non immediate finalization of objects when they become unreachable (ex:\nalways close files).\n\nNote that the use of the implementation\'s tracing or debugging\nfacilities may keep objects alive that would normally be collectable.\nAlso note that catching an exception with a \'``try``...``except``\'\nstatement may keep objects alive.\n\nSome objects contain references to "external" resources such as open\nfiles or windows. It is understood that these resources are freed\nwhen the object is garbage-collected, but since garbage collection is\nnot guaranteed to happen, such objects also provide an explicit way to\nrelease the external resource, usually a ``close()`` method. Programs\nare strongly recommended to explicitly close such objects. The\n\'``try``...``finally``\' statement provides a convenient way to do\nthis.\n\nSome objects contain references to other objects; these are called\n*containers*. Examples of containers are tuples, lists and\ndictionaries. The references are part of a container\'s value. In\nmost cases, when we talk about the value of a container, we imply the\nvalues, not the identities of the contained objects; however, when we\ntalk about the mutability of a container, only the identities of the\nimmediately contained objects are implied. So, if an immutable\ncontainer (like a tuple) contains a reference to a mutable object, its\nvalue changes if that mutable object is changed.\n\nTypes affect almost all aspects of object behavior. Even the\nimportance of object identity is affected in some sense: for immutable\ntypes, operations that compute new values may actually return a\nreference to any existing object with the same type and value, while\nfor mutable objects this is not allowed. E.g., after ``a = 1; b =\n1``, ``a`` and ``b`` may or may not refer to the same object with the\nvalue one, depending on the implementation, but after ``c = []; d =\n[]``, ``c`` and ``d`` are guaranteed to refer to two different,\nunique, newly created empty lists. (Note that ``c = d = []`` assigns\nthe same object to both ``c`` and ``d``.)\n',
52 'operator-summary': '\nOperator precedence\n*******************\n\nThe following table summarizes the operator precedences in Python,\nfrom lowest precedence (least binding) to highest precedence (most\nbinding). Operators in the same box have the same precedence. Unless\nthe syntax is explicitly given, operators are binary. Operators in\nthe same box group left to right (except for comparisons, including\ntests, which all have the same precedence and chain from left to right\n--- see section *Comparisons* --- and exponentiation, which groups\nfrom right to left).\n\n+-------------------------------------------------+---------------------------------------+\n| Operator | Description |\n+=================================================+=======================================+\n| ``lambda`` | Lambda expression |\n+-------------------------------------------------+---------------------------------------+\n| ``if`` -- ``else`` | Conditional expression |\n+-------------------------------------------------+---------------------------------------+\n| ``or`` | Boolean OR |\n+-------------------------------------------------+---------------------------------------+\n| ``and`` | Boolean AND |\n+-------------------------------------------------+---------------------------------------+\n| ``not`` ``x`` | Boolean NOT |\n+-------------------------------------------------+---------------------------------------+\n| ``in``, ``not in``, ``is``, ``is not``, ``<``, | Comparisons, including membership |\n| ``<=``, ``>``, ``>=``, ``<>``, ``!=``, ``==`` | tests and identity tests |\n+-------------------------------------------------+---------------------------------------+\n| ``|`` | Bitwise OR |\n+-------------------------------------------------+---------------------------------------+\n| ``^`` | Bitwise XOR |\n+-------------------------------------------------+---------------------------------------+\n| ``&`` | Bitwise AND |\n+-------------------------------------------------+---------------------------------------+\n| ``<<``, ``>>`` | Shifts |\n+-------------------------------------------------+---------------------------------------+\n| ``+``, ``-`` | Addition and subtraction |\n+-------------------------------------------------+---------------------------------------+\n| ``*``, ``/``, ``//``, ``%`` | Multiplication, division, remainder |\n| | [8] |\n+-------------------------------------------------+---------------------------------------+\n| ``+x``, ``-x``, ``~x`` | Positive, negative, bitwise NOT |\n+-------------------------------------------------+---------------------------------------+\n| ``**`` | Exponentiation [9] |\n+-------------------------------------------------+---------------------------------------+\n| ``x[index]``, ``x[index:index]``, | Subscription, slicing, call, |\n| ``x(arguments...)``, ``x.attribute`` | attribute reference |\n+-------------------------------------------------+---------------------------------------+\n| ``(expressions...)``, ``[expressions...]``, | Binding or tuple display, list |\n| ``{key: value...}``, ```expressions...``` | display, dictionary display, string |\n| | conversion |\n+-------------------------------------------------+---------------------------------------+\n\n-[ Footnotes ]-\n\n[1] In Python 2.3 and later releases, a list comprehension "leaks" the\n control variables of each ``for`` it contains into the containing\n scope. However, this behavior is deprecated, and relying on it\n will not work in Python 3.\n\n[2] While ``abs(x%y) < abs(y)`` is true mathematically, for floats it\n may not be true numerically due to roundoff. For example, and\n assuming a platform on which a Python float is an IEEE 754 double-\n precision number, in order that ``-1e-100 % 1e100`` have the same\n sign as ``1e100``, the computed result is ``-1e-100 + 1e100``,\n which is numerically exactly equal to ``1e100``. The function\n ``math.fmod()`` returns a result whose sign matches the sign of\n the first argument instead, and so returns ``-1e-100`` in this\n case. Which approach is more appropriate depends on the\n application.\n\n[3] If x is very close to an exact integer multiple of y, it\'s\n possible for ``floor(x/y)`` to be one larger than ``(x-x%y)/y``\n due to rounding. In such cases, Python returns the latter result,\n in order to preserve that ``divmod(x,y)[0] * y + x % y`` be very\n close to ``x``.\n\n[4] While comparisons between unicode strings make sense at the byte\n level, they may be counter-intuitive to users. For example, the\n strings ``u"\\u00C7"`` and ``u"\\u0043\\u0327"`` compare differently,\n even though they both represent the same unicode character (LATIN\n CAPITAL LETTER C WITH CEDILLA). To compare strings in a human\n recognizable way, compare using ``unicodedata.normalize()``.\n\n[5] The implementation computes this efficiently, without constructing\n lists or sorting.\n\n[6] Earlier versions of Python used lexicographic comparison of the\n sorted (key, value) lists, but this was very expensive for the\n common case of comparing for equality. An even earlier version of\n Python compared dictionaries by identity only, but this caused\n surprises because people expected to be able to test a dictionary\n for emptiness by comparing it to ``{}``.\n\n[7] Due to automatic garbage-collection, free lists, and the dynamic\n nature of descriptors, you may notice seemingly unusual behaviour\n in certain uses of the ``is`` operator, like those involving\n comparisons between instance methods, or constants. Check their\n documentation for more info.\n\n[8] The ``%`` operator is also used for string formatting; the same\n precedence applies.\n\n[9] The power operator ``**`` binds less tightly than an arithmetic or\n bitwise unary operator on its right, that is, ``2**-1`` is\n ``0.5``.\n',
61 garbage are detected when the option cycle\n detector is enabled (it\'s on by default), but can only be cleaned\n up if there are no Python-level ``__del__()`` methods involved.\n Refer to the documentation for the ``gc`` module for more\n information about how ``__del__()`` methods are handled by the\n cycle detector, particularly the description of the ``garbageistently invoked by the interpreter).\n\n-[ Footnotes ]-\n\n[1] It *is* possible in some cases to change an object\'s type, under\n certain controlled conditions. It generally isn\'t a good idea\n though, since it can lead to some very strange behaviour if it is\n handled incorrectly.\n\n[2] For operands of the same type, it is assumed that if the non-\n reflected method (such as ``__add__()``) fails the operation is\n not supported, which is why the reflected method is not called.\n',
77 garbage collected), the generator-\niterator\'s ``close()`` method will be called, allowing any pending\n``finally`` clauses to execute.\n\nFor full details of ``yield`` semantics, refer to the *Yield\nexpressions* section.\n\nNote: In Python 2.2, the ``yield`` statement was only allowed when the\n ``generators`` feature has been enabled. This ``__future__`` import\n statement was used to enable the feature:\n\n from __future__ import generators\n\nSee also:\n\n **PEP 0255** - Simple Generators\n The proposal for adding generators and the ``yield`` statement\n to Python.\n\n **PEP 0342** - Coroutines via Enhanced Generators\n The proposal that, among other generator enhancements, proposed\n allowing ``yield`` to appear inside a ``try`` ... ``finally``\n block.\n'}