Home | History | Annotate | Download | only in base
      1 /*
      2  * Copyright (C) 2013 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #ifndef ART_RUNTIME_BASE_HISTOGRAM_INL_H_
     18 #define ART_RUNTIME_BASE_HISTOGRAM_INL_H_
     19 
     20 #include <algorithm>
     21 #include <cmath>
     22 #include <limits>
     23 #include <ostream>
     24 
     25 #include "histogram.h"
     26 
     27 #include "base/bit_utils.h"
     28 #include "base/time_utils.h"
     29 #include "utils.h"
     30 
     31 namespace art {
     32 
     33 template <class Value> inline void Histogram<Value>::AddValue(Value value) {
     34   CHECK_GE(value, static_cast<Value>(0));
     35   if (value >= max_) {
     36     Value new_max = ((value + 1) / bucket_width_ + 1) * bucket_width_;
     37     DCHECK_GT(new_max, max_);
     38     GrowBuckets(new_max);
     39   }
     40   BucketiseValue(value);
     41 }
     42 
     43 template <class Value> inline void Histogram<Value>::AdjustAndAddValue(Value value) {
     44   AddValue(value / kAdjust);
     45 }
     46 
     47 template <class Value> inline Histogram<Value>::Histogram(const char* name)
     48     : kAdjust(0),
     49       kInitialBucketCount(0),
     50       name_(name),
     51       max_buckets_(0),
     52       sample_size_(0) {
     53 }
     54 
     55 template <class Value>
     56 inline Histogram<Value>::Histogram(const char* name, Value initial_bucket_width,
     57                                    size_t max_buckets)
     58     : kAdjust(1000),
     59       kInitialBucketCount(8),
     60       name_(name),
     61       max_buckets_(max_buckets),
     62       bucket_width_(initial_bucket_width) {
     63   Reset();
     64 }
     65 
     66 template <class Value>
     67 inline void Histogram<Value>::GrowBuckets(Value new_max) {
     68   while (max_ < new_max) {
     69     // If we have reached the maximum number of buckets, merge buckets together.
     70     if (frequency_.size() >= max_buckets_) {
     71       CHECK_ALIGNED(frequency_.size(), 2);
     72       // We double the width of each bucket to reduce the number of buckets by a factor of 2.
     73       bucket_width_ *= 2;
     74       const size_t limit = frequency_.size() / 2;
     75       // Merge the frequencies by adding each adjacent two together.
     76       for (size_t i = 0; i < limit; ++i) {
     77         frequency_[i] = frequency_[i * 2] + frequency_[i * 2 + 1];
     78       }
     79       // Remove frequencies in the second half of the array which were added to the first half.
     80       while (frequency_.size() > limit) {
     81         frequency_.pop_back();
     82       }
     83     }
     84     max_ += bucket_width_;
     85     frequency_.push_back(0);
     86   }
     87 }
     88 
     89 template <class Value> inline size_t Histogram<Value>::FindBucket(Value val) const {
     90   // Since this is only a linear histogram, bucket index can be found simply with
     91   // dividing the value by the bucket width.
     92   DCHECK_GE(val, min_);
     93   DCHECK_LE(val, max_);
     94   const size_t bucket_idx = static_cast<size_t>((val - min_) / bucket_width_);
     95   DCHECK_GE(bucket_idx, 0ul);
     96   DCHECK_LE(bucket_idx, GetBucketCount());
     97   return bucket_idx;
     98 }
     99 
    100 template <class Value>
    101 inline void Histogram<Value>::BucketiseValue(Value val) {
    102   CHECK_LT(val, max_);
    103   sum_ += val;
    104   sum_of_squares_ += val * val;
    105   ++sample_size_;
    106   ++frequency_[FindBucket(val)];
    107   max_value_added_ = std::max(val, max_value_added_);
    108   min_value_added_ = std::min(val, min_value_added_);
    109 }
    110 
    111 template <class Value> inline void Histogram<Value>::Initialize() {
    112   for (size_t idx = 0; idx < kInitialBucketCount; idx++) {
    113     frequency_.push_back(0);
    114   }
    115   // Cumulative frequency and ranges has a length of 1 over frequency.
    116   max_ = bucket_width_ * GetBucketCount();
    117 }
    118 
    119 template <class Value> inline size_t Histogram<Value>::GetBucketCount() const {
    120   return frequency_.size();
    121 }
    122 
    123 template <class Value> inline void Histogram<Value>::Reset() {
    124   sum_of_squares_ = 0;
    125   sample_size_ = 0;
    126   min_ = 0;
    127   sum_ = 0;
    128   min_value_added_ = std::numeric_limits<Value>::max();
    129   max_value_added_ = std::numeric_limits<Value>::min();
    130   frequency_.clear();
    131   Initialize();
    132 }
    133 
    134 template <class Value> inline Value Histogram<Value>::GetRange(size_t bucket_idx) const {
    135   DCHECK_LE(bucket_idx, GetBucketCount());
    136   return min_ + bucket_idx * bucket_width_;
    137 }
    138 
    139 template <class Value> inline double Histogram<Value>::Mean() const {
    140   DCHECK_GT(sample_size_, 0ull);
    141   return static_cast<double>(sum_) / static_cast<double>(sample_size_);
    142 }
    143 
    144 template <class Value> inline double Histogram<Value>::Variance() const {
    145   DCHECK_GT(sample_size_, 0ull);
    146   // Using algorithms for calculating variance over a population:
    147   // http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
    148   Value sum_squared = sum_ * sum_;
    149   double sum_squared_by_n_squared =
    150       static_cast<double>(sum_squared) /
    151       static_cast<double>(sample_size_ * sample_size_);
    152   double sum_of_squares_by_n =
    153       static_cast<double>(sum_of_squares_) / static_cast<double>(sample_size_);
    154   return sum_of_squares_by_n - sum_squared_by_n_squared;
    155 }
    156 
    157 template <class Value>
    158 inline void Histogram<Value>::PrintBins(std::ostream& os, const CumulativeData& data) const {
    159   DCHECK_GT(sample_size_, 0ull);
    160   for (size_t bin_idx = 0; bin_idx < data.freq_.size(); ++bin_idx) {
    161     if (bin_idx > 0 && data.perc_[bin_idx] == data.perc_[bin_idx - 1]) {
    162       bin_idx++;
    163       continue;
    164     }
    165     os << GetRange(bin_idx) << ": " << data.freq_[bin_idx] << "\t"
    166        << data.perc_[bin_idx] * 100.0 << "%\n";
    167   }
    168 }
    169 
    170 template <class Value>
    171 inline void Histogram<Value>::DumpBins(std::ostream& os) const {
    172   DCHECK_GT(sample_size_, 0ull);
    173   bool dumped_one = false;
    174   for (size_t bin_idx = 0; bin_idx < frequency_.size(); ++bin_idx) {
    175     if (frequency_[bin_idx] != 0U) {
    176       if (dumped_one) {
    177         // Prepend a comma if not the first bin.
    178         os << ",";
    179       } else {
    180         dumped_one = true;
    181       }
    182       os << GetRange(bin_idx) << ":" << frequency_[bin_idx];
    183     }
    184   }
    185 }
    186 
    187 template <class Value>
    188 inline void Histogram<Value>::PrintConfidenceIntervals(std::ostream &os, double interval,
    189                                                        const CumulativeData& data) const {
    190   static constexpr size_t kFractionalDigits = 3;
    191   DCHECK_GT(interval, 0);
    192   DCHECK_LT(interval, 1.0);
    193   const double per_0 = (1.0 - interval) / 2.0;
    194   const double per_1 = per_0 + interval;
    195   const TimeUnit unit = GetAppropriateTimeUnit(Mean() * kAdjust);
    196   os << Name() << ":\tSum: " << PrettyDuration(Sum() * kAdjust) << " "
    197      << (interval * 100) << "% C.I. " << FormatDuration(Percentile(per_0, data) * kAdjust, unit,
    198                                                         kFractionalDigits)
    199      << "-" << FormatDuration(Percentile(per_1, data) * kAdjust, unit, kFractionalDigits) << " "
    200      << "Avg: " << FormatDuration(Mean() * kAdjust, unit, kFractionalDigits) << " Max: "
    201      << FormatDuration(Max() * kAdjust, unit, kFractionalDigits) << "\n";
    202 }
    203 
    204 template <class Value>
    205 inline void Histogram<Value>::PrintMemoryUse(std::ostream &os) const {
    206   os << Name();
    207   if (sample_size_ != 0u) {
    208     os << ": Avg: " << PrettySize(Mean()) << " Max: "
    209        << PrettySize(Max()) << " Min: " << PrettySize(Min()) << "\n";
    210   } else {
    211     os << ": <no data>\n";
    212   }
    213 }
    214 
    215 template <class Value>
    216 inline void Histogram<Value>::CreateHistogram(CumulativeData* out_data) const {
    217   DCHECK_GT(sample_size_, 0ull);
    218   out_data->freq_.clear();
    219   out_data->perc_.clear();
    220   uint64_t accumulated = 0;
    221   out_data->freq_.push_back(accumulated);
    222   out_data->perc_.push_back(0.0);
    223   for (size_t idx = 0; idx < frequency_.size(); idx++) {
    224     accumulated += frequency_[idx];
    225     out_data->freq_.push_back(accumulated);
    226     out_data->perc_.push_back(static_cast<double>(accumulated) / static_cast<double>(sample_size_));
    227   }
    228   DCHECK_EQ(out_data->freq_.back(), sample_size_);
    229   DCHECK_LE(std::abs(out_data->perc_.back() - 1.0), 0.001);
    230 }
    231 
    232 #pragma clang diagnostic push
    233 #pragma clang diagnostic ignored "-Wfloat-equal"
    234 
    235 template <class Value>
    236 inline double Histogram<Value>::Percentile(double per, const CumulativeData& data) const {
    237   DCHECK_GT(data.perc_.size(), 0ull);
    238   size_t upper_idx = 0, lower_idx = 0;
    239   for (size_t idx = 0; idx < data.perc_.size(); idx++) {
    240     if (per <= data.perc_[idx]) {
    241       upper_idx = idx;
    242       break;
    243     }
    244 
    245     if (per >= data.perc_[idx] && idx != 0 && data.perc_[idx] != data.perc_[idx - 1]) {
    246       lower_idx = idx;
    247     }
    248   }
    249 
    250   const double lower_perc = data.perc_[lower_idx];
    251   const double lower_value = static_cast<double>(GetRange(lower_idx));
    252   if (per == lower_perc) {
    253     return lower_value;
    254   }
    255 
    256   const double upper_perc = data.perc_[upper_idx];
    257   const double upper_value = static_cast<double>(GetRange(upper_idx));
    258   if (per == upper_perc) {
    259     return upper_value;
    260   }
    261   DCHECK_GT(upper_perc, lower_perc);
    262 
    263   double value = lower_value + (upper_value - lower_value) *
    264                                (per - lower_perc) / (upper_perc - lower_perc);
    265 
    266   if (value < min_value_added_) {
    267     value = min_value_added_;
    268   } else if (value > max_value_added_) {
    269     value = max_value_added_;
    270   }
    271 
    272   return value;
    273 }
    274 
    275 #pragma clang diagnostic pop
    276 
    277 }  // namespace art
    278 #endif  // ART_RUNTIME_BASE_HISTOGRAM_INL_H_
    279