Home | History | Annotate | Download | only in pydoc_data

Lines Matching refs:nstr

62  'string-methods': '\nString Methods\n**************\n\nBelow are listed the string methods which both 8-bit strings and\nUnicode objects support.  Some of them are also available on\n``bytearray`` objects.\n\nIn addition, Python\'s strings support the sequence type methods\ndescribed in the *Sequence Types --- str, unicode, list, tuple,\nbytearray, buffer, xrange* section. To output formatted strings use\ntemplate strings or the ``%`` operator described in the *String\nFormatting Operations* section. Also, see the ``re`` module for string\nfunctions based on regular expressions.\n\nstr.capitalize()\n\n   Return a copy of the string with its first character capitalized\n   and the rest lowercased.\n\n   For 8-bit strings, this method is locale-dependent.\n\nstr.center(width[, fillchar])\n\n   Return centered in a string of length *width*. Padding is done\n   using the specified *fillchar* (default is a space).\n\n   Changed in version 2.4: Support for the *fillchar* argument.\n\nstr.count(sub[, start[, end]])\n\n   Return the number of non-overlapping occurrences of substring *sub*\n   in the range [*start*, *end*].  Optional arguments *start* and\n   *end* are interpreted as in slice notation.\n\nstr.decode([encoding[, errors]])\n\n   Decodes the string using the codec registered for *encoding*.\n   *encoding* defaults to the default string encoding.  *errors* may\n   be given to set a different error handling scheme.  The default is\n   ``\'strict\'``, meaning that encoding errors raise ``UnicodeError``.\n   Other possible values are ``\'ignore\'``, ``\'replace\'`` and any other\n   name registered via ``codecs.register_error()``, see section *Codec\n   Base Classes*.\n\n   New in version 2.2.\n\n   Changed in version 2.3: Support for other error handling schemes\n   added.\n\n   Changed in version 2.7: Support for keyword arguments added.\n\nstr.encode([encoding[, errors]])\n\n   Return an encoded version of the string.  Default encoding is the\n   current default string encoding.  *errors* may be given to set a\n   different error handling scheme.  The default for *errors* is\n   ``\'strict\'``, meaning that encoding errors raise a\n   ``UnicodeError``.  Other possible values are ``\'ignore\'``,\n   ``\'replace\'``, ``\'xmlcharrefreplace\'``, ``\'backslashreplace\'`` and\n   any other name registered via ``codecs.register_error()``, see\n   section *Codec Base Classes*. For a list of possible encodings, see\n   section *Standard Encodings*.\n\n   New in version 2.0.\n\n   Changed in version 2.3: Support for ``\'xmlcharrefreplace\'`` and\n   ``\'backslashreplace\'`` and other error handling schemes added.\n\n   Changed in version 2.7: Support for keyword arguments added.\n\nstr.endswith(suffix[, start[, end]])\n\n   Return ``True`` if the string ends with the specified *suffix*,\n   otherwise return ``False``.  *suffix* can also be a tuple of\n   suffixes to look for.  With optional *start*, test beginning at\n   that position.  With optional *end*, stop comparing at that\n   position.\n\n   Changed in version 2.5: Accept tuples as *suffix*.\n\nstr.expandtabs([tabsize])\n\n   Return a copy of the string where all tab characters are replaced\n   by one or more spaces, depending on the current column and the\n   given tab size.  Tab positions occur every *tabsize* characters\n   (default is 8, giving tab positions at columns 0, 8, 16 and so on).\n   To expand the string, the current column is set to zero and the\n   string is examined character by character.  If the character is a\n   tab (``\\t``), one or more space characters are inserted in the\n   result until the current column is equal to the next tab position.\n   (The tab character itself is not copied.)  If the character is a\n   newline (``\\n``) or return (``\\r``), it is copied and the current\n   column is reset to zero.  Any other character is copied unchanged\n   and the current column is incremented by one regardless of how the\n   character is represented when printed.\n\n   >>> \'01\\t012\\t0123\\t01234\'.expandtabs()\n   \'01      012     0123    01234\'\n   >>> \'01\\t012\\t0123\\t01234\'.expandtabs(4)\n   \'01  012 0123    01234\'\n\nstr.find(sub[, start[, end]])\n\n   Return the lowest index in the string where substring *sub* is\n   found, such that *sub* is contained in the slice ``s[start:end]``.\n   Optional arguments *start* and *end* are interpreted as in slice\n   notation.  Return ``-1`` if *sub* is not found.\n\n   Note: The ``find()`` method should be used only if you need to know the\n     position of *sub*.  To check if *sub* is a substring or not, use\n     the ``in`` operator:\n\n        >>> \'Py\' in \'Python\'\n        True\n\nstr.format(*args, **kwargs)\n\n   Perform a string formatting operation.  The string on which this\n   method is called can contain literal text or replacement fields\n   delimited by braces ``{}``.  Each replacement field contains either\n   the numeric index of a positional argument, or the name of a\n   keyword argument.  Returns a copy of the string where each\n   replacement field is replaced with the string value of the\n   corresponding argument.\n\n   >>> "The sum of 1 + 2 is {0}".format(1+2)\n   \'The sum of 1 + 2 is 3\'\n\n   See *Format String Syntax* for a description of the various\n   formatting options that can be specified in format strings.\n\n   This method of string formatting is the new standard in Python 3,\n   and should be preferred to the ``%`` formatting described in\n   *String Formatting Operations* in new code.\n\n   New in version 2.6.\n\nstr.index(sub[, start[, end]])\n\n   Like ``find()``, but raise ``ValueError`` when the substring is not\n   found.\n\nstr.isalnum()\n\n   Return true if all characters in the string are alphanumeric and\n   there is at least one character, false otherwise.\n\n   For 8-bit strings, this method is locale-dependent.\n\nstr.isalpha()\n\n   Return true if all characters in the string are alphabetic and\n   there is at least one character, false otherwise.\n\n   For 8-bit strings, this method is locale-dependent.\n\nstr.isdigit()\n\n   Return true if all characters in the string are digits and there is\n   at least one character, false otherwise.\n\n   For 8-bit strings, this method is locale-dependent.\n\nstr.islower()\n\n   Return true if all cased characters [4] in the string are lowercase\n   and there is at least one cased character, false otherwise.\n\n   For 8-bit strings, this method is locale-dependent.\n\nstr.isspace()\n\n   Return true if there are only whitespace characters in the string\n   and there is at least one character, false otherwise.\n\n   For 8-bit strings, this method is locale-dependent.\n\nstr.istitle()\n\n   Return true if the string is a titlecased string and there is at\n   least one character, for example uppercase characters may only\n   follow uncased characters and lowercase characters only cased ones.\n   Return false otherwise.\n\n   For 8-bit strings, this method is locale-dependent.\n\nstr.isupper()\n\n   Return true if all cased characters [4] in the string are uppercase\n   and there is at least one cased character, false otherwise.\n\n   For 8-bit strings, this method is locale-dependent.\n\nstr.join(iterable)\n\n   Return a string which is the concatenation of the strings in the\n   *iterable* *iterable*.  The separator between elements is the\n   string providing this method.\n\nstr.ljust(width[, fillchar])\n\n   Return the string left justified in a string of length *width*.\n   Padding is done using the specified *fillchar* (default is a\n   space).  The original string is returned if *width* is less than or\n   equal to ``len(s)``.\n\n   Changed in version 2.4: Support for the *fillchar* argument.\n\nstr.lower()\n\n   Return a copy of the string with all the cased characters [4]\n   converted to lowercase.\n\n   For 8-bit strings, this method is locale-dependent.\n\nstr.lstrip([chars])\n\n   Return a copy of the string with leading characters removed.  The\n   *chars* argument is a string specifying the set of characters to be\n   removed.  If omitted or ``None``, the *chars* argument defaults to\n   removing whitespace.  The *chars* argument is not a prefix; rather,\n   all combinations of its values are stripped:\n\n   >>> \'   spacious   \'.lstrip()\n   \'spacious   \'\n   >>> \'www.example.com\'.lstrip(\'cmowz.\')\n   \'example.com\'\n\n   Changed in version 2.2.2: Support for the *chars* argument.\n\nstr.partition(sep)\n\n   Split the string at the first occurrence of *sep*, and return a\n   3-tuple containing the part before the separator, the separator\n   itself, and the part after the separator.  If the separator is not\n   found, return a 3-tuple containing the string itself, followed by\n   two empty strings.\n\n   New in version 2.5.\n\nstr.replace(old, new[, count])\n\n   Return a copy of the string with all occurrences of substring *old*\n   replaced by *new*.  If the optional argument *count* is given, only\n   the first *count* occurrences are replaced.\n\nstr.rfind(sub[, start[, end]])\n\n   Return the highest index in the string where substring *sub* is\n   found, such that *sub* is contained within ``s[start:end]``.\n   Optional arguments *start* and *end* are interpreted as in slice\n   notation.  Return ``-1`` on failure.\n\nstr.rindex(sub[, start[, end]])\n\n   Like ``rfind()`` but raises ``ValueError`` when the substring *sub*\n   is not found.\n\nstr.rjust(width[, fillchar])\n\n   Return the string right justified in a string of length *width*.\n   Padding is done using the specified *fillchar* (default is a\n   space). The original string is returned if *width* is less than or\n   equal to ``len(s)``.\n\n   Changed in version 2.4: Support for the *fillchar* argument.\n\nstr.rpartition(sep)\n\n   Split the string at the last occurrence of *sep*, and return a\n   3-tuple containing the part before the separator, the separator\n   itself, and the part after the separator.  If the separator is not\n   found, return a 3-tuple containing two empty strings, followed by\n   the string itself.\n\n   New in version 2.5.\n\nstr.rsplit([sep[, maxsplit]])\n\n   Return a list of the words in the string, using *sep* as the\n   delimiter string. If *maxsplit* is given, at most *maxsplit* splits\n   are done, the *rightmost* ones.  If *sep* is not specified or\n   ``None``, any whitespace string is a separator.  Except for\n   splitting from the right, ``rsplit()`` behaves like ``split()``\n   which is described in detail below.\n\n   New in version 2.4.\n\nstr.rstrip([chars])\n\n   Return a copy of the string with trailing characters removed.  The\n   *chars* argument is a string specifying the set of characters to be\n   removed.  If omitted or ``None``, the *chars* argument defaults to\n   removing whitespace.  The *chars* argument is not a suffix; rather,\n   all combinations of its values are stripped:\n\n   >>> \'   spacious   \'.rstrip()\n   \'   spacious\'\n   >>> \'mississippi\'.rstrip(\'ipz\')\n   \'mississ\'\n\n   Changed in version 2.2.2: Support for the *chars* argument.\n\nstr.split([sep[, maxsplit]])\n\n   Return a list of the words in the string, using *sep* as the\n   delimiter string.  If *maxsplit* is given, at most *maxsplit*\n   splits are done (thus, the list will have at most ``maxsplit+1``\n   elements).  If *maxsplit* is not specified or ``-1``, then there is\n   no limit on the number of splits (all possible splits are made).\n\n   If *sep* is given, consecutive delimiters are not grouped together\n   and are deemed to delimit empty strings (for example,\n   ``\'1,,2\'.split(\',\')`` returns ``[\'1\', \'\', \'2\']``).  The *sep*\n   argument may consist of multiple characters (for example,\n   ``\'1<>2<>3\'.split(\'<>\')`` returns ``[\'1\', \'2\', \'3\']``). Splitting\n   an empty string with a specified separator returns ``[\'\']``.\n\n   If *sep* is not specified or is ``None``, a different splitting\n   algorithm is applied: runs of consecutive whitespace are regarded\n   as a single separator, and the result will contain no empty strings\n   at the start or end if the string has leading or trailing\n   whitespace.  Consequently, splitting an empty string or a string\n   consisting of just whitespace with a ``None`` separator returns\n   ``[]``.\n\n   For example, ``\' 1  2   3  \'.split()`` returns ``[\'1\', \'2\', \'3\']``,\n   and ``\'  1  2   3  \'.split(None, 1)`` returns ``[\'1\', \'2   3  \']``.\n\nstr.splitlines([keepends])\n\n   Return a list of the lines in the string, breaking at line\n   boundaries. This method uses the *universal newlines* approach to\n   splitting lines. Line breaks are not included in the resulting list\n   unless *keepends* is given and true.\n\n   For example, ``\'ab c\\n\\nde fg\\rkl\\r\\n\'.splitlines()`` returns\n   ``[\'ab c\', \'\', \'de fg\', \'kl\']``, while the same call with\n   ``splitlines(True)`` returns ``[\'ab c\\n\', \'\\n\', \'de fg\\r\',\n   \'kl\\r\\n\']``.\n\n   Unlike ``split()`` when a delimiter string *sep* is given, this\n   method returns an empty list for the empty string, and a terminal\n   line break does not result in an extra line.\n\nstr.startswith(prefix[, start[, end]])\n\n   Return ``True`` if string starts with the *prefix*, otherwise\n   return ``False``. *prefix* can also be a tuple of prefixes to look\n   for.  With optional *start*, test string beginning at that\n   position.  With optional *end*, stop comparing string at that\n   position.\n\n   Changed in version 2.5: Accept tuples as *prefix*.\n\nstrnstr.swapcase()\n\n   Return a copy of the string with uppercase characters converted to\n   lowercase and vice versa.\n\n   For 8-bit strings, this method is locale-dependent.\n\nstr.title()\n\n   Return a titlecased version of the string where words start with an\n   uppercase character and the remaining characters are lowercase.\n\n   The algorithm uses a simple language-independent definition of a\n   word as groups of consecutive letters.  The definition works in\n   many contexts but it means that apostrophes in contractions and\n   possessives form word boundaries, which may not be the desired\n   result:\n\n      >>> "they\'re bill\'s friends from the UK".title()\n      "They\'Re Bill\'S Friends From The Uk"\n\n   A workaround for apostrophes can be constructed using regular\n   expressions:\n\n      >>> import re\n      >>> def titlecase(s):\n      ...     return re.sub(r"[A-Za-z]+(\'[A-Za-z]+)?",\n      ...                   lambda mo: mo.group(0)[0].upper() +\n      ...                              mo.group(0)[1:].lower(),\n      ...                   s)\n      ...\n      >>> titlecase("they\'re bill\'s friends.")\n      "They\'re Bill\'s Friends."\n\n   For 8-bit strings, this method is locale-dependent.\n\nstr.translate(table[, deletechars])\n\n   Return a copy of the string where all characters occurring in the\n   optional argument *deletechars* are removed, and the remaining\n   characters have been mapped through the given translation table,\n   which must be a string of length 256.\n\n   You can use the ``maketrans()`` helper function in the ``string``\n   module to create a translation table. For string objects, set the\n   *table* argument to ``None`` for translations that only delete\n   characters:\n\n   >>> \'read this short text\'.translate(None, \'aeiou\')\n   \'rd ths shrt txt\'\n\n   New in version 2.6: Support for a ``None`` *table* argument.\n\n   For Unicode objects, the ``translate()`` method does not accept the\n   optional *deletechars* argument.  Instead, it returns a copy of the\n   *s* where all characters have been mapped through the given\n   translation table which must be a mapping of Unicode ordinals to\n   Unicode ordinals, Unicode strings or ``None``. Unmapped characters\n   are left untouched. Characters mapped to ``None`` are deleted.\n   Note, a more flexible approach is to create a custom character\n   mapping codec using the ``codecs`` module (see ``encodings.cp1251``\n   for an example).\n\nstr.upper()\n\n   Return a copy of the string with all the cased characters [4]\n   converted to uppercase.  Note that ``str.upper().isupper()`` might\n   be ``False`` if ``s`` contains uncased characters or if the Unicode\n   category of the resulting character(s) is not "Lu" (Letter,\n   uppercase), but e.g. "Lt" (Letter, titlecase).\n\n   For 8-bit strings, this method is locale-dependent.\n\nstr.zfill(width)\n\n   Return the numeric string left filled with zeros in a string of\n   length *width*.  A sign prefix is handled correctly.  The original\n   string is returned if *width* is less than or equal to ``len(s)``.\n\n   New in version 2.2.2.\n\nThe following methods are present only on unicode objects:\n\nunicode.isnumeric()\n\n   Return ``True`` if there are only numeric characters in S,\n   ``False`` otherwise. Numeric characters include digit characters,\n   and all characters that have the Unicode numeric value property,\n   e.g. U+2155, VULGAR FRACTION ONE FIFTH.\n\nunicode.isdecimal()\n\n   Return ``True`` if there are only decimal characters in S,\n   ``False`` otherwise. Decimal characters include digit characters,\n   and all characters that can be used to form decimal-radix numbers,\n   e.g. U+0660, ARABIC-INDIC DIGIT ZERO.\n',
72 nstr.capitalize()\n\n Return a copy of the string with its first character capitalized\n and the rest lowercased.\n\n For 8-bit strings, this method is locale-dependent.\n\nstr.center(width[, fillchar])\n\n Return centered in a string of length *width*. Padding is done\n using the specified *fillchar* (default is a space).\n\n Changed in version 2.4: Support for the *fillchar* argument.\n\nstr.count(sub[, start[, end]])\n\n Return the number of non-overlapping occurrences of substring *sub*\n in the range [*start*, *end*]. Optional arguments *start* and\n *end* are interpreted as in slice notation.\n\nstr.decode([encoding[, errors]])\n\n Decodes the string using the codec registered for *encoding*.\n *encoding* defaults to the default string encoding. *errors* may\n be given to set a different error handling scheme. The default is\n ``\'strict\'``, meaning that encoding errors raise ``UnicodeError``.\n Other possible values are ``\'ignore\'``, ``\'replace\'`` and any other\n name registered via ``codecs.register_error()``, see section *Codec\n Base Classes*.\n\n New in version 2.2.\n\n Changed in version 2.3: Support for other error handling schemes\n added.\n\n Changed in version 2.7: Support for keyword arguments added.\n\nstr.encode([encoding[, errors]])\n\n Return an encoded version of the string. Default encoding is the\n current default string encoding. *errors* may be given to set a\n different error handling scheme. The default for *errors* is\n ``\'strict\'``, meaning that encoding errors raise a\n ``UnicodeError``. Other possible values are ``\'ignore\'``,\n ``\'replace\'``, ``\'xmlcharrefreplace\'``, ``\'backslashreplace\'`` and\n any other name registered via ``codecs.register_error()``, see\n section *Codec Base Classes*. For a list of possible encodings, see\n section *Standard Encodings*.\n\n New in version 2.0.\n\n Changed in version 2.3: Support for ``\'xmlcharrefreplace\'`` and\n ``\'backslashreplace\'`` and other error handling schemes added.\n\n Changed in version 2.7: Support for keyword arguments added.\n\nstr.endswith(suffix[, start[, end]])\n\n Return ``True`` if the string ends with the specified *suffix*,\n otherwise return ``False``. *suffix* can also be a tuple of\n suffixes to look for. With optional *start*, test beginning at\n that position. With optional *end*, stop comparing at that\n position.\n\n Changed in version 2.5: Accept tuples as *suffix*.\n\nstr.expandtabs([tabsize])\n\n Return a copy of the string where all tab characters are replaced\n by one or more spaces, depending on the current column and the\n given tab size. Tab positions occur every *tabsize* characters\n (default is 8, giving tab positions at columns 0, 8, 16 and so on).\n To expand the string, the current column is set to zero and the\n string is examined character by character. If the character is a\n tab (``\\t``), one or more space characters are inserted in the\n result until the current column is equal to the next tab position.\n (The tab character itself is not copied.) If the character is a\n newline (``\\n``) or return (``\\r``), it is copied and the current\n column is reset to zero. Any other character is copied unchanged\n and the current column is incremented by one regardless of how the\n character is represented when printed.\n\n >>> \'01\\t012\\t0123\\t01234\'.expandtabs()\n \'01 012 0123 01234\'\n >>> \'01\\t012\\t0123\\t01234\'.expandtabs(4)\n \'01 012 0123 01234\'\n\nstr.find(sub[, start[, end]])\n\n Return the lowest index in the string where substring *sub* is\n found, such that *sub* is contained in the slice ``s[start:end]``.\n Optional arguments *start* and *end* are interpreted as in slice\n notation. Return ``-1`` if *sub* is not found.\n\n Note: The ``find()`` method should be used only if you need to know the\n position of *sub*. To check if *sub* is a substring or not, use\n the ``in`` operator:\n\n >>> \'Py\' in \'Python\'\n True\n\nstr.format(*args, **kwargs)\n\n Perform a string formatting operation. The string on which this\n method is called can contain literal text or replacement fields\n delimited by braces ``{}``. Each replacement field contains either\n the numeric index of a positional argument, or the name of a\n keyword argument. Returns a copy of the string where each\n replacement field is replaced with the string value of the\n corresponding argument.\n\n >>> "The sum of 1 + 2 is {0}".format(1+2)\n \'The sum of 1 + 2 is 3\'\n\n See *Format String Syntax* for a description of the various\n formatting options that can be specified in format strings.\n\n This method of string formatting is the new standard in Python 3,\n and should be preferred to the ``%`` formatting described in\n *String Formatting Operations* in new code.\n\n New in version 2.6.\n\nstr.index(sub[, start[, end]])\n\n Like ``find()``, but raise ``ValueError`` when the substring is not\n found.\n\nstr.isalnum()\n\n Return true if all characters in the string are alphanumeric and\n there is at least one character, false otherwise.\n\n For 8-bit strings, this method is locale-dependent.\n\nstr.isalpha()\n\n Return true if all characters in the string are alphabetic and\n there is at least one character, false otherwise.\n\n For 8-bit strings, this method is locale-dependent.\n\nstr.isdigit()\n\n Return true if all characters in the string are digits and there is\n at least one character, false otherwise.\n\n For 8-bit strings, this method is locale-dependent.\n\nstr.islower()\n\n Return true if all cased characters [4] in the string are lowercase\n and there is at least one cased character, false otherwise.\n\n For 8-bit strings, this method is locale-dependent.\n\nstr.isspace()\n\n Return true if there are only whitespace characters in the string\n and there is at least one character, false otherwise.\n\n For 8-bit strings, this method is locale-dependent.\n\nstr.istitle()\n\n Return true if the string is a titlecased string and there is at\n least one character, for example uppercase characters may only\n follow uncased characters and lowercase characters only cased ones.\n Return false otherwise.\n\n For 8-bit strings, this method is locale-dependent.\n\nstr.isupper()\n\n Return true if all cased characters [4] in the string are uppercase\n and there is at least one cased character, false otherwise.\n\n For 8-bit strings, this method is locale-dependent.\n\nstr.join(iterable)\n\n Return a string which is the concatenation of the strings in the\n *iterable* *iterable*. The separator between elements is the\n string providing this method.\n\nstr.ljust(width[, fillchar])\n\n Return the string left justified in a string of length *width*.\n Padding is done using the specified *fillchar* (default is a\n space). The original string is returned if *width* is less than or\n equal to ``len(s)``.\n\n Changed in version 2.4: Support for the *fillchar* argument.\n\nstr.lower()\n\n Return a copy of the string with all the cased characters [4]\n converted to lowercase.\n\n For 8-bit strings, this method is locale-dependent.\n\nstr.lstrip([chars])\n\n Return a copy of the string with leading characters removed. The\n *chars* argument is a string specifying the set of characters to be\n removed. If omitted or ``None``, the *chars* argument defaults to\n removing whitespace. The *chars* argument is not a prefix; rather,\n all combinations of its values are stripped:\n\n >>> \' spacious \'.lstrip()\n \'spacious \'\n >>> \'www.example.com\'.lstrip(\'cmowz.\')\n \'example.com\'\n\n Changed in version 2.2.2: Support for the *chars* argument.\n\nstr.partition(sep)\n\n Split the string at the first occurrence of *sep*, and return a\n 3-tuple containing the part before the separator, the separator\n itself, and the part after the separator. If the separator is not\n found, return a 3-tuple containing the string itself, followed by\n two empty strings.\n\n New in version 2.5.\n\nstr.replace(old, new[, count])\n\n Return a copy of the string with all occurrences of substring *old*\n replaced by *new*. If the optional argument *count* is given, only\n the first *count* occurrences are replaced.\n\nstr.rfind(sub[, start[, end]])\n\n Return the highest index in the string where substring *sub* is\n found, such that *sub* is contained within ``s[start:end]``.\n Optional arguments *start* and *end* are interpreted as in slice\n notation. Return ``-1`` on failure.\n\nstr.rindex(sub[, start[, end]])\n\n Like ``rfind()`` but raises ``ValueError`` when the substring *sub*\n is not found.\n\nstr.rjust(width[, fillchar])\n\n Return the string right justified in a string of length *width*.\n Padding is done using the specified *fillchar* (default is a\n space). The original string is returned if *width* is less than or\n equal to ``len(s)``.\n\n Changed in version 2.4: Support for the *fillchar* argument.\n\nstr.rpartition(sep)\n\n Split the string at the last occurrence of *sep*, and return a\n 3-tuple containing the part before the separator, the separator\n itself, and the part after the separator. If the separator is not\n found, return a 3-tuple containing two empty strings, followed by\n the string itself.\n\n New in version 2.5.\n\nstr.rsplit([sep[, maxsplit]])\n\n Return a list of the words in the string, using *sep* as the\n delimiter string. If *maxsplit* is given, at most *maxsplit* splits\n are done, the *rightmost* ones. If *sep* is not specified or\n ``None``, any whitespace string is a separator. Except for\n splitting from the right, ``rsplit()`` behaves like ``split()``\n which is described in detail below.\n\n New in version 2.4.\n\nstr.rstrip([chars])\n\n Return a copy of the string with trailing characters removed. The\n *chars* argument is a string specifying the set of characters to be\n removed. If omitted or ``None``, the *chars* argument defaults to\n removing whitespace. The *chars* argument is not a suffix; rather,\n all combinations of its values are stripped:\n\n >>> \' spacious \'.rstrip()\n \' spacious\'\n >>> \'mississippi\'.rstrip(\'ipz\')\n \'mississ\'\n\n Changed in version 2.2.2: Support for the *chars* argument.\n\nstr.split([sep[, maxsplit]])\n\n Return a list of the words in the string, using *sep* as the\n delimiter string. If *maxsplit* is given, at most *maxsplit*\n splits are done (thus, the list will have at most ``maxsplit+1``\n elements). If *maxsplit* is not specified or ``-1``, then there is\n no limit on the number of splits (all possible splits are made).\n\n If *sep* is given, consecutive delimiters are not grouped together\n and are deemed to delimit empty strings (for example,\n ``\'1,,2\'.split(\',\')`` returns ``[\'1\', \'\', \'2\']``). The *sep*\n argument may consist of multiple characters (for example,\n ``\'1<>2<>3\'.split(\'<>\')`` returns ``[\'1\', \'2\', \'3\']``). Splitting\n an empty string with a specified separator returns ``[\'\']``.\n\n If *sep* is not specified or is ``None``, a different splitting\n algorithm is applied: runs of consecutive whitespace are regarded\n as a single separator, and the result will contain no empty strings\n at the start or end if the string has leading or trailing\n whitespace. Consequently, splitting an empty string or a string\n consisting of just whitespace with a ``None`` separator returns\n ``[]``.\n\n For example, ``\' 1 2 3 \'.split()`` returns ``[\'1\', \'2\', \'3\']``,\n and ``\' 1 2 3 \'.split(None, 1)`` returns ``[\'1\', \'2 3 \']``.\n\nstr.splitlines([keepends])\n\n Return a list of the lines in the string, breaking at line\n boundaries. This method uses the *universal newlines* approach to\n splitting lines. Line breaks are not included in the resulting list\n unless *keepends* is given and true.\n\n For example, ``\'ab c\\n\\nde fg\\rkl\\r\\n\'.splitlines()`` returns\n ``[\'ab c\', \'\', \'de fg\', \'kl\']``, while the same call with\n ``splitlines(True)`` returns ``[\'ab c\\n\', \'\\n\', \'de fg\\r\',\n \'kl\\r\\n\']``.\n\n Unlike ``split()`` when a delimiter string *sep* is given, this\n method returns an empty list for the empty string, and a terminal\n line break does not result in an extra line.\n\nstr.startswith(prefix[, start[, end]])\n\n Return ``True`` if string starts with the *prefix*, otherwise\n return ``False``. *prefix* can also be a tuple of prefixes to look\n for. With optional *start*, test string beginning at that\n position. With optional *end*, stop comparing string at that\n position.\n\n Changed in version 2.5: Accept tuples as *prefix*.\n\nstr.strip([chars])\n\n Return a copy of the string with the leading and trailing\n characters removed. The *chars* argument is a string specifying the\n set of characters to be removed. If omitted or ``None``, the\n *chars* argument defaults to removing whitespace. The *chars*\n argument is not a prefix or suffix; rather, all combinations of its\n values are stripped:\n\n >>> \' spacious \'.strip()\n \'spacious\'\n >>> \'www.example.com\'.strip(\'cmowz.\')\n \'example\'\n\n Changed in version 2.2.2: Support for the *chars* argument.\n\nstr.swapcase()\n\n Return a copy of the string with uppercase characters converted to\n lowercase and vice versa.\n\n For 8-bit strings, this method is locale-dependent.\n\nstr.title()\n\n Return a titlecased version of the string where words start with an\n uppercase character and the remaining characters are lowercase.\n\n The algorithm uses a simple language-independent definition of a\n word as groups of consecutive letters. The definition works in\n many contexts but it means that apostrophes in contractions and\n possessives form word boundaries, which may not be the desired\n result:\n\n >>> "they\'re bill\'s friends from the UK".title()\n "They\'Re Bill\'S Friends From The Uk"\n\n A workaround for apostrophes can be constructed using regular\n expressions:\n\n >>> import re\n >>> def titlecase(s):\n ... return re.sub(r"[A-Za-z]+(\'[A-Za-z]+)?",\n ... lambda mo: mo.group(0)[0].upper() +\n ... mo.group(0)[1:].lower(),\n ... s)\n ...\n >>> titlecase("they\'re bill\'s friends.")\n "They\'re Bill\'s Friends."\n\n For 8-bit strings, this method is locale-dependent.\n\nstrnstr.upper()\n\n Return a copy of the string with all the cased characters [4]\n converted to uppercase. Note that ``str.upper().isupper()`` might\n be ``False`` if ``s`` contains uncased characters or if the Unicode\n category of the resulting character(s) is not "Lu" (Letter,\n uppercase), but e.g. "Lt" (Letter, titlecase).\n\n For 8-bit strings, this method is locale-dependent.\n\nstrpace when sorting or reversing a large list. To\n remind you that they operate by side effect, they don\'t return the\n sorted or reversed list.\n\n8. The ``sort()`` method takes optional arguments for controlling the\n comparisons.\n\n *cmp* specifies a custom comparison function of two arguments (list\n items) which should return a negative, zero or positive number\n depending on whether the first argument is considered smaller than,\n equal to, or larger than the second argument: ``cmp=lambda x,y:\n cmp(x.lower(), y.lower())``. The default value is ``None``.\n\n *key* specifies a function of one argument that is used to extract\n a comparison key from each list element: ``key=str.lower``. The\n default value is ``None``.\n\n *reverse* is a boolean value. If set to ``True``, then the list\n elements are sorted as if each comparison were reversed.\n\n In general, the *key* and *reverse* conversion processes are much\n faster than specifying an equivalent *cmp* function. This is\n because *cmp* is called multiple times for each list element while\n *key* and *reverse* touch each element only once. Use\n ``functools.cmp_to_key()`` to convert an old-style *cmp* function\n to a *key* function.\n\n Changed in version 2.3: Support for ``None`` as an equivalent to\n omitting *cmp* was added.\n\n Changed in version 2.4: Support for *key* and *reverse* was added.\n\n9. Starting with Python 2.3, the ``sort()`` method is guaranteed to be\n stable. A sort is stable if it guarantees not to change the\n relative order of elements that compare equal --- this is helpful\n for sorting in multiple passes (for example, sort by department,\n then by salary grade).\n\n10. **CPython implementation detail:** While a list is being sorted,\n the effect of attempting to mutate, or even inspect, the list is\n undefined. The C implementation of Python 2.3 and newer makes the\n list appear empty for the duration, and raises ``ValueError`` if\n it can detect that the list has been mutated during a sort.\n',