Home | History | Annotate | Download | only in regexp
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "src/regexp/jsregexp.h"
      6 
      7 #include <memory>
      8 
      9 #include "src/base/platform/platform.h"
     10 #include "src/compilation-cache.h"
     11 #include "src/elements.h"
     12 #include "src/execution.h"
     13 #include "src/factory.h"
     14 #include "src/isolate-inl.h"
     15 #include "src/messages.h"
     16 #include "src/ostreams.h"
     17 #include "src/regexp/interpreter-irregexp.h"
     18 #include "src/regexp/jsregexp-inl.h"
     19 #include "src/regexp/regexp-macro-assembler-irregexp.h"
     20 #include "src/regexp/regexp-macro-assembler-tracer.h"
     21 #include "src/regexp/regexp-macro-assembler.h"
     22 #include "src/regexp/regexp-parser.h"
     23 #include "src/regexp/regexp-stack.h"
     24 #include "src/runtime/runtime.h"
     25 #include "src/splay-tree-inl.h"
     26 #include "src/string-search.h"
     27 #include "src/unicode-decoder.h"
     28 
     29 #ifdef V8_I18N_SUPPORT
     30 #include "unicode/uset.h"
     31 #include "unicode/utypes.h"
     32 #endif  // V8_I18N_SUPPORT
     33 
     34 #ifndef V8_INTERPRETED_REGEXP
     35 #if V8_TARGET_ARCH_IA32
     36 #include "src/regexp/ia32/regexp-macro-assembler-ia32.h"
     37 #elif V8_TARGET_ARCH_X64
     38 #include "src/regexp/x64/regexp-macro-assembler-x64.h"
     39 #elif V8_TARGET_ARCH_ARM64
     40 #include "src/regexp/arm64/regexp-macro-assembler-arm64.h"
     41 #elif V8_TARGET_ARCH_ARM
     42 #include "src/regexp/arm/regexp-macro-assembler-arm.h"
     43 #elif V8_TARGET_ARCH_PPC
     44 #include "src/regexp/ppc/regexp-macro-assembler-ppc.h"
     45 #elif V8_TARGET_ARCH_S390
     46 #include "src/regexp/s390/regexp-macro-assembler-s390.h"
     47 #elif V8_TARGET_ARCH_MIPS
     48 #include "src/regexp/mips/regexp-macro-assembler-mips.h"
     49 #elif V8_TARGET_ARCH_MIPS64
     50 #include "src/regexp/mips64/regexp-macro-assembler-mips64.h"
     51 #elif V8_TARGET_ARCH_X87
     52 #include "src/regexp/x87/regexp-macro-assembler-x87.h"
     53 #else
     54 #error Unsupported target architecture.
     55 #endif
     56 #endif
     57 
     58 
     59 namespace v8 {
     60 namespace internal {
     61 
     62 MUST_USE_RESULT
     63 static inline MaybeHandle<Object> ThrowRegExpException(
     64     Handle<JSRegExp> re, Handle<String> pattern, Handle<String> error_text) {
     65   Isolate* isolate = re->GetIsolate();
     66   THROW_NEW_ERROR(isolate, NewSyntaxError(MessageTemplate::kMalformedRegExp,
     67                                           pattern, error_text),
     68                   Object);
     69 }
     70 
     71 
     72 inline void ThrowRegExpException(Handle<JSRegExp> re,
     73                                  Handle<String> error_text) {
     74   USE(ThrowRegExpException(re, Handle<String>(re->Pattern()), error_text));
     75 }
     76 
     77 
     78 ContainedInLattice AddRange(ContainedInLattice containment,
     79                             const int* ranges,
     80                             int ranges_length,
     81                             Interval new_range) {
     82   DCHECK((ranges_length & 1) == 1);
     83   DCHECK(ranges[ranges_length - 1] == String::kMaxCodePoint + 1);
     84   if (containment == kLatticeUnknown) return containment;
     85   bool inside = false;
     86   int last = 0;
     87   for (int i = 0; i < ranges_length; inside = !inside, last = ranges[i], i++) {
     88     // Consider the range from last to ranges[i].
     89     // We haven't got to the new range yet.
     90     if (ranges[i] <= new_range.from()) continue;
     91     // New range is wholly inside last-ranges[i].  Note that new_range.to() is
     92     // inclusive, but the values in ranges are not.
     93     if (last <= new_range.from() && new_range.to() < ranges[i]) {
     94       return Combine(containment, inside ? kLatticeIn : kLatticeOut);
     95     }
     96     return kLatticeUnknown;
     97   }
     98   return containment;
     99 }
    100 
    101 
    102 // More makes code generation slower, less makes V8 benchmark score lower.
    103 const int kMaxLookaheadForBoyerMoore = 8;
    104 // In a 3-character pattern you can maximally step forwards 3 characters
    105 // at a time, which is not always enough to pay for the extra logic.
    106 const int kPatternTooShortForBoyerMoore = 2;
    107 
    108 
    109 // Identifies the sort of regexps where the regexp engine is faster
    110 // than the code used for atom matches.
    111 static bool HasFewDifferentCharacters(Handle<String> pattern) {
    112   int length = Min(kMaxLookaheadForBoyerMoore, pattern->length());
    113   if (length <= kPatternTooShortForBoyerMoore) return false;
    114   const int kMod = 128;
    115   bool character_found[kMod];
    116   int different = 0;
    117   memset(&character_found[0], 0, sizeof(character_found));
    118   for (int i = 0; i < length; i++) {
    119     int ch = (pattern->Get(i) & (kMod - 1));
    120     if (!character_found[ch]) {
    121       character_found[ch] = true;
    122       different++;
    123       // We declare a regexp low-alphabet if it has at least 3 times as many
    124       // characters as it has different characters.
    125       if (different * 3 > length) return false;
    126     }
    127   }
    128   return true;
    129 }
    130 
    131 
    132 // Generic RegExp methods. Dispatches to implementation specific methods.
    133 
    134 
    135 MaybeHandle<Object> RegExpImpl::Compile(Handle<JSRegExp> re,
    136                                         Handle<String> pattern,
    137                                         JSRegExp::Flags flags) {
    138   Isolate* isolate = re->GetIsolate();
    139   Zone zone(isolate->allocator(), ZONE_NAME);
    140   CompilationCache* compilation_cache = isolate->compilation_cache();
    141   MaybeHandle<FixedArray> maybe_cached =
    142       compilation_cache->LookupRegExp(pattern, flags);
    143   Handle<FixedArray> cached;
    144   if (maybe_cached.ToHandle(&cached)) {
    145     re->set_data(*cached);
    146     return re;
    147   }
    148   pattern = String::Flatten(pattern);
    149   PostponeInterruptsScope postpone(isolate);
    150   RegExpCompileData parse_result;
    151   FlatStringReader reader(isolate, pattern);
    152   if (!RegExpParser::ParseRegExp(re->GetIsolate(), &zone, &reader, flags,
    153                                  &parse_result)) {
    154     // Throw an exception if we fail to parse the pattern.
    155     return ThrowRegExpException(re, pattern, parse_result.error);
    156   }
    157 
    158   bool has_been_compiled = false;
    159 
    160   if (parse_result.simple && !(flags & JSRegExp::kIgnoreCase) &&
    161       !(flags & JSRegExp::kSticky) && !HasFewDifferentCharacters(pattern)) {
    162     // Parse-tree is a single atom that is equal to the pattern.
    163     AtomCompile(re, pattern, flags, pattern);
    164     has_been_compiled = true;
    165   } else if (parse_result.tree->IsAtom() && !(flags & JSRegExp::kIgnoreCase) &&
    166              !(flags & JSRegExp::kSticky) && parse_result.capture_count == 0) {
    167     RegExpAtom* atom = parse_result.tree->AsAtom();
    168     Vector<const uc16> atom_pattern = atom->data();
    169     Handle<String> atom_string;
    170     ASSIGN_RETURN_ON_EXCEPTION(
    171         isolate, atom_string,
    172         isolate->factory()->NewStringFromTwoByte(atom_pattern),
    173         Object);
    174     if (!HasFewDifferentCharacters(atom_string)) {
    175       AtomCompile(re, pattern, flags, atom_string);
    176       has_been_compiled = true;
    177     }
    178   }
    179   if (!has_been_compiled) {
    180     IrregexpInitialize(re, pattern, flags, parse_result.capture_count);
    181   }
    182   DCHECK(re->data()->IsFixedArray());
    183   // Compilation succeeded so the data is set on the regexp
    184   // and we can store it in the cache.
    185   Handle<FixedArray> data(FixedArray::cast(re->data()));
    186   compilation_cache->PutRegExp(pattern, flags, data);
    187 
    188   return re;
    189 }
    190 
    191 MaybeHandle<Object> RegExpImpl::Exec(Handle<JSRegExp> regexp,
    192                                      Handle<String> subject, int index,
    193                                      Handle<RegExpMatchInfo> last_match_info) {
    194   switch (regexp->TypeTag()) {
    195     case JSRegExp::ATOM:
    196       return AtomExec(regexp, subject, index, last_match_info);
    197     case JSRegExp::IRREGEXP: {
    198       return IrregexpExec(regexp, subject, index, last_match_info);
    199     }
    200     default:
    201       UNREACHABLE();
    202       return MaybeHandle<Object>();
    203   }
    204 }
    205 
    206 
    207 // RegExp Atom implementation: Simple string search using indexOf.
    208 
    209 
    210 void RegExpImpl::AtomCompile(Handle<JSRegExp> re,
    211                              Handle<String> pattern,
    212                              JSRegExp::Flags flags,
    213                              Handle<String> match_pattern) {
    214   re->GetIsolate()->factory()->SetRegExpAtomData(re,
    215                                                  JSRegExp::ATOM,
    216                                                  pattern,
    217                                                  flags,
    218                                                  match_pattern);
    219 }
    220 
    221 static void SetAtomLastCapture(Handle<RegExpMatchInfo> last_match_info,
    222                                String* subject, int from, int to) {
    223   SealHandleScope shs(last_match_info->GetIsolate());
    224   last_match_info->SetNumberOfCaptureRegisters(2);
    225   last_match_info->SetLastSubject(subject);
    226   last_match_info->SetLastInput(subject);
    227   last_match_info->SetCapture(0, from);
    228   last_match_info->SetCapture(1, to);
    229 }
    230 
    231 
    232 int RegExpImpl::AtomExecRaw(Handle<JSRegExp> regexp,
    233                             Handle<String> subject,
    234                             int index,
    235                             int32_t* output,
    236                             int output_size) {
    237   Isolate* isolate = regexp->GetIsolate();
    238 
    239   DCHECK(0 <= index);
    240   DCHECK(index <= subject->length());
    241 
    242   subject = String::Flatten(subject);
    243   DisallowHeapAllocation no_gc;  // ensure vectors stay valid
    244 
    245   String* needle = String::cast(regexp->DataAt(JSRegExp::kAtomPatternIndex));
    246   int needle_len = needle->length();
    247   DCHECK(needle->IsFlat());
    248   DCHECK_LT(0, needle_len);
    249 
    250   if (index + needle_len > subject->length()) {
    251     return RegExpImpl::RE_FAILURE;
    252   }
    253 
    254   for (int i = 0; i < output_size; i += 2) {
    255     String::FlatContent needle_content = needle->GetFlatContent();
    256     String::FlatContent subject_content = subject->GetFlatContent();
    257     DCHECK(needle_content.IsFlat());
    258     DCHECK(subject_content.IsFlat());
    259     // dispatch on type of strings
    260     index =
    261         (needle_content.IsOneByte()
    262              ? (subject_content.IsOneByte()
    263                     ? SearchString(isolate, subject_content.ToOneByteVector(),
    264                                    needle_content.ToOneByteVector(), index)
    265                     : SearchString(isolate, subject_content.ToUC16Vector(),
    266                                    needle_content.ToOneByteVector(), index))
    267              : (subject_content.IsOneByte()
    268                     ? SearchString(isolate, subject_content.ToOneByteVector(),
    269                                    needle_content.ToUC16Vector(), index)
    270                     : SearchString(isolate, subject_content.ToUC16Vector(),
    271                                    needle_content.ToUC16Vector(), index)));
    272     if (index == -1) {
    273       return i / 2;  // Return number of matches.
    274     } else {
    275       output[i] = index;
    276       output[i+1] = index + needle_len;
    277       index += needle_len;
    278     }
    279   }
    280   return output_size / 2;
    281 }
    282 
    283 Handle<Object> RegExpImpl::AtomExec(Handle<JSRegExp> re, Handle<String> subject,
    284                                     int index,
    285                                     Handle<RegExpMatchInfo> last_match_info) {
    286   Isolate* isolate = re->GetIsolate();
    287 
    288   static const int kNumRegisters = 2;
    289   STATIC_ASSERT(kNumRegisters <= Isolate::kJSRegexpStaticOffsetsVectorSize);
    290   int32_t* output_registers = isolate->jsregexp_static_offsets_vector();
    291 
    292   int res = AtomExecRaw(re, subject, index, output_registers, kNumRegisters);
    293 
    294   if (res == RegExpImpl::RE_FAILURE) return isolate->factory()->null_value();
    295 
    296   DCHECK_EQ(res, RegExpImpl::RE_SUCCESS);
    297   SealHandleScope shs(isolate);
    298   SetAtomLastCapture(last_match_info, *subject, output_registers[0],
    299                      output_registers[1]);
    300   return last_match_info;
    301 }
    302 
    303 
    304 // Irregexp implementation.
    305 
    306 // Ensures that the regexp object contains a compiled version of the
    307 // source for either one-byte or two-byte subject strings.
    308 // If the compiled version doesn't already exist, it is compiled
    309 // from the source pattern.
    310 // If compilation fails, an exception is thrown and this function
    311 // returns false.
    312 bool RegExpImpl::EnsureCompiledIrregexp(Handle<JSRegExp> re,
    313                                         Handle<String> sample_subject,
    314                                         bool is_one_byte) {
    315   Object* compiled_code = re->DataAt(JSRegExp::code_index(is_one_byte));
    316 #ifdef V8_INTERPRETED_REGEXP
    317   if (compiled_code->IsByteArray()) return true;
    318 #else  // V8_INTERPRETED_REGEXP (RegExp native code)
    319   if (compiled_code->IsCode()) return true;
    320 #endif
    321   // We could potentially have marked this as flushable, but have kept
    322   // a saved version if we did not flush it yet.
    323   Object* saved_code = re->DataAt(JSRegExp::saved_code_index(is_one_byte));
    324   if (saved_code->IsCode()) {
    325     // Reinstate the code in the original place.
    326     re->SetDataAt(JSRegExp::code_index(is_one_byte), saved_code);
    327     DCHECK(compiled_code->IsSmi());
    328     return true;
    329   }
    330   return CompileIrregexp(re, sample_subject, is_one_byte);
    331 }
    332 
    333 
    334 bool RegExpImpl::CompileIrregexp(Handle<JSRegExp> re,
    335                                  Handle<String> sample_subject,
    336                                  bool is_one_byte) {
    337   // Compile the RegExp.
    338   Isolate* isolate = re->GetIsolate();
    339   Zone zone(isolate->allocator(), ZONE_NAME);
    340   PostponeInterruptsScope postpone(isolate);
    341   // If we had a compilation error the last time this is saved at the
    342   // saved code index.
    343   Object* entry = re->DataAt(JSRegExp::code_index(is_one_byte));
    344   // When arriving here entry can only be a smi, either representing an
    345   // uncompiled regexp, a previous compilation error, or code that has
    346   // been flushed.
    347   DCHECK(entry->IsSmi());
    348   int entry_value = Smi::cast(entry)->value();
    349   DCHECK(entry_value == JSRegExp::kUninitializedValue ||
    350          entry_value == JSRegExp::kCompilationErrorValue ||
    351          (entry_value < JSRegExp::kCodeAgeMask && entry_value >= 0));
    352 
    353   if (entry_value == JSRegExp::kCompilationErrorValue) {
    354     // A previous compilation failed and threw an error which we store in
    355     // the saved code index (we store the error message, not the actual
    356     // error). Recreate the error object and throw it.
    357     Object* error_string = re->DataAt(JSRegExp::saved_code_index(is_one_byte));
    358     DCHECK(error_string->IsString());
    359     Handle<String> error_message(String::cast(error_string));
    360     ThrowRegExpException(re, error_message);
    361     return false;
    362   }
    363 
    364   JSRegExp::Flags flags = re->GetFlags();
    365 
    366   Handle<String> pattern(re->Pattern());
    367   pattern = String::Flatten(pattern);
    368   RegExpCompileData compile_data;
    369   FlatStringReader reader(isolate, pattern);
    370   if (!RegExpParser::ParseRegExp(isolate, &zone, &reader, flags,
    371                                  &compile_data)) {
    372     // Throw an exception if we fail to parse the pattern.
    373     // THIS SHOULD NOT HAPPEN. We already pre-parsed it successfully once.
    374     USE(ThrowRegExpException(re, pattern, compile_data.error));
    375     return false;
    376   }
    377   RegExpEngine::CompilationResult result =
    378       RegExpEngine::Compile(isolate, &zone, &compile_data, flags, pattern,
    379                             sample_subject, is_one_byte);
    380   if (result.error_message != NULL) {
    381     // Unable to compile regexp.
    382     Handle<String> error_message = isolate->factory()->NewStringFromUtf8(
    383         CStrVector(result.error_message)).ToHandleChecked();
    384     ThrowRegExpException(re, error_message);
    385     return false;
    386   }
    387 
    388   Handle<FixedArray> data = Handle<FixedArray>(FixedArray::cast(re->data()));
    389   data->set(JSRegExp::code_index(is_one_byte), result.code);
    390   SetIrregexpCaptureNameMap(*data, compile_data.capture_name_map);
    391   int register_max = IrregexpMaxRegisterCount(*data);
    392   if (result.num_registers > register_max) {
    393     SetIrregexpMaxRegisterCount(*data, result.num_registers);
    394   }
    395 
    396   return true;
    397 }
    398 
    399 
    400 int RegExpImpl::IrregexpMaxRegisterCount(FixedArray* re) {
    401   return Smi::cast(
    402       re->get(JSRegExp::kIrregexpMaxRegisterCountIndex))->value();
    403 }
    404 
    405 
    406 void RegExpImpl::SetIrregexpMaxRegisterCount(FixedArray* re, int value) {
    407   re->set(JSRegExp::kIrregexpMaxRegisterCountIndex, Smi::FromInt(value));
    408 }
    409 
    410 void RegExpImpl::SetIrregexpCaptureNameMap(FixedArray* re,
    411                                            Handle<FixedArray> value) {
    412   if (value.is_null()) {
    413     re->set(JSRegExp::kIrregexpCaptureNameMapIndex, Smi::kZero);
    414   } else {
    415     re->set(JSRegExp::kIrregexpCaptureNameMapIndex, *value);
    416   }
    417 }
    418 
    419 int RegExpImpl::IrregexpNumberOfCaptures(FixedArray* re) {
    420   return Smi::cast(re->get(JSRegExp::kIrregexpCaptureCountIndex))->value();
    421 }
    422 
    423 
    424 int RegExpImpl::IrregexpNumberOfRegisters(FixedArray* re) {
    425   return Smi::cast(re->get(JSRegExp::kIrregexpMaxRegisterCountIndex))->value();
    426 }
    427 
    428 
    429 ByteArray* RegExpImpl::IrregexpByteCode(FixedArray* re, bool is_one_byte) {
    430   return ByteArray::cast(re->get(JSRegExp::code_index(is_one_byte)));
    431 }
    432 
    433 
    434 Code* RegExpImpl::IrregexpNativeCode(FixedArray* re, bool is_one_byte) {
    435   return Code::cast(re->get(JSRegExp::code_index(is_one_byte)));
    436 }
    437 
    438 
    439 void RegExpImpl::IrregexpInitialize(Handle<JSRegExp> re,
    440                                     Handle<String> pattern,
    441                                     JSRegExp::Flags flags,
    442                                     int capture_count) {
    443   // Initialize compiled code entries to null.
    444   re->GetIsolate()->factory()->SetRegExpIrregexpData(re,
    445                                                      JSRegExp::IRREGEXP,
    446                                                      pattern,
    447                                                      flags,
    448                                                      capture_count);
    449 }
    450 
    451 
    452 int RegExpImpl::IrregexpPrepare(Handle<JSRegExp> regexp,
    453                                 Handle<String> subject) {
    454   subject = String::Flatten(subject);
    455 
    456   // Check representation of the underlying storage.
    457   bool is_one_byte = subject->IsOneByteRepresentationUnderneath();
    458   if (!EnsureCompiledIrregexp(regexp, subject, is_one_byte)) return -1;
    459 
    460 #ifdef V8_INTERPRETED_REGEXP
    461   // Byte-code regexp needs space allocated for all its registers.
    462   // The result captures are copied to the start of the registers array
    463   // if the match succeeds.  This way those registers are not clobbered
    464   // when we set the last match info from last successful match.
    465   return IrregexpNumberOfRegisters(FixedArray::cast(regexp->data())) +
    466          (IrregexpNumberOfCaptures(FixedArray::cast(regexp->data())) + 1) * 2;
    467 #else  // V8_INTERPRETED_REGEXP
    468   // Native regexp only needs room to output captures. Registers are handled
    469   // internally.
    470   return (IrregexpNumberOfCaptures(FixedArray::cast(regexp->data())) + 1) * 2;
    471 #endif  // V8_INTERPRETED_REGEXP
    472 }
    473 
    474 
    475 int RegExpImpl::IrregexpExecRaw(Handle<JSRegExp> regexp,
    476                                 Handle<String> subject,
    477                                 int index,
    478                                 int32_t* output,
    479                                 int output_size) {
    480   Isolate* isolate = regexp->GetIsolate();
    481 
    482   Handle<FixedArray> irregexp(FixedArray::cast(regexp->data()), isolate);
    483 
    484   DCHECK(index >= 0);
    485   DCHECK(index <= subject->length());
    486   DCHECK(subject->IsFlat());
    487 
    488   bool is_one_byte = subject->IsOneByteRepresentationUnderneath();
    489 
    490 #ifndef V8_INTERPRETED_REGEXP
    491   DCHECK(output_size >= (IrregexpNumberOfCaptures(*irregexp) + 1) * 2);
    492   do {
    493     EnsureCompiledIrregexp(regexp, subject, is_one_byte);
    494     Handle<Code> code(IrregexpNativeCode(*irregexp, is_one_byte), isolate);
    495     // The stack is used to allocate registers for the compiled regexp code.
    496     // This means that in case of failure, the output registers array is left
    497     // untouched and contains the capture results from the previous successful
    498     // match.  We can use that to set the last match info lazily.
    499     NativeRegExpMacroAssembler::Result res =
    500         NativeRegExpMacroAssembler::Match(code,
    501                                           subject,
    502                                           output,
    503                                           output_size,
    504                                           index,
    505                                           isolate);
    506     if (res != NativeRegExpMacroAssembler::RETRY) {
    507       DCHECK(res != NativeRegExpMacroAssembler::EXCEPTION ||
    508              isolate->has_pending_exception());
    509       STATIC_ASSERT(
    510           static_cast<int>(NativeRegExpMacroAssembler::SUCCESS) == RE_SUCCESS);
    511       STATIC_ASSERT(
    512           static_cast<int>(NativeRegExpMacroAssembler::FAILURE) == RE_FAILURE);
    513       STATIC_ASSERT(static_cast<int>(NativeRegExpMacroAssembler::EXCEPTION)
    514                     == RE_EXCEPTION);
    515       return static_cast<IrregexpResult>(res);
    516     }
    517     // If result is RETRY, the string has changed representation, and we
    518     // must restart from scratch.
    519     // In this case, it means we must make sure we are prepared to handle
    520     // the, potentially, different subject (the string can switch between
    521     // being internal and external, and even between being Latin1 and UC16,
    522     // but the characters are always the same).
    523     IrregexpPrepare(regexp, subject);
    524     is_one_byte = subject->IsOneByteRepresentationUnderneath();
    525   } while (true);
    526   UNREACHABLE();
    527   return RE_EXCEPTION;
    528 #else  // V8_INTERPRETED_REGEXP
    529 
    530   DCHECK(output_size >= IrregexpNumberOfRegisters(*irregexp));
    531   // We must have done EnsureCompiledIrregexp, so we can get the number of
    532   // registers.
    533   int number_of_capture_registers =
    534       (IrregexpNumberOfCaptures(*irregexp) + 1) * 2;
    535   int32_t* raw_output = &output[number_of_capture_registers];
    536   // We do not touch the actual capture result registers until we know there
    537   // has been a match so that we can use those capture results to set the
    538   // last match info.
    539   for (int i = number_of_capture_registers - 1; i >= 0; i--) {
    540     raw_output[i] = -1;
    541   }
    542   Handle<ByteArray> byte_codes(IrregexpByteCode(*irregexp, is_one_byte),
    543                                isolate);
    544 
    545   IrregexpResult result = IrregexpInterpreter::Match(isolate,
    546                                                      byte_codes,
    547                                                      subject,
    548                                                      raw_output,
    549                                                      index);
    550   if (result == RE_SUCCESS) {
    551     // Copy capture results to the start of the registers array.
    552     MemCopy(output, raw_output, number_of_capture_registers * sizeof(int32_t));
    553   }
    554   if (result == RE_EXCEPTION) {
    555     DCHECK(!isolate->has_pending_exception());
    556     isolate->StackOverflow();
    557   }
    558   return result;
    559 #endif  // V8_INTERPRETED_REGEXP
    560 }
    561 
    562 MaybeHandle<Object> RegExpImpl::IrregexpExec(
    563     Handle<JSRegExp> regexp, Handle<String> subject, int previous_index,
    564     Handle<RegExpMatchInfo> last_match_info) {
    565   Isolate* isolate = regexp->GetIsolate();
    566   DCHECK_EQ(regexp->TypeTag(), JSRegExp::IRREGEXP);
    567 
    568   // Prepare space for the return values.
    569 #if defined(V8_INTERPRETED_REGEXP) && defined(DEBUG)
    570   if (FLAG_trace_regexp_bytecodes) {
    571     String* pattern = regexp->Pattern();
    572     PrintF("\n\nRegexp match:   /%s/\n\n", pattern->ToCString().get());
    573     PrintF("\n\nSubject string: '%s'\n\n", subject->ToCString().get());
    574   }
    575 #endif
    576   int required_registers = RegExpImpl::IrregexpPrepare(regexp, subject);
    577   if (required_registers < 0) {
    578     // Compiling failed with an exception.
    579     DCHECK(isolate->has_pending_exception());
    580     return MaybeHandle<Object>();
    581   }
    582 
    583   int32_t* output_registers = NULL;
    584   if (required_registers > Isolate::kJSRegexpStaticOffsetsVectorSize) {
    585     output_registers = NewArray<int32_t>(required_registers);
    586   }
    587   std::unique_ptr<int32_t[]> auto_release(output_registers);
    588   if (output_registers == NULL) {
    589     output_registers = isolate->jsregexp_static_offsets_vector();
    590   }
    591 
    592   int res = RegExpImpl::IrregexpExecRaw(
    593       regexp, subject, previous_index, output_registers, required_registers);
    594   if (res == RE_SUCCESS) {
    595     int capture_count =
    596         IrregexpNumberOfCaptures(FixedArray::cast(regexp->data()));
    597     return SetLastMatchInfo(
    598         last_match_info, subject, capture_count, output_registers);
    599   }
    600   if (res == RE_EXCEPTION) {
    601     DCHECK(isolate->has_pending_exception());
    602     return MaybeHandle<Object>();
    603   }
    604   DCHECK(res == RE_FAILURE);
    605   return isolate->factory()->null_value();
    606 }
    607 
    608 Handle<RegExpMatchInfo> RegExpImpl::SetLastMatchInfo(
    609     Handle<RegExpMatchInfo> last_match_info, Handle<String> subject,
    610     int capture_count, int32_t* match) {
    611   // This is the only place where match infos can grow. If, after executing the
    612   // regexp, RegExpExecStub finds that the match info is too small, it restarts
    613   // execution in RegExpImpl::Exec, which finally grows the match info right
    614   // here.
    615 
    616   int capture_register_count = (capture_count + 1) * 2;
    617   Handle<RegExpMatchInfo> result =
    618       RegExpMatchInfo::ReserveCaptures(last_match_info, capture_register_count);
    619   result->SetNumberOfCaptureRegisters(capture_register_count);
    620 
    621   if (*result != *last_match_info) {
    622     // The match info has been reallocated, update the corresponding reference
    623     // on the native context.
    624     Isolate* isolate = last_match_info->GetIsolate();
    625     if (*last_match_info == *isolate->regexp_last_match_info()) {
    626       isolate->native_context()->set_regexp_last_match_info(*result);
    627     } else if (*last_match_info == *isolate->regexp_internal_match_info()) {
    628       isolate->native_context()->set_regexp_internal_match_info(*result);
    629     }
    630   }
    631 
    632   DisallowHeapAllocation no_allocation;
    633   if (match != NULL) {
    634     for (int i = 0; i < capture_register_count; i += 2) {
    635       result->SetCapture(i, match[i]);
    636       result->SetCapture(i + 1, match[i + 1]);
    637     }
    638   }
    639   result->SetLastSubject(*subject);
    640   result->SetLastInput(*subject);
    641   return result;
    642 }
    643 
    644 
    645 RegExpImpl::GlobalCache::GlobalCache(Handle<JSRegExp> regexp,
    646                                      Handle<String> subject,
    647                                      Isolate* isolate)
    648   : register_array_(NULL),
    649     register_array_size_(0),
    650     regexp_(regexp),
    651     subject_(subject) {
    652 #ifdef V8_INTERPRETED_REGEXP
    653   bool interpreted = true;
    654 #else
    655   bool interpreted = false;
    656 #endif  // V8_INTERPRETED_REGEXP
    657 
    658   if (regexp_->TypeTag() == JSRegExp::ATOM) {
    659     static const int kAtomRegistersPerMatch = 2;
    660     registers_per_match_ = kAtomRegistersPerMatch;
    661     // There is no distinction between interpreted and native for atom regexps.
    662     interpreted = false;
    663   } else {
    664     registers_per_match_ = RegExpImpl::IrregexpPrepare(regexp_, subject_);
    665     if (registers_per_match_ < 0) {
    666       num_matches_ = -1;  // Signal exception.
    667       return;
    668     }
    669   }
    670 
    671   DCHECK_NE(0, regexp->GetFlags() & JSRegExp::kGlobal);
    672   if (!interpreted) {
    673     register_array_size_ =
    674         Max(registers_per_match_, Isolate::kJSRegexpStaticOffsetsVectorSize);
    675     max_matches_ = register_array_size_ / registers_per_match_;
    676   } else {
    677     // Global loop in interpreted regexp is not implemented.  We choose
    678     // the size of the offsets vector so that it can only store one match.
    679     register_array_size_ = registers_per_match_;
    680     max_matches_ = 1;
    681   }
    682 
    683   if (register_array_size_ > Isolate::kJSRegexpStaticOffsetsVectorSize) {
    684     register_array_ = NewArray<int32_t>(register_array_size_);
    685   } else {
    686     register_array_ = isolate->jsregexp_static_offsets_vector();
    687   }
    688 
    689   // Set state so that fetching the results the first time triggers a call
    690   // to the compiled regexp.
    691   current_match_index_ = max_matches_ - 1;
    692   num_matches_ = max_matches_;
    693   DCHECK(registers_per_match_ >= 2);  // Each match has at least one capture.
    694   DCHECK_GE(register_array_size_, registers_per_match_);
    695   int32_t* last_match =
    696       &register_array_[current_match_index_ * registers_per_match_];
    697   last_match[0] = -1;
    698   last_match[1] = 0;
    699 }
    700 
    701 int RegExpImpl::GlobalCache::AdvanceZeroLength(int last_index) {
    702   if ((regexp_->GetFlags() & JSRegExp::kUnicode) != 0 &&
    703       last_index + 1 < subject_->length() &&
    704       unibrow::Utf16::IsLeadSurrogate(subject_->Get(last_index)) &&
    705       unibrow::Utf16::IsTrailSurrogate(subject_->Get(last_index + 1))) {
    706     // Advance over the surrogate pair.
    707     return last_index + 2;
    708   }
    709   return last_index + 1;
    710 }
    711 
    712 // -------------------------------------------------------------------
    713 // Implementation of the Irregexp regular expression engine.
    714 //
    715 // The Irregexp regular expression engine is intended to be a complete
    716 // implementation of ECMAScript regular expressions.  It generates either
    717 // bytecodes or native code.
    718 
    719 //   The Irregexp regexp engine is structured in three steps.
    720 //   1) The parser generates an abstract syntax tree.  See ast.cc.
    721 //   2) From the AST a node network is created.  The nodes are all
    722 //      subclasses of RegExpNode.  The nodes represent states when
    723 //      executing a regular expression.  Several optimizations are
    724 //      performed on the node network.
    725 //   3) From the nodes we generate either byte codes or native code
    726 //      that can actually execute the regular expression (perform
    727 //      the search).  The code generation step is described in more
    728 //      detail below.
    729 
    730 // Code generation.
    731 //
    732 //   The nodes are divided into four main categories.
    733 //   * Choice nodes
    734 //        These represent places where the regular expression can
    735 //        match in more than one way.  For example on entry to an
    736 //        alternation (foo|bar) or a repetition (*, +, ? or {}).
    737 //   * Action nodes
    738 //        These represent places where some action should be
    739 //        performed.  Examples include recording the current position
    740 //        in the input string to a register (in order to implement
    741 //        captures) or other actions on register for example in order
    742 //        to implement the counters needed for {} repetitions.
    743 //   * Matching nodes
    744 //        These attempt to match some element part of the input string.
    745 //        Examples of elements include character classes, plain strings
    746 //        or back references.
    747 //   * End nodes
    748 //        These are used to implement the actions required on finding
    749 //        a successful match or failing to find a match.
    750 //
    751 //   The code generated (whether as byte codes or native code) maintains
    752 //   some state as it runs.  This consists of the following elements:
    753 //
    754 //   * The capture registers.  Used for string captures.
    755 //   * Other registers.  Used for counters etc.
    756 //   * The current position.
    757 //   * The stack of backtracking information.  Used when a matching node
    758 //     fails to find a match and needs to try an alternative.
    759 //
    760 // Conceptual regular expression execution model:
    761 //
    762 //   There is a simple conceptual model of regular expression execution
    763 //   which will be presented first.  The actual code generated is a more
    764 //   efficient simulation of the simple conceptual model:
    765 //
    766 //   * Choice nodes are implemented as follows:
    767 //     For each choice except the last {
    768 //       push current position
    769 //       push backtrack code location
    770 //       <generate code to test for choice>
    771 //       backtrack code location:
    772 //       pop current position
    773 //     }
    774 //     <generate code to test for last choice>
    775 //
    776 //   * Actions nodes are generated as follows
    777 //     <push affected registers on backtrack stack>
    778 //     <generate code to perform action>
    779 //     push backtrack code location
    780 //     <generate code to test for following nodes>
    781 //     backtrack code location:
    782 //     <pop affected registers to restore their state>
    783 //     <pop backtrack location from stack and go to it>
    784 //
    785 //   * Matching nodes are generated as follows:
    786 //     if input string matches at current position
    787 //       update current position
    788 //       <generate code to test for following nodes>
    789 //     else
    790 //       <pop backtrack location from stack and go to it>
    791 //
    792 //   Thus it can be seen that the current position is saved and restored
    793 //   by the choice nodes, whereas the registers are saved and restored by
    794 //   by the action nodes that manipulate them.
    795 //
    796 //   The other interesting aspect of this model is that nodes are generated
    797 //   at the point where they are needed by a recursive call to Emit().  If
    798 //   the node has already been code generated then the Emit() call will
    799 //   generate a jump to the previously generated code instead.  In order to
    800 //   limit recursion it is possible for the Emit() function to put the node
    801 //   on a work list for later generation and instead generate a jump.  The
    802 //   destination of the jump is resolved later when the code is generated.
    803 //
    804 // Actual regular expression code generation.
    805 //
    806 //   Code generation is actually more complicated than the above.  In order
    807 //   to improve the efficiency of the generated code some optimizations are
    808 //   performed
    809 //
    810 //   * Choice nodes have 1-character lookahead.
    811 //     A choice node looks at the following character and eliminates some of
    812 //     the choices immediately based on that character.  This is not yet
    813 //     implemented.
    814 //   * Simple greedy loops store reduced backtracking information.
    815 //     A quantifier like /.*foo/m will greedily match the whole input.  It will
    816 //     then need to backtrack to a point where it can match "foo".  The naive
    817 //     implementation of this would push each character position onto the
    818 //     backtracking stack, then pop them off one by one.  This would use space
    819 //     proportional to the length of the input string.  However since the "."
    820 //     can only match in one way and always has a constant length (in this case
    821 //     of 1) it suffices to store the current position on the top of the stack
    822 //     once.  Matching now becomes merely incrementing the current position and
    823 //     backtracking becomes decrementing the current position and checking the
    824 //     result against the stored current position.  This is faster and saves
    825 //     space.
    826 //   * The current state is virtualized.
    827 //     This is used to defer expensive operations until it is clear that they
    828 //     are needed and to generate code for a node more than once, allowing
    829 //     specialized an efficient versions of the code to be created. This is
    830 //     explained in the section below.
    831 //
    832 // Execution state virtualization.
    833 //
    834 //   Instead of emitting code, nodes that manipulate the state can record their
    835 //   manipulation in an object called the Trace.  The Trace object can record a
    836 //   current position offset, an optional backtrack code location on the top of
    837 //   the virtualized backtrack stack and some register changes.  When a node is
    838 //   to be emitted it can flush the Trace or update it.  Flushing the Trace
    839 //   will emit code to bring the actual state into line with the virtual state.
    840 //   Avoiding flushing the state can postpone some work (e.g. updates of capture
    841 //   registers).  Postponing work can save time when executing the regular
    842 //   expression since it may be found that the work never has to be done as a
    843 //   failure to match can occur.  In addition it is much faster to jump to a
    844 //   known backtrack code location than it is to pop an unknown backtrack
    845 //   location from the stack and jump there.
    846 //
    847 //   The virtual state found in the Trace affects code generation.  For example
    848 //   the virtual state contains the difference between the actual current
    849 //   position and the virtual current position, and matching code needs to use
    850 //   this offset to attempt a match in the correct location of the input
    851 //   string.  Therefore code generated for a non-trivial trace is specialized
    852 //   to that trace.  The code generator therefore has the ability to generate
    853 //   code for each node several times.  In order to limit the size of the
    854 //   generated code there is an arbitrary limit on how many specialized sets of
    855 //   code may be generated for a given node.  If the limit is reached, the
    856 //   trace is flushed and a generic version of the code for a node is emitted.
    857 //   This is subsequently used for that node.  The code emitted for non-generic
    858 //   trace is not recorded in the node and so it cannot currently be reused in
    859 //   the event that code generation is requested for an identical trace.
    860 
    861 
    862 void RegExpTree::AppendToText(RegExpText* text, Zone* zone) {
    863   UNREACHABLE();
    864 }
    865 
    866 
    867 void RegExpAtom::AppendToText(RegExpText* text, Zone* zone) {
    868   text->AddElement(TextElement::Atom(this), zone);
    869 }
    870 
    871 
    872 void RegExpCharacterClass::AppendToText(RegExpText* text, Zone* zone) {
    873   text->AddElement(TextElement::CharClass(this), zone);
    874 }
    875 
    876 
    877 void RegExpText::AppendToText(RegExpText* text, Zone* zone) {
    878   for (int i = 0; i < elements()->length(); i++)
    879     text->AddElement(elements()->at(i), zone);
    880 }
    881 
    882 
    883 TextElement TextElement::Atom(RegExpAtom* atom) {
    884   return TextElement(ATOM, atom);
    885 }
    886 
    887 
    888 TextElement TextElement::CharClass(RegExpCharacterClass* char_class) {
    889   return TextElement(CHAR_CLASS, char_class);
    890 }
    891 
    892 
    893 int TextElement::length() const {
    894   switch (text_type()) {
    895     case ATOM:
    896       return atom()->length();
    897 
    898     case CHAR_CLASS:
    899       return 1;
    900   }
    901   UNREACHABLE();
    902   return 0;
    903 }
    904 
    905 
    906 DispatchTable* ChoiceNode::GetTable(bool ignore_case) {
    907   if (table_ == NULL) {
    908     table_ = new(zone()) DispatchTable(zone());
    909     DispatchTableConstructor cons(table_, ignore_case, zone());
    910     cons.BuildTable(this);
    911   }
    912   return table_;
    913 }
    914 
    915 
    916 class FrequencyCollator {
    917  public:
    918   FrequencyCollator() : total_samples_(0) {
    919     for (int i = 0; i < RegExpMacroAssembler::kTableSize; i++) {
    920       frequencies_[i] = CharacterFrequency(i);
    921     }
    922   }
    923 
    924   void CountCharacter(int character) {
    925     int index = (character & RegExpMacroAssembler::kTableMask);
    926     frequencies_[index].Increment();
    927     total_samples_++;
    928   }
    929 
    930   // Does not measure in percent, but rather per-128 (the table size from the
    931   // regexp macro assembler).
    932   int Frequency(int in_character) {
    933     DCHECK((in_character & RegExpMacroAssembler::kTableMask) == in_character);
    934     if (total_samples_ < 1) return 1;  // Division by zero.
    935     int freq_in_per128 =
    936         (frequencies_[in_character].counter() * 128) / total_samples_;
    937     return freq_in_per128;
    938   }
    939 
    940  private:
    941   class CharacterFrequency {
    942    public:
    943     CharacterFrequency() : counter_(0), character_(-1) { }
    944     explicit CharacterFrequency(int character)
    945         : counter_(0), character_(character) { }
    946 
    947     void Increment() { counter_++; }
    948     int counter() { return counter_; }
    949     int character() { return character_; }
    950 
    951    private:
    952     int counter_;
    953     int character_;
    954   };
    955 
    956 
    957  private:
    958   CharacterFrequency frequencies_[RegExpMacroAssembler::kTableSize];
    959   int total_samples_;
    960 };
    961 
    962 
    963 class RegExpCompiler {
    964  public:
    965   RegExpCompiler(Isolate* isolate, Zone* zone, int capture_count,
    966                  JSRegExp::Flags flags, bool is_one_byte);
    967 
    968   int AllocateRegister() {
    969     if (next_register_ >= RegExpMacroAssembler::kMaxRegister) {
    970       reg_exp_too_big_ = true;
    971       return next_register_;
    972     }
    973     return next_register_++;
    974   }
    975 
    976   // Lookarounds to match lone surrogates for unicode character class matches
    977   // are never nested. We can therefore reuse registers.
    978   int UnicodeLookaroundStackRegister() {
    979     if (unicode_lookaround_stack_register_ == kNoRegister) {
    980       unicode_lookaround_stack_register_ = AllocateRegister();
    981     }
    982     return unicode_lookaround_stack_register_;
    983   }
    984 
    985   int UnicodeLookaroundPositionRegister() {
    986     if (unicode_lookaround_position_register_ == kNoRegister) {
    987       unicode_lookaround_position_register_ = AllocateRegister();
    988     }
    989     return unicode_lookaround_position_register_;
    990   }
    991 
    992   RegExpEngine::CompilationResult Assemble(RegExpMacroAssembler* assembler,
    993                                            RegExpNode* start,
    994                                            int capture_count,
    995                                            Handle<String> pattern);
    996 
    997   inline void AddWork(RegExpNode* node) {
    998     if (!node->on_work_list() && !node->label()->is_bound()) {
    999       node->set_on_work_list(true);
   1000       work_list_->Add(node);
   1001     }
   1002   }
   1003 
   1004   static const int kImplementationOffset = 0;
   1005   static const int kNumberOfRegistersOffset = 0;
   1006   static const int kCodeOffset = 1;
   1007 
   1008   RegExpMacroAssembler* macro_assembler() { return macro_assembler_; }
   1009   EndNode* accept() { return accept_; }
   1010 
   1011   static const int kMaxRecursion = 100;
   1012   inline int recursion_depth() { return recursion_depth_; }
   1013   inline void IncrementRecursionDepth() { recursion_depth_++; }
   1014   inline void DecrementRecursionDepth() { recursion_depth_--; }
   1015 
   1016   void SetRegExpTooBig() { reg_exp_too_big_ = true; }
   1017 
   1018   inline bool ignore_case() { return (flags_ & JSRegExp::kIgnoreCase) != 0; }
   1019   inline bool unicode() { return (flags_ & JSRegExp::kUnicode) != 0; }
   1020   inline bool one_byte() { return one_byte_; }
   1021   inline bool optimize() { return optimize_; }
   1022   inline void set_optimize(bool value) { optimize_ = value; }
   1023   inline bool limiting_recursion() { return limiting_recursion_; }
   1024   inline void set_limiting_recursion(bool value) {
   1025     limiting_recursion_ = value;
   1026   }
   1027   bool read_backward() { return read_backward_; }
   1028   void set_read_backward(bool value) { read_backward_ = value; }
   1029   FrequencyCollator* frequency_collator() { return &frequency_collator_; }
   1030 
   1031   int current_expansion_factor() { return current_expansion_factor_; }
   1032   void set_current_expansion_factor(int value) {
   1033     current_expansion_factor_ = value;
   1034   }
   1035 
   1036   Isolate* isolate() const { return isolate_; }
   1037   Zone* zone() const { return zone_; }
   1038 
   1039   static const int kNoRegister = -1;
   1040 
   1041  private:
   1042   EndNode* accept_;
   1043   int next_register_;
   1044   int unicode_lookaround_stack_register_;
   1045   int unicode_lookaround_position_register_;
   1046   List<RegExpNode*>* work_list_;
   1047   int recursion_depth_;
   1048   RegExpMacroAssembler* macro_assembler_;
   1049   JSRegExp::Flags flags_;
   1050   bool one_byte_;
   1051   bool reg_exp_too_big_;
   1052   bool limiting_recursion_;
   1053   bool optimize_;
   1054   bool read_backward_;
   1055   int current_expansion_factor_;
   1056   FrequencyCollator frequency_collator_;
   1057   Isolate* isolate_;
   1058   Zone* zone_;
   1059 };
   1060 
   1061 
   1062 class RecursionCheck {
   1063  public:
   1064   explicit RecursionCheck(RegExpCompiler* compiler) : compiler_(compiler) {
   1065     compiler->IncrementRecursionDepth();
   1066   }
   1067   ~RecursionCheck() { compiler_->DecrementRecursionDepth(); }
   1068  private:
   1069   RegExpCompiler* compiler_;
   1070 };
   1071 
   1072 
   1073 static RegExpEngine::CompilationResult IrregexpRegExpTooBig(Isolate* isolate) {
   1074   return RegExpEngine::CompilationResult(isolate, "RegExp too big");
   1075 }
   1076 
   1077 
   1078 // Attempts to compile the regexp using an Irregexp code generator.  Returns
   1079 // a fixed array or a null handle depending on whether it succeeded.
   1080 RegExpCompiler::RegExpCompiler(Isolate* isolate, Zone* zone, int capture_count,
   1081                                JSRegExp::Flags flags, bool one_byte)
   1082     : next_register_(2 * (capture_count + 1)),
   1083       unicode_lookaround_stack_register_(kNoRegister),
   1084       unicode_lookaround_position_register_(kNoRegister),
   1085       work_list_(NULL),
   1086       recursion_depth_(0),
   1087       flags_(flags),
   1088       one_byte_(one_byte),
   1089       reg_exp_too_big_(false),
   1090       limiting_recursion_(false),
   1091       optimize_(FLAG_regexp_optimization),
   1092       read_backward_(false),
   1093       current_expansion_factor_(1),
   1094       frequency_collator_(),
   1095       isolate_(isolate),
   1096       zone_(zone) {
   1097   accept_ = new(zone) EndNode(EndNode::ACCEPT, zone);
   1098   DCHECK(next_register_ - 1 <= RegExpMacroAssembler::kMaxRegister);
   1099 }
   1100 
   1101 
   1102 RegExpEngine::CompilationResult RegExpCompiler::Assemble(
   1103     RegExpMacroAssembler* macro_assembler,
   1104     RegExpNode* start,
   1105     int capture_count,
   1106     Handle<String> pattern) {
   1107   Heap* heap = pattern->GetHeap();
   1108 
   1109 #ifdef DEBUG
   1110   if (FLAG_trace_regexp_assembler)
   1111     macro_assembler_ =
   1112         new RegExpMacroAssemblerTracer(isolate(), macro_assembler);
   1113   else
   1114 #endif
   1115     macro_assembler_ = macro_assembler;
   1116 
   1117   List <RegExpNode*> work_list(0);
   1118   work_list_ = &work_list;
   1119   Label fail;
   1120   macro_assembler_->PushBacktrack(&fail);
   1121   Trace new_trace;
   1122   start->Emit(this, &new_trace);
   1123   macro_assembler_->Bind(&fail);
   1124   macro_assembler_->Fail();
   1125   while (!work_list.is_empty()) {
   1126     RegExpNode* node = work_list.RemoveLast();
   1127     node->set_on_work_list(false);
   1128     if (!node->label()->is_bound()) node->Emit(this, &new_trace);
   1129   }
   1130   if (reg_exp_too_big_) {
   1131     macro_assembler_->AbortedCodeGeneration();
   1132     return IrregexpRegExpTooBig(isolate_);
   1133   }
   1134 
   1135   Handle<HeapObject> code = macro_assembler_->GetCode(pattern);
   1136   heap->IncreaseTotalRegexpCodeGenerated(code->Size());
   1137   work_list_ = NULL;
   1138 #ifdef ENABLE_DISASSEMBLER
   1139   if (FLAG_print_code) {
   1140     CodeTracer::Scope trace_scope(heap->isolate()->GetCodeTracer());
   1141     OFStream os(trace_scope.file());
   1142     Handle<Code>::cast(code)->Disassemble(pattern->ToCString().get(), os);
   1143   }
   1144 #endif
   1145 #ifdef DEBUG
   1146   if (FLAG_trace_regexp_assembler) {
   1147     delete macro_assembler_;
   1148   }
   1149 #endif
   1150   return RegExpEngine::CompilationResult(*code, next_register_);
   1151 }
   1152 
   1153 
   1154 bool Trace::DeferredAction::Mentions(int that) {
   1155   if (action_type() == ActionNode::CLEAR_CAPTURES) {
   1156     Interval range = static_cast<DeferredClearCaptures*>(this)->range();
   1157     return range.Contains(that);
   1158   } else {
   1159     return reg() == that;
   1160   }
   1161 }
   1162 
   1163 
   1164 bool Trace::mentions_reg(int reg) {
   1165   for (DeferredAction* action = actions_;
   1166        action != NULL;
   1167        action = action->next()) {
   1168     if (action->Mentions(reg))
   1169       return true;
   1170   }
   1171   return false;
   1172 }
   1173 
   1174 
   1175 bool Trace::GetStoredPosition(int reg, int* cp_offset) {
   1176   DCHECK_EQ(0, *cp_offset);
   1177   for (DeferredAction* action = actions_;
   1178        action != NULL;
   1179        action = action->next()) {
   1180     if (action->Mentions(reg)) {
   1181       if (action->action_type() == ActionNode::STORE_POSITION) {
   1182         *cp_offset = static_cast<DeferredCapture*>(action)->cp_offset();
   1183         return true;
   1184       } else {
   1185         return false;
   1186       }
   1187     }
   1188   }
   1189   return false;
   1190 }
   1191 
   1192 
   1193 int Trace::FindAffectedRegisters(OutSet* affected_registers,
   1194                                  Zone* zone) {
   1195   int max_register = RegExpCompiler::kNoRegister;
   1196   for (DeferredAction* action = actions_;
   1197        action != NULL;
   1198        action = action->next()) {
   1199     if (action->action_type() == ActionNode::CLEAR_CAPTURES) {
   1200       Interval range = static_cast<DeferredClearCaptures*>(action)->range();
   1201       for (int i = range.from(); i <= range.to(); i++)
   1202         affected_registers->Set(i, zone);
   1203       if (range.to() > max_register) max_register = range.to();
   1204     } else {
   1205       affected_registers->Set(action->reg(), zone);
   1206       if (action->reg() > max_register) max_register = action->reg();
   1207     }
   1208   }
   1209   return max_register;
   1210 }
   1211 
   1212 
   1213 void Trace::RestoreAffectedRegisters(RegExpMacroAssembler* assembler,
   1214                                      int max_register,
   1215                                      const OutSet& registers_to_pop,
   1216                                      const OutSet& registers_to_clear) {
   1217   for (int reg = max_register; reg >= 0; reg--) {
   1218     if (registers_to_pop.Get(reg)) {
   1219       assembler->PopRegister(reg);
   1220     } else if (registers_to_clear.Get(reg)) {
   1221       int clear_to = reg;
   1222       while (reg > 0 && registers_to_clear.Get(reg - 1)) {
   1223         reg--;
   1224       }
   1225       assembler->ClearRegisters(reg, clear_to);
   1226     }
   1227   }
   1228 }
   1229 
   1230 
   1231 void Trace::PerformDeferredActions(RegExpMacroAssembler* assembler,
   1232                                    int max_register,
   1233                                    const OutSet& affected_registers,
   1234                                    OutSet* registers_to_pop,
   1235                                    OutSet* registers_to_clear,
   1236                                    Zone* zone) {
   1237   // The "+1" is to avoid a push_limit of zero if stack_limit_slack() is 1.
   1238   const int push_limit = (assembler->stack_limit_slack() + 1) / 2;
   1239 
   1240   // Count pushes performed to force a stack limit check occasionally.
   1241   int pushes = 0;
   1242 
   1243   for (int reg = 0; reg <= max_register; reg++) {
   1244     if (!affected_registers.Get(reg)) {
   1245       continue;
   1246     }
   1247 
   1248     // The chronologically first deferred action in the trace
   1249     // is used to infer the action needed to restore a register
   1250     // to its previous state (or not, if it's safe to ignore it).
   1251     enum DeferredActionUndoType { IGNORE, RESTORE, CLEAR };
   1252     DeferredActionUndoType undo_action = IGNORE;
   1253 
   1254     int value = 0;
   1255     bool absolute = false;
   1256     bool clear = false;
   1257     static const int kNoStore = kMinInt;
   1258     int store_position = kNoStore;
   1259     // This is a little tricky because we are scanning the actions in reverse
   1260     // historical order (newest first).
   1261     for (DeferredAction* action = actions_;
   1262          action != NULL;
   1263          action = action->next()) {
   1264       if (action->Mentions(reg)) {
   1265         switch (action->action_type()) {
   1266           case ActionNode::SET_REGISTER: {
   1267             Trace::DeferredSetRegister* psr =
   1268                 static_cast<Trace::DeferredSetRegister*>(action);
   1269             if (!absolute) {
   1270               value += psr->value();
   1271               absolute = true;
   1272             }
   1273             // SET_REGISTER is currently only used for newly introduced loop
   1274             // counters. They can have a significant previous value if they
   1275             // occour in a loop. TODO(lrn): Propagate this information, so
   1276             // we can set undo_action to IGNORE if we know there is no value to
   1277             // restore.
   1278             undo_action = RESTORE;
   1279             DCHECK_EQ(store_position, kNoStore);
   1280             DCHECK(!clear);
   1281             break;
   1282           }
   1283           case ActionNode::INCREMENT_REGISTER:
   1284             if (!absolute) {
   1285               value++;
   1286             }
   1287             DCHECK_EQ(store_position, kNoStore);
   1288             DCHECK(!clear);
   1289             undo_action = RESTORE;
   1290             break;
   1291           case ActionNode::STORE_POSITION: {
   1292             Trace::DeferredCapture* pc =
   1293                 static_cast<Trace::DeferredCapture*>(action);
   1294             if (!clear && store_position == kNoStore) {
   1295               store_position = pc->cp_offset();
   1296             }
   1297 
   1298             // For captures we know that stores and clears alternate.
   1299             // Other register, are never cleared, and if the occur
   1300             // inside a loop, they might be assigned more than once.
   1301             if (reg <= 1) {
   1302               // Registers zero and one, aka "capture zero", is
   1303               // always set correctly if we succeed. There is no
   1304               // need to undo a setting on backtrack, because we
   1305               // will set it again or fail.
   1306               undo_action = IGNORE;
   1307             } else {
   1308               undo_action = pc->is_capture() ? CLEAR : RESTORE;
   1309             }
   1310             DCHECK(!absolute);
   1311             DCHECK_EQ(value, 0);
   1312             break;
   1313           }
   1314           case ActionNode::CLEAR_CAPTURES: {
   1315             // Since we're scanning in reverse order, if we've already
   1316             // set the position we have to ignore historically earlier
   1317             // clearing operations.
   1318             if (store_position == kNoStore) {
   1319               clear = true;
   1320             }
   1321             undo_action = RESTORE;
   1322             DCHECK(!absolute);
   1323             DCHECK_EQ(value, 0);
   1324             break;
   1325           }
   1326           default:
   1327             UNREACHABLE();
   1328             break;
   1329         }
   1330       }
   1331     }
   1332     // Prepare for the undo-action (e.g., push if it's going to be popped).
   1333     if (undo_action == RESTORE) {
   1334       pushes++;
   1335       RegExpMacroAssembler::StackCheckFlag stack_check =
   1336           RegExpMacroAssembler::kNoStackLimitCheck;
   1337       if (pushes == push_limit) {
   1338         stack_check = RegExpMacroAssembler::kCheckStackLimit;
   1339         pushes = 0;
   1340       }
   1341 
   1342       assembler->PushRegister(reg, stack_check);
   1343       registers_to_pop->Set(reg, zone);
   1344     } else if (undo_action == CLEAR) {
   1345       registers_to_clear->Set(reg, zone);
   1346     }
   1347     // Perform the chronologically last action (or accumulated increment)
   1348     // for the register.
   1349     if (store_position != kNoStore) {
   1350       assembler->WriteCurrentPositionToRegister(reg, store_position);
   1351     } else if (clear) {
   1352       assembler->ClearRegisters(reg, reg);
   1353     } else if (absolute) {
   1354       assembler->SetRegister(reg, value);
   1355     } else if (value != 0) {
   1356       assembler->AdvanceRegister(reg, value);
   1357     }
   1358   }
   1359 }
   1360 
   1361 
   1362 // This is called as we come into a loop choice node and some other tricky
   1363 // nodes.  It normalizes the state of the code generator to ensure we can
   1364 // generate generic code.
   1365 void Trace::Flush(RegExpCompiler* compiler, RegExpNode* successor) {
   1366   RegExpMacroAssembler* assembler = compiler->macro_assembler();
   1367 
   1368   DCHECK(!is_trivial());
   1369 
   1370   if (actions_ == NULL && backtrack() == NULL) {
   1371     // Here we just have some deferred cp advances to fix and we are back to
   1372     // a normal situation.  We may also have to forget some information gained
   1373     // through a quick check that was already performed.
   1374     if (cp_offset_ != 0) assembler->AdvanceCurrentPosition(cp_offset_);
   1375     // Create a new trivial state and generate the node with that.
   1376     Trace new_state;
   1377     successor->Emit(compiler, &new_state);
   1378     return;
   1379   }
   1380 
   1381   // Generate deferred actions here along with code to undo them again.
   1382   OutSet affected_registers;
   1383 
   1384   if (backtrack() != NULL) {
   1385     // Here we have a concrete backtrack location.  These are set up by choice
   1386     // nodes and so they indicate that we have a deferred save of the current
   1387     // position which we may need to emit here.
   1388     assembler->PushCurrentPosition();
   1389   }
   1390 
   1391   int max_register = FindAffectedRegisters(&affected_registers,
   1392                                            compiler->zone());
   1393   OutSet registers_to_pop;
   1394   OutSet registers_to_clear;
   1395   PerformDeferredActions(assembler,
   1396                          max_register,
   1397                          affected_registers,
   1398                          &registers_to_pop,
   1399                          &registers_to_clear,
   1400                          compiler->zone());
   1401   if (cp_offset_ != 0) {
   1402     assembler->AdvanceCurrentPosition(cp_offset_);
   1403   }
   1404 
   1405   // Create a new trivial state and generate the node with that.
   1406   Label undo;
   1407   assembler->PushBacktrack(&undo);
   1408   if (successor->KeepRecursing(compiler)) {
   1409     Trace new_state;
   1410     successor->Emit(compiler, &new_state);
   1411   } else {
   1412     compiler->AddWork(successor);
   1413     assembler->GoTo(successor->label());
   1414   }
   1415 
   1416   // On backtrack we need to restore state.
   1417   assembler->Bind(&undo);
   1418   RestoreAffectedRegisters(assembler,
   1419                            max_register,
   1420                            registers_to_pop,
   1421                            registers_to_clear);
   1422   if (backtrack() == NULL) {
   1423     assembler->Backtrack();
   1424   } else {
   1425     assembler->PopCurrentPosition();
   1426     assembler->GoTo(backtrack());
   1427   }
   1428 }
   1429 
   1430 
   1431 void NegativeSubmatchSuccess::Emit(RegExpCompiler* compiler, Trace* trace) {
   1432   RegExpMacroAssembler* assembler = compiler->macro_assembler();
   1433 
   1434   // Omit flushing the trace. We discard the entire stack frame anyway.
   1435 
   1436   if (!label()->is_bound()) {
   1437     // We are completely independent of the trace, since we ignore it,
   1438     // so this code can be used as the generic version.
   1439     assembler->Bind(label());
   1440   }
   1441 
   1442   // Throw away everything on the backtrack stack since the start
   1443   // of the negative submatch and restore the character position.
   1444   assembler->ReadCurrentPositionFromRegister(current_position_register_);
   1445   assembler->ReadStackPointerFromRegister(stack_pointer_register_);
   1446   if (clear_capture_count_ > 0) {
   1447     // Clear any captures that might have been performed during the success
   1448     // of the body of the negative look-ahead.
   1449     int clear_capture_end = clear_capture_start_ + clear_capture_count_ - 1;
   1450     assembler->ClearRegisters(clear_capture_start_, clear_capture_end);
   1451   }
   1452   // Now that we have unwound the stack we find at the top of the stack the
   1453   // backtrack that the BeginSubmatch node got.
   1454   assembler->Backtrack();
   1455 }
   1456 
   1457 
   1458 void EndNode::Emit(RegExpCompiler* compiler, Trace* trace) {
   1459   if (!trace->is_trivial()) {
   1460     trace->Flush(compiler, this);
   1461     return;
   1462   }
   1463   RegExpMacroAssembler* assembler = compiler->macro_assembler();
   1464   if (!label()->is_bound()) {
   1465     assembler->Bind(label());
   1466   }
   1467   switch (action_) {
   1468     case ACCEPT:
   1469       assembler->Succeed();
   1470       return;
   1471     case BACKTRACK:
   1472       assembler->GoTo(trace->backtrack());
   1473       return;
   1474     case NEGATIVE_SUBMATCH_SUCCESS:
   1475       // This case is handled in a different virtual method.
   1476       UNREACHABLE();
   1477   }
   1478   UNIMPLEMENTED();
   1479 }
   1480 
   1481 
   1482 void GuardedAlternative::AddGuard(Guard* guard, Zone* zone) {
   1483   if (guards_ == NULL)
   1484     guards_ = new(zone) ZoneList<Guard*>(1, zone);
   1485   guards_->Add(guard, zone);
   1486 }
   1487 
   1488 
   1489 ActionNode* ActionNode::SetRegister(int reg,
   1490                                     int val,
   1491                                     RegExpNode* on_success) {
   1492   ActionNode* result =
   1493       new(on_success->zone()) ActionNode(SET_REGISTER, on_success);
   1494   result->data_.u_store_register.reg = reg;
   1495   result->data_.u_store_register.value = val;
   1496   return result;
   1497 }
   1498 
   1499 
   1500 ActionNode* ActionNode::IncrementRegister(int reg, RegExpNode* on_success) {
   1501   ActionNode* result =
   1502       new(on_success->zone()) ActionNode(INCREMENT_REGISTER, on_success);
   1503   result->data_.u_increment_register.reg = reg;
   1504   return result;
   1505 }
   1506 
   1507 
   1508 ActionNode* ActionNode::StorePosition(int reg,
   1509                                       bool is_capture,
   1510                                       RegExpNode* on_success) {
   1511   ActionNode* result =
   1512       new(on_success->zone()) ActionNode(STORE_POSITION, on_success);
   1513   result->data_.u_position_register.reg = reg;
   1514   result->data_.u_position_register.is_capture = is_capture;
   1515   return result;
   1516 }
   1517 
   1518 
   1519 ActionNode* ActionNode::ClearCaptures(Interval range,
   1520                                       RegExpNode* on_success) {
   1521   ActionNode* result =
   1522       new(on_success->zone()) ActionNode(CLEAR_CAPTURES, on_success);
   1523   result->data_.u_clear_captures.range_from = range.from();
   1524   result->data_.u_clear_captures.range_to = range.to();
   1525   return result;
   1526 }
   1527 
   1528 
   1529 ActionNode* ActionNode::BeginSubmatch(int stack_reg,
   1530                                       int position_reg,
   1531                                       RegExpNode* on_success) {
   1532   ActionNode* result =
   1533       new(on_success->zone()) ActionNode(BEGIN_SUBMATCH, on_success);
   1534   result->data_.u_submatch.stack_pointer_register = stack_reg;
   1535   result->data_.u_submatch.current_position_register = position_reg;
   1536   return result;
   1537 }
   1538 
   1539 
   1540 ActionNode* ActionNode::PositiveSubmatchSuccess(int stack_reg,
   1541                                                 int position_reg,
   1542                                                 int clear_register_count,
   1543                                                 int clear_register_from,
   1544                                                 RegExpNode* on_success) {
   1545   ActionNode* result =
   1546       new(on_success->zone()) ActionNode(POSITIVE_SUBMATCH_SUCCESS, on_success);
   1547   result->data_.u_submatch.stack_pointer_register = stack_reg;
   1548   result->data_.u_submatch.current_position_register = position_reg;
   1549   result->data_.u_submatch.clear_register_count = clear_register_count;
   1550   result->data_.u_submatch.clear_register_from = clear_register_from;
   1551   return result;
   1552 }
   1553 
   1554 
   1555 ActionNode* ActionNode::EmptyMatchCheck(int start_register,
   1556                                         int repetition_register,
   1557                                         int repetition_limit,
   1558                                         RegExpNode* on_success) {
   1559   ActionNode* result =
   1560       new(on_success->zone()) ActionNode(EMPTY_MATCH_CHECK, on_success);
   1561   result->data_.u_empty_match_check.start_register = start_register;
   1562   result->data_.u_empty_match_check.repetition_register = repetition_register;
   1563   result->data_.u_empty_match_check.repetition_limit = repetition_limit;
   1564   return result;
   1565 }
   1566 
   1567 
   1568 #define DEFINE_ACCEPT(Type)                                          \
   1569   void Type##Node::Accept(NodeVisitor* visitor) {                    \
   1570     visitor->Visit##Type(this);                                      \
   1571   }
   1572 FOR_EACH_NODE_TYPE(DEFINE_ACCEPT)
   1573 #undef DEFINE_ACCEPT
   1574 
   1575 
   1576 void LoopChoiceNode::Accept(NodeVisitor* visitor) {
   1577   visitor->VisitLoopChoice(this);
   1578 }
   1579 
   1580 
   1581 // -------------------------------------------------------------------
   1582 // Emit code.
   1583 
   1584 
   1585 void ChoiceNode::GenerateGuard(RegExpMacroAssembler* macro_assembler,
   1586                                Guard* guard,
   1587                                Trace* trace) {
   1588   switch (guard->op()) {
   1589     case Guard::LT:
   1590       DCHECK(!trace->mentions_reg(guard->reg()));
   1591       macro_assembler->IfRegisterGE(guard->reg(),
   1592                                     guard->value(),
   1593                                     trace->backtrack());
   1594       break;
   1595     case Guard::GEQ:
   1596       DCHECK(!trace->mentions_reg(guard->reg()));
   1597       macro_assembler->IfRegisterLT(guard->reg(),
   1598                                     guard->value(),
   1599                                     trace->backtrack());
   1600       break;
   1601   }
   1602 }
   1603 
   1604 
   1605 // Returns the number of characters in the equivalence class, omitting those
   1606 // that cannot occur in the source string because it is Latin1.
   1607 static int GetCaseIndependentLetters(Isolate* isolate, uc16 character,
   1608                                      bool one_byte_subject,
   1609                                      unibrow::uchar* letters) {
   1610   int length =
   1611       isolate->jsregexp_uncanonicalize()->get(character, '\0', letters);
   1612   // Unibrow returns 0 or 1 for characters where case independence is
   1613   // trivial.
   1614   if (length == 0) {
   1615     letters[0] = character;
   1616     length = 1;
   1617   }
   1618 
   1619   if (one_byte_subject) {
   1620     int new_length = 0;
   1621     for (int i = 0; i < length; i++) {
   1622       if (letters[i] <= String::kMaxOneByteCharCode) {
   1623         letters[new_length++] = letters[i];
   1624       }
   1625     }
   1626     length = new_length;
   1627   }
   1628 
   1629   return length;
   1630 }
   1631 
   1632 
   1633 static inline bool EmitSimpleCharacter(Isolate* isolate,
   1634                                        RegExpCompiler* compiler,
   1635                                        uc16 c,
   1636                                        Label* on_failure,
   1637                                        int cp_offset,
   1638                                        bool check,
   1639                                        bool preloaded) {
   1640   RegExpMacroAssembler* assembler = compiler->macro_assembler();
   1641   bool bound_checked = false;
   1642   if (!preloaded) {
   1643     assembler->LoadCurrentCharacter(
   1644         cp_offset,
   1645         on_failure,
   1646         check);
   1647     bound_checked = true;
   1648   }
   1649   assembler->CheckNotCharacter(c, on_failure);
   1650   return bound_checked;
   1651 }
   1652 
   1653 
   1654 // Only emits non-letters (things that don't have case).  Only used for case
   1655 // independent matches.
   1656 static inline bool EmitAtomNonLetter(Isolate* isolate,
   1657                                      RegExpCompiler* compiler,
   1658                                      uc16 c,
   1659                                      Label* on_failure,
   1660                                      int cp_offset,
   1661                                      bool check,
   1662                                      bool preloaded) {
   1663   RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
   1664   bool one_byte = compiler->one_byte();
   1665   unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
   1666   int length = GetCaseIndependentLetters(isolate, c, one_byte, chars);
   1667   if (length < 1) {
   1668     // This can't match.  Must be an one-byte subject and a non-one-byte
   1669     // character.  We do not need to do anything since the one-byte pass
   1670     // already handled this.
   1671     return false;  // Bounds not checked.
   1672   }
   1673   bool checked = false;
   1674   // We handle the length > 1 case in a later pass.
   1675   if (length == 1) {
   1676     if (one_byte && c > String::kMaxOneByteCharCodeU) {
   1677       // Can't match - see above.
   1678       return false;  // Bounds not checked.
   1679     }
   1680     if (!preloaded) {
   1681       macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check);
   1682       checked = check;
   1683     }
   1684     macro_assembler->CheckNotCharacter(c, on_failure);
   1685   }
   1686   return checked;
   1687 }
   1688 
   1689 
   1690 static bool ShortCutEmitCharacterPair(RegExpMacroAssembler* macro_assembler,
   1691                                       bool one_byte, uc16 c1, uc16 c2,
   1692                                       Label* on_failure) {
   1693   uc16 char_mask;
   1694   if (one_byte) {
   1695     char_mask = String::kMaxOneByteCharCode;
   1696   } else {
   1697     char_mask = String::kMaxUtf16CodeUnit;
   1698   }
   1699   uc16 exor = c1 ^ c2;
   1700   // Check whether exor has only one bit set.
   1701   if (((exor - 1) & exor) == 0) {
   1702     // If c1 and c2 differ only by one bit.
   1703     // Ecma262UnCanonicalize always gives the highest number last.
   1704     DCHECK(c2 > c1);
   1705     uc16 mask = char_mask ^ exor;
   1706     macro_assembler->CheckNotCharacterAfterAnd(c1, mask, on_failure);
   1707     return true;
   1708   }
   1709   DCHECK(c2 > c1);
   1710   uc16 diff = c2 - c1;
   1711   if (((diff - 1) & diff) == 0 && c1 >= diff) {
   1712     // If the characters differ by 2^n but don't differ by one bit then
   1713     // subtract the difference from the found character, then do the or
   1714     // trick.  We avoid the theoretical case where negative numbers are
   1715     // involved in order to simplify code generation.
   1716     uc16 mask = char_mask ^ diff;
   1717     macro_assembler->CheckNotCharacterAfterMinusAnd(c1 - diff,
   1718                                                     diff,
   1719                                                     mask,
   1720                                                     on_failure);
   1721     return true;
   1722   }
   1723   return false;
   1724 }
   1725 
   1726 
   1727 typedef bool EmitCharacterFunction(Isolate* isolate,
   1728                                    RegExpCompiler* compiler,
   1729                                    uc16 c,
   1730                                    Label* on_failure,
   1731                                    int cp_offset,
   1732                                    bool check,
   1733                                    bool preloaded);
   1734 
   1735 // Only emits letters (things that have case).  Only used for case independent
   1736 // matches.
   1737 static inline bool EmitAtomLetter(Isolate* isolate,
   1738                                   RegExpCompiler* compiler,
   1739                                   uc16 c,
   1740                                   Label* on_failure,
   1741                                   int cp_offset,
   1742                                   bool check,
   1743                                   bool preloaded) {
   1744   RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
   1745   bool one_byte = compiler->one_byte();
   1746   unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
   1747   int length = GetCaseIndependentLetters(isolate, c, one_byte, chars);
   1748   if (length <= 1) return false;
   1749   // We may not need to check against the end of the input string
   1750   // if this character lies before a character that matched.
   1751   if (!preloaded) {
   1752     macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check);
   1753   }
   1754   Label ok;
   1755   DCHECK(unibrow::Ecma262UnCanonicalize::kMaxWidth == 4);
   1756   switch (length) {
   1757     case 2: {
   1758       if (ShortCutEmitCharacterPair(macro_assembler, one_byte, chars[0],
   1759                                     chars[1], on_failure)) {
   1760       } else {
   1761         macro_assembler->CheckCharacter(chars[0], &ok);
   1762         macro_assembler->CheckNotCharacter(chars[1], on_failure);
   1763         macro_assembler->Bind(&ok);
   1764       }
   1765       break;
   1766     }
   1767     case 4:
   1768       macro_assembler->CheckCharacter(chars[3], &ok);
   1769       // Fall through!
   1770     case 3:
   1771       macro_assembler->CheckCharacter(chars[0], &ok);
   1772       macro_assembler->CheckCharacter(chars[1], &ok);
   1773       macro_assembler->CheckNotCharacter(chars[2], on_failure);
   1774       macro_assembler->Bind(&ok);
   1775       break;
   1776     default:
   1777       UNREACHABLE();
   1778       break;
   1779   }
   1780   return true;
   1781 }
   1782 
   1783 
   1784 static void EmitBoundaryTest(RegExpMacroAssembler* masm,
   1785                              int border,
   1786                              Label* fall_through,
   1787                              Label* above_or_equal,
   1788                              Label* below) {
   1789   if (below != fall_through) {
   1790     masm->CheckCharacterLT(border, below);
   1791     if (above_or_equal != fall_through) masm->GoTo(above_or_equal);
   1792   } else {
   1793     masm->CheckCharacterGT(border - 1, above_or_equal);
   1794   }
   1795 }
   1796 
   1797 
   1798 static void EmitDoubleBoundaryTest(RegExpMacroAssembler* masm,
   1799                                    int first,
   1800                                    int last,
   1801                                    Label* fall_through,
   1802                                    Label* in_range,
   1803                                    Label* out_of_range) {
   1804   if (in_range == fall_through) {
   1805     if (first == last) {
   1806       masm->CheckNotCharacter(first, out_of_range);
   1807     } else {
   1808       masm->CheckCharacterNotInRange(first, last, out_of_range);
   1809     }
   1810   } else {
   1811     if (first == last) {
   1812       masm->CheckCharacter(first, in_range);
   1813     } else {
   1814       masm->CheckCharacterInRange(first, last, in_range);
   1815     }
   1816     if (out_of_range != fall_through) masm->GoTo(out_of_range);
   1817   }
   1818 }
   1819 
   1820 
   1821 // even_label is for ranges[i] to ranges[i + 1] where i - start_index is even.
   1822 // odd_label is for ranges[i] to ranges[i + 1] where i - start_index is odd.
   1823 static void EmitUseLookupTable(
   1824     RegExpMacroAssembler* masm,
   1825     ZoneList<int>* ranges,
   1826     int start_index,
   1827     int end_index,
   1828     int min_char,
   1829     Label* fall_through,
   1830     Label* even_label,
   1831     Label* odd_label) {
   1832   static const int kSize = RegExpMacroAssembler::kTableSize;
   1833   static const int kMask = RegExpMacroAssembler::kTableMask;
   1834 
   1835   int base = (min_char & ~kMask);
   1836   USE(base);
   1837 
   1838   // Assert that everything is on one kTableSize page.
   1839   for (int i = start_index; i <= end_index; i++) {
   1840     DCHECK_EQ(ranges->at(i) & ~kMask, base);
   1841   }
   1842   DCHECK(start_index == 0 || (ranges->at(start_index - 1) & ~kMask) <= base);
   1843 
   1844   char templ[kSize];
   1845   Label* on_bit_set;
   1846   Label* on_bit_clear;
   1847   int bit;
   1848   if (even_label == fall_through) {
   1849     on_bit_set = odd_label;
   1850     on_bit_clear = even_label;
   1851     bit = 1;
   1852   } else {
   1853     on_bit_set = even_label;
   1854     on_bit_clear = odd_label;
   1855     bit = 0;
   1856   }
   1857   for (int i = 0; i < (ranges->at(start_index) & kMask) && i < kSize; i++) {
   1858     templ[i] = bit;
   1859   }
   1860   int j = 0;
   1861   bit ^= 1;
   1862   for (int i = start_index; i < end_index; i++) {
   1863     for (j = (ranges->at(i) & kMask); j < (ranges->at(i + 1) & kMask); j++) {
   1864       templ[j] = bit;
   1865     }
   1866     bit ^= 1;
   1867   }
   1868   for (int i = j; i < kSize; i++) {
   1869     templ[i] = bit;
   1870   }
   1871   Factory* factory = masm->isolate()->factory();
   1872   // TODO(erikcorry): Cache these.
   1873   Handle<ByteArray> ba = factory->NewByteArray(kSize, TENURED);
   1874   for (int i = 0; i < kSize; i++) {
   1875     ba->set(i, templ[i]);
   1876   }
   1877   masm->CheckBitInTable(ba, on_bit_set);
   1878   if (on_bit_clear != fall_through) masm->GoTo(on_bit_clear);
   1879 }
   1880 
   1881 
   1882 static void CutOutRange(RegExpMacroAssembler* masm,
   1883                         ZoneList<int>* ranges,
   1884                         int start_index,
   1885                         int end_index,
   1886                         int cut_index,
   1887                         Label* even_label,
   1888                         Label* odd_label) {
   1889   bool odd = (((cut_index - start_index) & 1) == 1);
   1890   Label* in_range_label = odd ? odd_label : even_label;
   1891   Label dummy;
   1892   EmitDoubleBoundaryTest(masm,
   1893                          ranges->at(cut_index),
   1894                          ranges->at(cut_index + 1) - 1,
   1895                          &dummy,
   1896                          in_range_label,
   1897                          &dummy);
   1898   DCHECK(!dummy.is_linked());
   1899   // Cut out the single range by rewriting the array.  This creates a new
   1900   // range that is a merger of the two ranges on either side of the one we
   1901   // are cutting out.  The oddity of the labels is preserved.
   1902   for (int j = cut_index; j > start_index; j--) {
   1903     ranges->at(j) = ranges->at(j - 1);
   1904   }
   1905   for (int j = cut_index + 1; j < end_index; j++) {
   1906     ranges->at(j) = ranges->at(j + 1);
   1907   }
   1908 }
   1909 
   1910 
   1911 // Unicode case.  Split the search space into kSize spaces that are handled
   1912 // with recursion.
   1913 static void SplitSearchSpace(ZoneList<int>* ranges,
   1914                              int start_index,
   1915                              int end_index,
   1916                              int* new_start_index,
   1917                              int* new_end_index,
   1918                              int* border) {
   1919   static const int kSize = RegExpMacroAssembler::kTableSize;
   1920   static const int kMask = RegExpMacroAssembler::kTableMask;
   1921 
   1922   int first = ranges->at(start_index);
   1923   int last = ranges->at(end_index) - 1;
   1924 
   1925   *new_start_index = start_index;
   1926   *border = (ranges->at(start_index) & ~kMask) + kSize;
   1927   while (*new_start_index < end_index) {
   1928     if (ranges->at(*new_start_index) > *border) break;
   1929     (*new_start_index)++;
   1930   }
   1931   // new_start_index is the index of the first edge that is beyond the
   1932   // current kSize space.
   1933 
   1934   // For very large search spaces we do a binary chop search of the non-Latin1
   1935   // space instead of just going to the end of the current kSize space.  The
   1936   // heuristics are complicated a little by the fact that any 128-character
   1937   // encoding space can be quickly tested with a table lookup, so we don't
   1938   // wish to do binary chop search at a smaller granularity than that.  A
   1939   // 128-character space can take up a lot of space in the ranges array if,
   1940   // for example, we only want to match every second character (eg. the lower
   1941   // case characters on some Unicode pages).
   1942   int binary_chop_index = (end_index + start_index) / 2;
   1943   // The first test ensures that we get to the code that handles the Latin1
   1944   // range with a single not-taken branch, speeding up this important
   1945   // character range (even non-Latin1 charset-based text has spaces and
   1946   // punctuation).
   1947   if (*border - 1 > String::kMaxOneByteCharCode &&  // Latin1 case.
   1948       end_index - start_index > (*new_start_index - start_index) * 2 &&
   1949       last - first > kSize * 2 && binary_chop_index > *new_start_index &&
   1950       ranges->at(binary_chop_index) >= first + 2 * kSize) {
   1951     int scan_forward_for_section_border = binary_chop_index;;
   1952     int new_border = (ranges->at(binary_chop_index) | kMask) + 1;
   1953 
   1954     while (scan_forward_for_section_border < end_index) {
   1955       if (ranges->at(scan_forward_for_section_border) > new_border) {
   1956         *new_start_index = scan_forward_for_section_border;
   1957         *border = new_border;
   1958         break;
   1959       }
   1960       scan_forward_for_section_border++;
   1961     }
   1962   }
   1963 
   1964   DCHECK(*new_start_index > start_index);
   1965   *new_end_index = *new_start_index - 1;
   1966   if (ranges->at(*new_end_index) == *border) {
   1967     (*new_end_index)--;
   1968   }
   1969   if (*border >= ranges->at(end_index)) {
   1970     *border = ranges->at(end_index);
   1971     *new_start_index = end_index;  // Won't be used.
   1972     *new_end_index = end_index - 1;
   1973   }
   1974 }
   1975 
   1976 
   1977 // Gets a series of segment boundaries representing a character class.  If the
   1978 // character is in the range between an even and an odd boundary (counting from
   1979 // start_index) then go to even_label, otherwise go to odd_label.  We already
   1980 // know that the character is in the range of min_char to max_char inclusive.
   1981 // Either label can be NULL indicating backtracking.  Either label can also be
   1982 // equal to the fall_through label.
   1983 static void GenerateBranches(RegExpMacroAssembler* masm, ZoneList<int>* ranges,
   1984                              int start_index, int end_index, uc32 min_char,
   1985                              uc32 max_char, Label* fall_through,
   1986                              Label* even_label, Label* odd_label) {
   1987   DCHECK_LE(min_char, String::kMaxUtf16CodeUnit);
   1988   DCHECK_LE(max_char, String::kMaxUtf16CodeUnit);
   1989 
   1990   int first = ranges->at(start_index);
   1991   int last = ranges->at(end_index) - 1;
   1992 
   1993   DCHECK_LT(min_char, first);
   1994 
   1995   // Just need to test if the character is before or on-or-after
   1996   // a particular character.
   1997   if (start_index == end_index) {
   1998     EmitBoundaryTest(masm, first, fall_through, even_label, odd_label);
   1999     return;
   2000   }
   2001 
   2002   // Another almost trivial case:  There is one interval in the middle that is
   2003   // different from the end intervals.
   2004   if (start_index + 1 == end_index) {
   2005     EmitDoubleBoundaryTest(
   2006         masm, first, last, fall_through, even_label, odd_label);
   2007     return;
   2008   }
   2009 
   2010   // It's not worth using table lookup if there are very few intervals in the
   2011   // character class.
   2012   if (end_index - start_index <= 6) {
   2013     // It is faster to test for individual characters, so we look for those
   2014     // first, then try arbitrary ranges in the second round.
   2015     static int kNoCutIndex = -1;
   2016     int cut = kNoCutIndex;
   2017     for (int i = start_index; i < end_index; i++) {
   2018       if (ranges->at(i) == ranges->at(i + 1) - 1) {
   2019         cut = i;
   2020         break;
   2021       }
   2022     }
   2023     if (cut == kNoCutIndex) cut = start_index;
   2024     CutOutRange(
   2025         masm, ranges, start_index, end_index, cut, even_label, odd_label);
   2026     DCHECK_GE(end_index - start_index, 2);
   2027     GenerateBranches(masm,
   2028                      ranges,
   2029                      start_index + 1,
   2030                      end_index - 1,
   2031                      min_char,
   2032                      max_char,
   2033                      fall_through,
   2034                      even_label,
   2035                      odd_label);
   2036     return;
   2037   }
   2038 
   2039   // If there are a lot of intervals in the regexp, then we will use tables to
   2040   // determine whether the character is inside or outside the character class.
   2041   static const int kBits = RegExpMacroAssembler::kTableSizeBits;
   2042 
   2043   if ((max_char >> kBits) == (min_char >> kBits)) {
   2044     EmitUseLookupTable(masm,
   2045                        ranges,
   2046                        start_index,
   2047                        end_index,
   2048                        min_char,
   2049                        fall_through,
   2050                        even_label,
   2051                        odd_label);
   2052     return;
   2053   }
   2054 
   2055   if ((min_char >> kBits) != (first >> kBits)) {
   2056     masm->CheckCharacterLT(first, odd_label);
   2057     GenerateBranches(masm,
   2058                      ranges,
   2059                      start_index + 1,
   2060                      end_index,
   2061                      first,
   2062                      max_char,
   2063                      fall_through,
   2064                      odd_label,
   2065                      even_label);
   2066     return;
   2067   }
   2068 
   2069   int new_start_index = 0;
   2070   int new_end_index = 0;
   2071   int border = 0;
   2072 
   2073   SplitSearchSpace(ranges,
   2074                    start_index,
   2075                    end_index,
   2076                    &new_start_index,
   2077                    &new_end_index,
   2078                    &border);
   2079 
   2080   Label handle_rest;
   2081   Label* above = &handle_rest;
   2082   if (border == last + 1) {
   2083     // We didn't find any section that started after the limit, so everything
   2084     // above the border is one of the terminal labels.
   2085     above = (end_index & 1) != (start_index & 1) ? odd_label : even_label;
   2086     DCHECK(new_end_index == end_index - 1);
   2087   }
   2088 
   2089   DCHECK_LE(start_index, new_end_index);
   2090   DCHECK_LE(new_start_index, end_index);
   2091   DCHECK_LT(start_index, new_start_index);
   2092   DCHECK_LT(new_end_index, end_index);
   2093   DCHECK(new_end_index + 1 == new_start_index ||
   2094          (new_end_index + 2 == new_start_index &&
   2095           border == ranges->at(new_end_index + 1)));
   2096   DCHECK_LT(min_char, border - 1);
   2097   DCHECK_LT(border, max_char);
   2098   DCHECK_LT(ranges->at(new_end_index), border);
   2099   DCHECK(border < ranges->at(new_start_index) ||
   2100          (border == ranges->at(new_start_index) &&
   2101           new_start_index == end_index &&
   2102           new_end_index == end_index - 1 &&
   2103           border == last + 1));
   2104   DCHECK(new_start_index == 0 || border >= ranges->at(new_start_index - 1));
   2105 
   2106   masm->CheckCharacterGT(border - 1, above);
   2107   Label dummy;
   2108   GenerateBranches(masm,
   2109                    ranges,
   2110                    start_index,
   2111                    new_end_index,
   2112                    min_char,
   2113                    border - 1,
   2114                    &dummy,
   2115                    even_label,
   2116                    odd_label);
   2117   if (handle_rest.is_linked()) {
   2118     masm->Bind(&handle_rest);
   2119     bool flip = (new_start_index & 1) != (start_index & 1);
   2120     GenerateBranches(masm,
   2121                      ranges,
   2122                      new_start_index,
   2123                      end_index,
   2124                      border,
   2125                      max_char,
   2126                      &dummy,
   2127                      flip ? odd_label : even_label,
   2128                      flip ? even_label : odd_label);
   2129   }
   2130 }
   2131 
   2132 
   2133 static void EmitCharClass(RegExpMacroAssembler* macro_assembler,
   2134                           RegExpCharacterClass* cc, bool one_byte,
   2135                           Label* on_failure, int cp_offset, bool check_offset,
   2136                           bool preloaded, Zone* zone) {
   2137   ZoneList<CharacterRange>* ranges = cc->ranges(zone);
   2138   CharacterRange::Canonicalize(ranges);
   2139 
   2140   int max_char;
   2141   if (one_byte) {
   2142     max_char = String::kMaxOneByteCharCode;
   2143   } else {
   2144     max_char = String::kMaxUtf16CodeUnit;
   2145   }
   2146 
   2147   int range_count = ranges->length();
   2148 
   2149   int last_valid_range = range_count - 1;
   2150   while (last_valid_range >= 0) {
   2151     CharacterRange& range = ranges->at(last_valid_range);
   2152     if (range.from() <= max_char) {
   2153       break;
   2154     }
   2155     last_valid_range--;
   2156   }
   2157 
   2158   if (last_valid_range < 0) {
   2159     if (!cc->is_negated()) {
   2160       macro_assembler->GoTo(on_failure);
   2161     }
   2162     if (check_offset) {
   2163       macro_assembler->CheckPosition(cp_offset, on_failure);
   2164     }
   2165     return;
   2166   }
   2167 
   2168   if (last_valid_range == 0 &&
   2169       ranges->at(0).IsEverything(max_char)) {
   2170     if (cc->is_negated()) {
   2171       macro_assembler->GoTo(on_failure);
   2172     } else {
   2173       // This is a common case hit by non-anchored expressions.
   2174       if (check_offset) {
   2175         macro_assembler->CheckPosition(cp_offset, on_failure);
   2176       }
   2177     }
   2178     return;
   2179   }
   2180 
   2181   if (!preloaded) {
   2182     macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check_offset);
   2183   }
   2184 
   2185   if (cc->is_standard(zone) &&
   2186       macro_assembler->CheckSpecialCharacterClass(cc->standard_type(),
   2187                                                   on_failure)) {
   2188       return;
   2189   }
   2190 
   2191 
   2192   // A new list with ascending entries.  Each entry is a code unit
   2193   // where there is a boundary between code units that are part of
   2194   // the class and code units that are not.  Normally we insert an
   2195   // entry at zero which goes to the failure label, but if there
   2196   // was already one there we fall through for success on that entry.
   2197   // Subsequent entries have alternating meaning (success/failure).
   2198   ZoneList<int>* range_boundaries =
   2199       new(zone) ZoneList<int>(last_valid_range, zone);
   2200 
   2201   bool zeroth_entry_is_failure = !cc->is_negated();
   2202 
   2203   for (int i = 0; i <= last_valid_range; i++) {
   2204     CharacterRange& range = ranges->at(i);
   2205     if (range.from() == 0) {
   2206       DCHECK_EQ(i, 0);
   2207       zeroth_entry_is_failure = !zeroth_entry_is_failure;
   2208     } else {
   2209       range_boundaries->Add(range.from(), zone);
   2210     }
   2211     range_boundaries->Add(range.to() + 1, zone);
   2212   }
   2213   int end_index = range_boundaries->length() - 1;
   2214   if (range_boundaries->at(end_index) > max_char) {
   2215     end_index--;
   2216   }
   2217 
   2218   Label fall_through;
   2219   GenerateBranches(macro_assembler,
   2220                    range_boundaries,
   2221                    0,  // start_index.
   2222                    end_index,
   2223                    0,  // min_char.
   2224                    max_char,
   2225                    &fall_through,
   2226                    zeroth_entry_is_failure ? &fall_through : on_failure,
   2227                    zeroth_entry_is_failure ? on_failure : &fall_through);
   2228   macro_assembler->Bind(&fall_through);
   2229 }
   2230 
   2231 
   2232 RegExpNode::~RegExpNode() {
   2233 }
   2234 
   2235 
   2236 RegExpNode::LimitResult RegExpNode::LimitVersions(RegExpCompiler* compiler,
   2237                                                   Trace* trace) {
   2238   // If we are generating a greedy loop then don't stop and don't reuse code.
   2239   if (trace->stop_node() != NULL) {
   2240     return CONTINUE;
   2241   }
   2242 
   2243   RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
   2244   if (trace->is_trivial()) {
   2245     if (label_.is_bound() || on_work_list() || !KeepRecursing(compiler)) {
   2246       // If a generic version is already scheduled to be generated or we have
   2247       // recursed too deeply then just generate a jump to that code.
   2248       macro_assembler->GoTo(&label_);
   2249       // This will queue it up for generation of a generic version if it hasn't
   2250       // already been queued.
   2251       compiler->AddWork(this);
   2252       return DONE;
   2253     }
   2254     // Generate generic version of the node and bind the label for later use.
   2255     macro_assembler->Bind(&label_);
   2256     return CONTINUE;
   2257   }
   2258 
   2259   // We are being asked to make a non-generic version.  Keep track of how many
   2260   // non-generic versions we generate so as not to overdo it.
   2261   trace_count_++;
   2262   if (KeepRecursing(compiler) && compiler->optimize() &&
   2263       trace_count_ < kMaxCopiesCodeGenerated) {
   2264     return CONTINUE;
   2265   }
   2266 
   2267   // If we get here code has been generated for this node too many times or
   2268   // recursion is too deep.  Time to switch to a generic version.  The code for
   2269   // generic versions above can handle deep recursion properly.
   2270   bool was_limiting = compiler->limiting_recursion();
   2271   compiler->set_limiting_recursion(true);
   2272   trace->Flush(compiler, this);
   2273   compiler->set_limiting_recursion(was_limiting);
   2274   return DONE;
   2275 }
   2276 
   2277 
   2278 bool RegExpNode::KeepRecursing(RegExpCompiler* compiler) {
   2279   return !compiler->limiting_recursion() &&
   2280          compiler->recursion_depth() <= RegExpCompiler::kMaxRecursion;
   2281 }
   2282 
   2283 
   2284 int ActionNode::EatsAtLeast(int still_to_find,
   2285                             int budget,
   2286                             bool not_at_start) {
   2287   if (budget <= 0) return 0;
   2288   if (action_type_ == POSITIVE_SUBMATCH_SUCCESS) return 0;  // Rewinds input!
   2289   return on_success()->EatsAtLeast(still_to_find,
   2290                                    budget - 1,
   2291                                    not_at_start);
   2292 }
   2293 
   2294 
   2295 void ActionNode::FillInBMInfo(Isolate* isolate, int offset, int budget,
   2296                               BoyerMooreLookahead* bm, bool not_at_start) {
   2297   if (action_type_ == BEGIN_SUBMATCH) {
   2298     bm->SetRest(offset);
   2299   } else if (action_type_ != POSITIVE_SUBMATCH_SUCCESS) {
   2300     on_success()->FillInBMInfo(isolate, offset, budget - 1, bm, not_at_start);
   2301   }
   2302   SaveBMInfo(bm, not_at_start, offset);
   2303 }
   2304 
   2305 
   2306 int AssertionNode::EatsAtLeast(int still_to_find,
   2307                                int budget,
   2308                                bool not_at_start) {
   2309   if (budget <= 0) return 0;
   2310   // If we know we are not at the start and we are asked "how many characters
   2311   // will you match if you succeed?" then we can answer anything since false
   2312   // implies false.  So lets just return the max answer (still_to_find) since
   2313   // that won't prevent us from preloading a lot of characters for the other
   2314   // branches in the node graph.
   2315   if (assertion_type() == AT_START && not_at_start) return still_to_find;
   2316   return on_success()->EatsAtLeast(still_to_find,
   2317                                    budget - 1,
   2318                                    not_at_start);
   2319 }
   2320 
   2321 
   2322 void AssertionNode::FillInBMInfo(Isolate* isolate, int offset, int budget,
   2323                                  BoyerMooreLookahead* bm, bool not_at_start) {
   2324   // Match the behaviour of EatsAtLeast on this node.
   2325   if (assertion_type() == AT_START && not_at_start) return;
   2326   on_success()->FillInBMInfo(isolate, offset, budget - 1, bm, not_at_start);
   2327   SaveBMInfo(bm, not_at_start, offset);
   2328 }
   2329 
   2330 
   2331 int BackReferenceNode::EatsAtLeast(int still_to_find,
   2332                                    int budget,
   2333                                    bool not_at_start) {
   2334   if (read_backward()) return 0;
   2335   if (budget <= 0) return 0;
   2336   return on_success()->EatsAtLeast(still_to_find,
   2337                                    budget - 1,
   2338                                    not_at_start);
   2339 }
   2340 
   2341 
   2342 int TextNode::EatsAtLeast(int still_to_find,
   2343                           int budget,
   2344                           bool not_at_start) {
   2345   if (read_backward()) return 0;
   2346   int answer = Length();
   2347   if (answer >= still_to_find) return answer;
   2348   if (budget <= 0) return answer;
   2349   // We are not at start after this node so we set the last argument to 'true'.
   2350   return answer + on_success()->EatsAtLeast(still_to_find - answer,
   2351                                             budget - 1,
   2352                                             true);
   2353 }
   2354 
   2355 
   2356 int NegativeLookaroundChoiceNode::EatsAtLeast(int still_to_find, int budget,
   2357                                               bool not_at_start) {
   2358   if (budget <= 0) return 0;
   2359   // Alternative 0 is the negative lookahead, alternative 1 is what comes
   2360   // afterwards.
   2361   RegExpNode* node = alternatives_->at(1).node();
   2362   return node->EatsAtLeast(still_to_find, budget - 1, not_at_start);
   2363 }
   2364 
   2365 
   2366 void NegativeLookaroundChoiceNode::GetQuickCheckDetails(
   2367     QuickCheckDetails* details, RegExpCompiler* compiler, int filled_in,
   2368     bool not_at_start) {
   2369   // Alternative 0 is the negative lookahead, alternative 1 is what comes
   2370   // afterwards.
   2371   RegExpNode* node = alternatives_->at(1).node();
   2372   return node->GetQuickCheckDetails(details, compiler, filled_in, not_at_start);
   2373 }
   2374 
   2375 
   2376 int ChoiceNode::EatsAtLeastHelper(int still_to_find,
   2377                                   int budget,
   2378                                   RegExpNode* ignore_this_node,
   2379                                   bool not_at_start) {
   2380   if (budget <= 0) return 0;
   2381   int min = 100;
   2382   int choice_count = alternatives_->length();
   2383   budget = (budget - 1) / choice_count;
   2384   for (int i = 0; i < choice_count; i++) {
   2385     RegExpNode* node = alternatives_->at(i).node();
   2386     if (node == ignore_this_node) continue;
   2387     int node_eats_at_least =
   2388         node->EatsAtLeast(still_to_find, budget, not_at_start);
   2389     if (node_eats_at_least < min) min = node_eats_at_least;
   2390     if (min == 0) return 0;
   2391   }
   2392   return min;
   2393 }
   2394 
   2395 
   2396 int LoopChoiceNode::EatsAtLeast(int still_to_find,
   2397                                 int budget,
   2398                                 bool not_at_start) {
   2399   return EatsAtLeastHelper(still_to_find,
   2400                            budget - 1,
   2401                            loop_node_,
   2402                            not_at_start);
   2403 }
   2404 
   2405 
   2406 int ChoiceNode::EatsAtLeast(int still_to_find,
   2407                             int budget,
   2408                             bool not_at_start) {
   2409   return EatsAtLeastHelper(still_to_find,
   2410                            budget,
   2411                            NULL,
   2412                            not_at_start);
   2413 }
   2414 
   2415 
   2416 // Takes the left-most 1-bit and smears it out, setting all bits to its right.
   2417 static inline uint32_t SmearBitsRight(uint32_t v) {
   2418   v |= v >> 1;
   2419   v |= v >> 2;
   2420   v |= v >> 4;
   2421   v |= v >> 8;
   2422   v |= v >> 16;
   2423   return v;
   2424 }
   2425 
   2426 
   2427 bool QuickCheckDetails::Rationalize(bool asc) {
   2428   bool found_useful_op = false;
   2429   uint32_t char_mask;
   2430   if (asc) {
   2431     char_mask = String::kMaxOneByteCharCode;
   2432   } else {
   2433     char_mask = String::kMaxUtf16CodeUnit;
   2434   }
   2435   mask_ = 0;
   2436   value_ = 0;
   2437   int char_shift = 0;
   2438   for (int i = 0; i < characters_; i++) {
   2439     Position* pos = &positions_[i];
   2440     if ((pos->mask & String::kMaxOneByteCharCode) != 0) {
   2441       found_useful_op = true;
   2442     }
   2443     mask_ |= (pos->mask & char_mask) << char_shift;
   2444     value_ |= (pos->value & char_mask) << char_shift;
   2445     char_shift += asc ? 8 : 16;
   2446   }
   2447   return found_useful_op;
   2448 }
   2449 
   2450 
   2451 bool RegExpNode::EmitQuickCheck(RegExpCompiler* compiler,
   2452                                 Trace* bounds_check_trace,
   2453                                 Trace* trace,
   2454                                 bool preload_has_checked_bounds,
   2455                                 Label* on_possible_success,
   2456                                 QuickCheckDetails* details,
   2457                                 bool fall_through_on_failure) {
   2458   if (details->characters() == 0) return false;
   2459   GetQuickCheckDetails(
   2460       details, compiler, 0, trace->at_start() == Trace::FALSE_VALUE);
   2461   if (details->cannot_match()) return false;
   2462   if (!details->Rationalize(compiler->one_byte())) return false;
   2463   DCHECK(details->characters() == 1 ||
   2464          compiler->macro_assembler()->CanReadUnaligned());
   2465   uint32_t mask = details->mask();
   2466   uint32_t value = details->value();
   2467 
   2468   RegExpMacroAssembler* assembler = compiler->macro_assembler();
   2469 
   2470   if (trace->characters_preloaded() != details->characters()) {
   2471     DCHECK(trace->cp_offset() == bounds_check_trace->cp_offset());
   2472     // We are attempting to preload the minimum number of characters
   2473     // any choice would eat, so if the bounds check fails, then none of the
   2474     // choices can succeed, so we can just immediately backtrack, rather
   2475     // than go to the next choice.
   2476     assembler->LoadCurrentCharacter(trace->cp_offset(),
   2477                                     bounds_check_trace->backtrack(),
   2478                                     !preload_has_checked_bounds,
   2479                                     details->characters());
   2480   }
   2481 
   2482 
   2483   bool need_mask = true;
   2484 
   2485   if (details->characters() == 1) {
   2486     // If number of characters preloaded is 1 then we used a byte or 16 bit
   2487     // load so the value is already masked down.
   2488     uint32_t char_mask;
   2489     if (compiler->one_byte()) {
   2490       char_mask = String::kMaxOneByteCharCode;
   2491     } else {
   2492       char_mask = String::kMaxUtf16CodeUnit;
   2493     }
   2494     if ((mask & char_mask) == char_mask) need_mask = false;
   2495     mask &= char_mask;
   2496   } else {
   2497     // For 2-character preloads in one-byte mode or 1-character preloads in
   2498     // two-byte mode we also use a 16 bit load with zero extend.
   2499     static const uint32_t kTwoByteMask = 0xffff;
   2500     static const uint32_t kFourByteMask = 0xffffffff;
   2501     if (details->characters() == 2 && compiler->one_byte()) {
   2502       if ((mask & kTwoByteMask) == kTwoByteMask) need_mask = false;
   2503     } else if (details->characters() == 1 && !compiler->one_byte()) {
   2504       if ((mask & kTwoByteMask) == kTwoByteMask) need_mask = false;
   2505     } else {
   2506       if (mask == kFourByteMask) need_mask = false;
   2507     }
   2508   }
   2509 
   2510   if (fall_through_on_failure) {
   2511     if (need_mask) {
   2512       assembler->CheckCharacterAfterAnd(value, mask, on_possible_success);
   2513     } else {
   2514       assembler->CheckCharacter(value, on_possible_success);
   2515     }
   2516   } else {
   2517     if (need_mask) {
   2518       assembler->CheckNotCharacterAfterAnd(value, mask, trace->backtrack());
   2519     } else {
   2520       assembler->CheckNotCharacter(value, trace->backtrack());
   2521     }
   2522   }
   2523   return true;
   2524 }
   2525 
   2526 
   2527 // Here is the meat of GetQuickCheckDetails (see also the comment on the
   2528 // super-class in the .h file).
   2529 //
   2530 // We iterate along the text object, building up for each character a
   2531 // mask and value that can be used to test for a quick failure to match.
   2532 // The masks and values for the positions will be combined into a single
   2533 // machine word for the current character width in order to be used in
   2534 // generating a quick check.
   2535 void TextNode::GetQuickCheckDetails(QuickCheckDetails* details,
   2536                                     RegExpCompiler* compiler,
   2537                                     int characters_filled_in,
   2538                                     bool not_at_start) {
   2539   // Do not collect any quick check details if the text node reads backward,
   2540   // since it reads in the opposite direction than we use for quick checks.
   2541   if (read_backward()) return;
   2542   Isolate* isolate = compiler->macro_assembler()->isolate();
   2543   DCHECK(characters_filled_in < details->characters());
   2544   int characters = details->characters();
   2545   int char_mask;
   2546   if (compiler->one_byte()) {
   2547     char_mask = String::kMaxOneByteCharCode;
   2548   } else {
   2549     char_mask = String::kMaxUtf16CodeUnit;
   2550   }
   2551   for (int k = 0; k < elements()->length(); k++) {
   2552     TextElement elm = elements()->at(k);
   2553     if (elm.text_type() == TextElement::ATOM) {
   2554       Vector<const uc16> quarks = elm.atom()->data();
   2555       for (int i = 0; i < characters && i < quarks.length(); i++) {
   2556         QuickCheckDetails::Position* pos =
   2557             details->positions(characters_filled_in);
   2558         uc16 c = quarks[i];
   2559         if (compiler->ignore_case()) {
   2560           unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
   2561           int length = GetCaseIndependentLetters(isolate, c,
   2562                                                  compiler->one_byte(), chars);
   2563           if (length == 0) {
   2564             // This can happen because all case variants are non-Latin1, but we
   2565             // know the input is Latin1.
   2566             details->set_cannot_match();
   2567             pos->determines_perfectly = false;
   2568             return;
   2569           }
   2570           if (length == 1) {
   2571             // This letter has no case equivalents, so it's nice and simple
   2572             // and the mask-compare will determine definitely whether we have
   2573             // a match at this character position.
   2574             pos->mask = char_mask;
   2575             pos->value = c;
   2576             pos->determines_perfectly = true;
   2577           } else {
   2578             uint32_t common_bits = char_mask;
   2579             uint32_t bits = chars[0];
   2580             for (int j = 1; j < length; j++) {
   2581               uint32_t differing_bits = ((chars[j] & common_bits) ^ bits);
   2582               common_bits ^= differing_bits;
   2583               bits &= common_bits;
   2584             }
   2585             // If length is 2 and common bits has only one zero in it then
   2586             // our mask and compare instruction will determine definitely
   2587             // whether we have a match at this character position.  Otherwise
   2588             // it can only be an approximate check.
   2589             uint32_t one_zero = (common_bits | ~char_mask);
   2590             if (length == 2 && ((~one_zero) & ((~one_zero) - 1)) == 0) {
   2591               pos->determines_perfectly = true;
   2592             }
   2593             pos->mask = common_bits;
   2594             pos->value = bits;
   2595           }
   2596         } else {
   2597           // Don't ignore case.  Nice simple case where the mask-compare will
   2598           // determine definitely whether we have a match at this character
   2599           // position.
   2600           if (c > char_mask) {
   2601             details->set_cannot_match();
   2602             pos->determines_perfectly = false;
   2603             return;
   2604           }
   2605           pos->mask = char_mask;
   2606           pos->value = c;
   2607           pos->determines_perfectly = true;
   2608         }
   2609         characters_filled_in++;
   2610         DCHECK(characters_filled_in <= details->characters());
   2611         if (characters_filled_in == details->characters()) {
   2612           return;
   2613         }
   2614       }
   2615     } else {
   2616       QuickCheckDetails::Position* pos =
   2617           details->positions(characters_filled_in);
   2618       RegExpCharacterClass* tree = elm.char_class();
   2619       ZoneList<CharacterRange>* ranges = tree->ranges(zone());
   2620       if (tree->is_negated()) {
   2621         // A quick check uses multi-character mask and compare.  There is no
   2622         // useful way to incorporate a negative char class into this scheme
   2623         // so we just conservatively create a mask and value that will always
   2624         // succeed.
   2625         pos->mask = 0;
   2626         pos->value = 0;
   2627       } else {
   2628         int first_range = 0;
   2629         while (ranges->at(first_range).from() > char_mask) {
   2630           first_range++;
   2631           if (first_range == ranges->length()) {
   2632             details->set_cannot_match();
   2633             pos->determines_perfectly = false;
   2634             return;
   2635           }
   2636         }
   2637         CharacterRange range = ranges->at(first_range);
   2638         uc16 from = range.from();
   2639         uc16 to = range.to();
   2640         if (to > char_mask) {
   2641           to = char_mask;
   2642         }
   2643         uint32_t differing_bits = (from ^ to);
   2644         // A mask and compare is only perfect if the differing bits form a
   2645         // number like 00011111 with one single block of trailing 1s.
   2646         if ((differing_bits & (differing_bits + 1)) == 0 &&
   2647              from + differing_bits == to) {
   2648           pos->determines_perfectly = true;
   2649         }
   2650         uint32_t common_bits = ~SmearBitsRight(differing_bits);
   2651         uint32_t bits = (from & common_bits);
   2652         for (int i = first_range + 1; i < ranges->length(); i++) {
   2653           CharacterRange range = ranges->at(i);
   2654           uc16 from = range.from();
   2655           uc16 to = range.to();
   2656           if (from > char_mask) continue;
   2657           if (to > char_mask) to = char_mask;
   2658           // Here we are combining more ranges into the mask and compare
   2659           // value.  With each new range the mask becomes more sparse and
   2660           // so the chances of a false positive rise.  A character class
   2661           // with multiple ranges is assumed never to be equivalent to a
   2662           // mask and compare operation.
   2663           pos->determines_perfectly = false;
   2664           uint32_t new_common_bits = (from ^ to);
   2665           new_common_bits = ~SmearBitsRight(new_common_bits);
   2666           common_bits &= new_common_bits;
   2667           bits &= new_common_bits;
   2668           uint32_t differing_bits = (from & common_bits) ^ bits;
   2669           common_bits ^= differing_bits;
   2670           bits &= common_bits;
   2671         }
   2672         pos->mask = common_bits;
   2673         pos->value = bits;
   2674       }
   2675       characters_filled_in++;
   2676       DCHECK(characters_filled_in <= details->characters());
   2677       if (characters_filled_in == details->characters()) {
   2678         return;
   2679       }
   2680     }
   2681   }
   2682   DCHECK(characters_filled_in != details->characters());
   2683   if (!details->cannot_match()) {
   2684     on_success()-> GetQuickCheckDetails(details,
   2685                                         compiler,
   2686                                         characters_filled_in,
   2687                                         true);
   2688   }
   2689 }
   2690 
   2691 
   2692 void QuickCheckDetails::Clear() {
   2693   for (int i = 0; i < characters_; i++) {
   2694     positions_[i].mask = 0;
   2695     positions_[i].value = 0;
   2696     positions_[i].determines_perfectly = false;
   2697   }
   2698   characters_ = 0;
   2699 }
   2700 
   2701 
   2702 void QuickCheckDetails::Advance(int by, bool one_byte) {
   2703   if (by >= characters_ || by < 0) {
   2704     DCHECK_IMPLIES(by < 0, characters_ == 0);
   2705     Clear();
   2706     return;
   2707   }
   2708   DCHECK_LE(characters_ - by, 4);
   2709   DCHECK_LE(characters_, 4);
   2710   for (int i = 0; i < characters_ - by; i++) {
   2711     positions_[i] = positions_[by + i];
   2712   }
   2713   for (int i = characters_ - by; i < characters_; i++) {
   2714     positions_[i].mask = 0;
   2715     positions_[i].value = 0;
   2716     positions_[i].determines_perfectly = false;
   2717   }
   2718   characters_ -= by;
   2719   // We could change mask_ and value_ here but we would never advance unless
   2720   // they had already been used in a check and they won't be used again because
   2721   // it would gain us nothing.  So there's no point.
   2722 }
   2723 
   2724 
   2725 void QuickCheckDetails::Merge(QuickCheckDetails* other, int from_index) {
   2726   DCHECK(characters_ == other->characters_);
   2727   if (other->cannot_match_) {
   2728     return;
   2729   }
   2730   if (cannot_match_) {
   2731     *this = *other;
   2732     return;
   2733   }
   2734   for (int i = from_index; i < characters_; i++) {
   2735     QuickCheckDetails::Position* pos = positions(i);
   2736     QuickCheckDetails::Position* other_pos = other->positions(i);
   2737     if (pos->mask != other_pos->mask ||
   2738         pos->value != other_pos->value ||
   2739         !other_pos->determines_perfectly) {
   2740       // Our mask-compare operation will be approximate unless we have the
   2741       // exact same operation on both sides of the alternation.
   2742       pos->determines_perfectly = false;
   2743     }
   2744     pos->mask &= other_pos->mask;
   2745     pos->value &= pos->mask;
   2746     other_pos->value &= pos->mask;
   2747     uc16 differing_bits = (pos->value ^ other_pos->value);
   2748     pos->mask &= ~differing_bits;
   2749     pos->value &= pos->mask;
   2750   }
   2751 }
   2752 
   2753 
   2754 class VisitMarker {
   2755  public:
   2756   explicit VisitMarker(NodeInfo* info) : info_(info) {
   2757     DCHECK(!info->visited);
   2758     info->visited = true;
   2759   }
   2760   ~VisitMarker() {
   2761     info_->visited = false;
   2762   }
   2763  private:
   2764   NodeInfo* info_;
   2765 };
   2766 
   2767 
   2768 RegExpNode* SeqRegExpNode::FilterOneByte(int depth, bool ignore_case) {
   2769   if (info()->replacement_calculated) return replacement();
   2770   if (depth < 0) return this;
   2771   DCHECK(!info()->visited);
   2772   VisitMarker marker(info());
   2773   return FilterSuccessor(depth - 1, ignore_case);
   2774 }
   2775 
   2776 
   2777 RegExpNode* SeqRegExpNode::FilterSuccessor(int depth, bool ignore_case) {
   2778   RegExpNode* next = on_success_->FilterOneByte(depth - 1, ignore_case);
   2779   if (next == NULL) return set_replacement(NULL);
   2780   on_success_ = next;
   2781   return set_replacement(this);
   2782 }
   2783 
   2784 
   2785 // We need to check for the following characters: 0x39c 0x3bc 0x178.
   2786 static inline bool RangeContainsLatin1Equivalents(CharacterRange range) {
   2787   // TODO(dcarney): this could be a lot more efficient.
   2788   return range.Contains(0x39c) ||
   2789       range.Contains(0x3bc) || range.Contains(0x178);
   2790 }
   2791 
   2792 
   2793 static bool RangesContainLatin1Equivalents(ZoneList<CharacterRange>* ranges) {
   2794   for (int i = 0; i < ranges->length(); i++) {
   2795     // TODO(dcarney): this could be a lot more efficient.
   2796     if (RangeContainsLatin1Equivalents(ranges->at(i))) return true;
   2797   }
   2798   return false;
   2799 }
   2800 
   2801 
   2802 RegExpNode* TextNode::FilterOneByte(int depth, bool ignore_case) {
   2803   if (info()->replacement_calculated) return replacement();
   2804   if (depth < 0) return this;
   2805   DCHECK(!info()->visited);
   2806   VisitMarker marker(info());
   2807   int element_count = elements()->length();
   2808   for (int i = 0; i < element_count; i++) {
   2809     TextElement elm = elements()->at(i);
   2810     if (elm.text_type() == TextElement::ATOM) {
   2811       Vector<const uc16> quarks = elm.atom()->data();
   2812       for (int j = 0; j < quarks.length(); j++) {
   2813         uint16_t c = quarks[j];
   2814         if (c <= String::kMaxOneByteCharCode) continue;
   2815         if (!ignore_case) return set_replacement(NULL);
   2816         // Here, we need to check for characters whose upper and lower cases
   2817         // are outside the Latin-1 range.
   2818         uint16_t converted = unibrow::Latin1::ConvertNonLatin1ToLatin1(c);
   2819         // Character is outside Latin-1 completely
   2820         if (converted == 0) return set_replacement(NULL);
   2821         // Convert quark to Latin-1 in place.
   2822         uint16_t* copy = const_cast<uint16_t*>(quarks.start());
   2823         copy[j] = converted;
   2824       }
   2825     } else {
   2826       DCHECK(elm.text_type() == TextElement::CHAR_CLASS);
   2827       RegExpCharacterClass* cc = elm.char_class();
   2828       ZoneList<CharacterRange>* ranges = cc->ranges(zone());
   2829       CharacterRange::Canonicalize(ranges);
   2830       // Now they are in order so we only need to look at the first.
   2831       int range_count = ranges->length();
   2832       if (cc->is_negated()) {
   2833         if (range_count != 0 &&
   2834             ranges->at(0).from() == 0 &&
   2835             ranges->at(0).to() >= String::kMaxOneByteCharCode) {
   2836           // This will be handled in a later filter.
   2837           if (ignore_case && RangesContainLatin1Equivalents(ranges)) continue;
   2838           return set_replacement(NULL);
   2839         }
   2840       } else {
   2841         if (range_count == 0 ||
   2842             ranges->at(0).from() > String::kMaxOneByteCharCode) {
   2843           // This will be handled in a later filter.
   2844           if (ignore_case && RangesContainLatin1Equivalents(ranges)) continue;
   2845           return set_replacement(NULL);
   2846         }
   2847       }
   2848     }
   2849   }
   2850   return FilterSuccessor(depth - 1, ignore_case);
   2851 }
   2852 
   2853 
   2854 RegExpNode* LoopChoiceNode::FilterOneByte(int depth, bool ignore_case) {
   2855   if (info()->replacement_calculated) return replacement();
   2856   if (depth < 0) return this;
   2857   if (info()->visited) return this;
   2858   {
   2859     VisitMarker marker(info());
   2860 
   2861     RegExpNode* continue_replacement =
   2862         continue_node_->FilterOneByte(depth - 1, ignore_case);
   2863     // If we can't continue after the loop then there is no sense in doing the
   2864     // loop.
   2865     if (continue_replacement == NULL) return set_replacement(NULL);
   2866   }
   2867 
   2868   return ChoiceNode::FilterOneByte(depth - 1, ignore_case);
   2869 }
   2870 
   2871 
   2872 RegExpNode* ChoiceNode::FilterOneByte(int depth, bool ignore_case) {
   2873   if (info()->replacement_calculated) return replacement();
   2874   if (depth < 0) return this;
   2875   if (info()->visited) return this;
   2876   VisitMarker marker(info());
   2877   int choice_count = alternatives_->length();
   2878 
   2879   for (int i = 0; i < choice_count; i++) {
   2880     GuardedAlternative alternative = alternatives_->at(i);
   2881     if (alternative.guards() != NULL && alternative.guards()->length() != 0) {
   2882       set_replacement(this);
   2883       return this;
   2884     }
   2885   }
   2886 
   2887   int surviving = 0;
   2888   RegExpNode* survivor = NULL;
   2889   for (int i = 0; i < choice_count; i++) {
   2890     GuardedAlternative alternative = alternatives_->at(i);
   2891     RegExpNode* replacement =
   2892         alternative.node()->FilterOneByte(depth - 1, ignore_case);
   2893     DCHECK(replacement != this);  // No missing EMPTY_MATCH_CHECK.
   2894     if (replacement != NULL) {
   2895       alternatives_->at(i).set_node(replacement);
   2896       surviving++;
   2897       survivor = replacement;
   2898     }
   2899   }
   2900   if (surviving < 2) return set_replacement(survivor);
   2901 
   2902   set_replacement(this);
   2903   if (surviving == choice_count) {
   2904     return this;
   2905   }
   2906   // Only some of the nodes survived the filtering.  We need to rebuild the
   2907   // alternatives list.
   2908   ZoneList<GuardedAlternative>* new_alternatives =
   2909       new(zone()) ZoneList<GuardedAlternative>(surviving, zone());
   2910   for (int i = 0; i < choice_count; i++) {
   2911     RegExpNode* replacement =
   2912         alternatives_->at(i).node()->FilterOneByte(depth - 1, ignore_case);
   2913     if (replacement != NULL) {
   2914       alternatives_->at(i).set_node(replacement);
   2915       new_alternatives->Add(alternatives_->at(i), zone());
   2916     }
   2917   }
   2918   alternatives_ = new_alternatives;
   2919   return this;
   2920 }
   2921 
   2922 
   2923 RegExpNode* NegativeLookaroundChoiceNode::FilterOneByte(int depth,
   2924                                                         bool ignore_case) {
   2925   if (info()->replacement_calculated) return replacement();
   2926   if (depth < 0) return this;
   2927   if (info()->visited) return this;
   2928   VisitMarker marker(info());
   2929   // Alternative 0 is the negative lookahead, alternative 1 is what comes
   2930   // afterwards.
   2931   RegExpNode* node = alternatives_->at(1).node();
   2932   RegExpNode* replacement = node->FilterOneByte(depth - 1, ignore_case);
   2933   if (replacement == NULL) return set_replacement(NULL);
   2934   alternatives_->at(1).set_node(replacement);
   2935 
   2936   RegExpNode* neg_node = alternatives_->at(0).node();
   2937   RegExpNode* neg_replacement = neg_node->FilterOneByte(depth - 1, ignore_case);
   2938   // If the negative lookahead is always going to fail then
   2939   // we don't need to check it.
   2940   if (neg_replacement == NULL) return set_replacement(replacement);
   2941   alternatives_->at(0).set_node(neg_replacement);
   2942   return set_replacement(this);
   2943 }
   2944 
   2945 
   2946 void LoopChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details,
   2947                                           RegExpCompiler* compiler,
   2948                                           int characters_filled_in,
   2949                                           bool not_at_start) {
   2950   if (body_can_be_zero_length_ || info()->visited) return;
   2951   VisitMarker marker(info());
   2952   return ChoiceNode::GetQuickCheckDetails(details,
   2953                                           compiler,
   2954                                           characters_filled_in,
   2955                                           not_at_start);
   2956 }
   2957 
   2958 
   2959 void LoopChoiceNode::FillInBMInfo(Isolate* isolate, int offset, int budget,
   2960                                   BoyerMooreLookahead* bm, bool not_at_start) {
   2961   if (body_can_be_zero_length_ || budget <= 0) {
   2962     bm->SetRest(offset);
   2963     SaveBMInfo(bm, not_at_start, offset);
   2964     return;
   2965   }
   2966   ChoiceNode::FillInBMInfo(isolate, offset, budget - 1, bm, not_at_start);
   2967   SaveBMInfo(bm, not_at_start, offset);
   2968 }
   2969 
   2970 
   2971 void ChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details,
   2972                                       RegExpCompiler* compiler,
   2973                                       int characters_filled_in,
   2974                                       bool not_at_start) {
   2975   not_at_start = (not_at_start || not_at_start_);
   2976   int choice_count = alternatives_->length();
   2977   DCHECK(choice_count > 0);
   2978   alternatives_->at(0).node()->GetQuickCheckDetails(details,
   2979                                                     compiler,
   2980                                                     characters_filled_in,
   2981                                                     not_at_start);
   2982   for (int i = 1; i < choice_count; i++) {
   2983     QuickCheckDetails new_details(details->characters());
   2984     RegExpNode* node = alternatives_->at(i).node();
   2985     node->GetQuickCheckDetails(&new_details, compiler,
   2986                                characters_filled_in,
   2987                                not_at_start);
   2988     // Here we merge the quick match details of the two branches.
   2989     details->Merge(&new_details, characters_filled_in);
   2990   }
   2991 }
   2992 
   2993 
   2994 // Check for [0-9A-Z_a-z].
   2995 static void EmitWordCheck(RegExpMacroAssembler* assembler,
   2996                           Label* word,
   2997                           Label* non_word,
   2998                           bool fall_through_on_word) {
   2999   if (assembler->CheckSpecialCharacterClass(
   3000           fall_through_on_word ? 'w' : 'W',
   3001           fall_through_on_word ? non_word : word)) {
   3002     // Optimized implementation available.
   3003     return;
   3004   }
   3005   assembler->CheckCharacterGT('z', non_word);
   3006   assembler->CheckCharacterLT('0', non_word);
   3007   assembler->CheckCharacterGT('a' - 1, word);
   3008   assembler->CheckCharacterLT('9' + 1, word);
   3009   assembler->CheckCharacterLT('A', non_word);
   3010   assembler->CheckCharacterLT('Z' + 1, word);
   3011   if (fall_through_on_word) {
   3012     assembler->CheckNotCharacter('_', non_word);
   3013   } else {
   3014     assembler->CheckCharacter('_', word);
   3015   }
   3016 }
   3017 
   3018 
   3019 // Emit the code to check for a ^ in multiline mode (1-character lookbehind
   3020 // that matches newline or the start of input).
   3021 static void EmitHat(RegExpCompiler* compiler,
   3022                     RegExpNode* on_success,
   3023                     Trace* trace) {
   3024   RegExpMacroAssembler* assembler = compiler->macro_assembler();
   3025   // We will be loading the previous character into the current character
   3026   // register.
   3027   Trace new_trace(*trace);
   3028   new_trace.InvalidateCurrentCharacter();
   3029 
   3030   Label ok;
   3031   if (new_trace.cp_offset() == 0) {
   3032     // The start of input counts as a newline in this context, so skip to
   3033     // ok if we are at the start.
   3034     assembler->CheckAtStart(&ok);
   3035   }
   3036   // We already checked that we are not at the start of input so it must be
   3037   // OK to load the previous character.
   3038   assembler->LoadCurrentCharacter(new_trace.cp_offset() -1,
   3039                                   new_trace.backtrack(),
   3040                                   false);
   3041   if (!assembler->CheckSpecialCharacterClass('n',
   3042                                              new_trace.backtrack())) {
   3043     // Newline means \n, \r, 0x2028 or 0x2029.
   3044     if (!compiler->one_byte()) {
   3045       assembler->CheckCharacterAfterAnd(0x2028, 0xfffe, &ok);
   3046     }
   3047     assembler->CheckCharacter('\n', &ok);
   3048     assembler->CheckNotCharacter('\r', new_trace.backtrack());
   3049   }
   3050   assembler->Bind(&ok);
   3051   on_success->Emit(compiler, &new_trace);
   3052 }
   3053 
   3054 
   3055 // Emit the code to handle \b and \B (word-boundary or non-word-boundary).
   3056 void AssertionNode::EmitBoundaryCheck(RegExpCompiler* compiler, Trace* trace) {
   3057   RegExpMacroAssembler* assembler = compiler->macro_assembler();
   3058   Isolate* isolate = assembler->isolate();
   3059   Trace::TriBool next_is_word_character = Trace::UNKNOWN;
   3060   bool not_at_start = (trace->at_start() == Trace::FALSE_VALUE);
   3061   BoyerMooreLookahead* lookahead = bm_info(not_at_start);
   3062   if (lookahead == NULL) {
   3063     int eats_at_least =
   3064         Min(kMaxLookaheadForBoyerMoore, EatsAtLeast(kMaxLookaheadForBoyerMoore,
   3065                                                     kRecursionBudget,
   3066                                                     not_at_start));
   3067     if (eats_at_least >= 1) {
   3068       BoyerMooreLookahead* bm =
   3069           new(zone()) BoyerMooreLookahead(eats_at_least, compiler, zone());
   3070       FillInBMInfo(isolate, 0, kRecursionBudget, bm, not_at_start);
   3071       if (bm->at(0)->is_non_word())
   3072         next_is_word_character = Trace::FALSE_VALUE;
   3073       if (bm->at(0)->is_word()) next_is_word_character = Trace::TRUE_VALUE;
   3074     }
   3075   } else {
   3076     if (lookahead->at(0)->is_non_word())
   3077       next_is_word_character = Trace::FALSE_VALUE;
   3078     if (lookahead->at(0)->is_word())
   3079       next_is_word_character = Trace::TRUE_VALUE;
   3080   }
   3081   bool at_boundary = (assertion_type_ == AssertionNode::AT_BOUNDARY);
   3082   if (next_is_word_character == Trace::UNKNOWN) {
   3083     Label before_non_word;
   3084     Label before_word;
   3085     if (trace->characters_preloaded() != 1) {
   3086       assembler->LoadCurrentCharacter(trace->cp_offset(), &before_non_word);
   3087     }
   3088     // Fall through on non-word.
   3089     EmitWordCheck(assembler, &before_word, &before_non_word, false);
   3090     // Next character is not a word character.
   3091     assembler->Bind(&before_non_word);
   3092     Label ok;
   3093     BacktrackIfPrevious(compiler, trace, at_boundary ? kIsNonWord : kIsWord);
   3094     assembler->GoTo(&ok);
   3095 
   3096     assembler->Bind(&before_word);
   3097     BacktrackIfPrevious(compiler, trace, at_boundary ? kIsWord : kIsNonWord);
   3098     assembler->Bind(&ok);
   3099   } else if (next_is_word_character == Trace::TRUE_VALUE) {
   3100     BacktrackIfPrevious(compiler, trace, at_boundary ? kIsWord : kIsNonWord);
   3101   } else {
   3102     DCHECK(next_is_word_character == Trace::FALSE_VALUE);
   3103     BacktrackIfPrevious(compiler, trace, at_boundary ? kIsNonWord : kIsWord);
   3104   }
   3105 }
   3106 
   3107 
   3108 void AssertionNode::BacktrackIfPrevious(
   3109     RegExpCompiler* compiler,
   3110     Trace* trace,
   3111     AssertionNode::IfPrevious backtrack_if_previous) {
   3112   RegExpMacroAssembler* assembler = compiler->macro_assembler();
   3113   Trace new_trace(*trace);
   3114   new_trace.InvalidateCurrentCharacter();
   3115 
   3116   Label fall_through, dummy;
   3117 
   3118   Label* non_word = backtrack_if_previous == kIsNonWord ?
   3119                     new_trace.backtrack() :
   3120                     &fall_through;
   3121   Label* word = backtrack_if_previous == kIsNonWord ?
   3122                 &fall_through :
   3123                 new_trace.backtrack();
   3124 
   3125   if (new_trace.cp_offset() == 0) {
   3126     // The start of input counts as a non-word character, so the question is
   3127     // decided if we are at the start.
   3128     assembler->CheckAtStart(non_word);
   3129   }
   3130   // We already checked that we are not at the start of input so it must be
   3131   // OK to load the previous character.
   3132   assembler->LoadCurrentCharacter(new_trace.cp_offset() - 1, &dummy, false);
   3133   EmitWordCheck(assembler, word, non_word, backtrack_if_previous == kIsNonWord);
   3134 
   3135   assembler->Bind(&fall_through);
   3136   on_success()->Emit(compiler, &new_trace);
   3137 }
   3138 
   3139 
   3140 void AssertionNode::GetQuickCheckDetails(QuickCheckDetails* details,
   3141                                          RegExpCompiler* compiler,
   3142                                          int filled_in,
   3143                                          bool not_at_start) {
   3144   if (assertion_type_ == AT_START && not_at_start) {
   3145     details->set_cannot_match();
   3146     return;
   3147   }
   3148   return on_success()->GetQuickCheckDetails(details,
   3149                                             compiler,
   3150                                             filled_in,
   3151                                             not_at_start);
   3152 }
   3153 
   3154 
   3155 void AssertionNode::Emit(RegExpCompiler* compiler, Trace* trace) {
   3156   RegExpMacroAssembler* assembler = compiler->macro_assembler();
   3157   switch (assertion_type_) {
   3158     case AT_END: {
   3159       Label ok;
   3160       assembler->CheckPosition(trace->cp_offset(), &ok);
   3161       assembler->GoTo(trace->backtrack());
   3162       assembler->Bind(&ok);
   3163       break;
   3164     }
   3165     case AT_START: {
   3166       if (trace->at_start() == Trace::FALSE_VALUE) {
   3167         assembler->GoTo(trace->backtrack());
   3168         return;
   3169       }
   3170       if (trace->at_start() == Trace::UNKNOWN) {
   3171         assembler->CheckNotAtStart(trace->cp_offset(), trace->backtrack());
   3172         Trace at_start_trace = *trace;
   3173         at_start_trace.set_at_start(Trace::TRUE_VALUE);
   3174         on_success()->Emit(compiler, &at_start_trace);
   3175         return;
   3176       }
   3177     }
   3178     break;
   3179     case AFTER_NEWLINE:
   3180       EmitHat(compiler, on_success(), trace);
   3181       return;
   3182     case AT_BOUNDARY:
   3183     case AT_NON_BOUNDARY: {
   3184       EmitBoundaryCheck(compiler, trace);
   3185       return;
   3186     }
   3187   }
   3188   on_success()->Emit(compiler, trace);
   3189 }
   3190 
   3191 
   3192 static bool DeterminedAlready(QuickCheckDetails* quick_check, int offset) {
   3193   if (quick_check == NULL) return false;
   3194   if (offset >= quick_check->characters()) return false;
   3195   return quick_check->positions(offset)->determines_perfectly;
   3196 }
   3197 
   3198 
   3199 static void UpdateBoundsCheck(int index, int* checked_up_to) {
   3200   if (index > *checked_up_to) {
   3201     *checked_up_to = index;
   3202   }
   3203 }
   3204 
   3205 
   3206 // We call this repeatedly to generate code for each pass over the text node.
   3207 // The passes are in increasing order of difficulty because we hope one
   3208 // of the first passes will fail in which case we are saved the work of the
   3209 // later passes.  for example for the case independent regexp /%[asdfghjkl]a/
   3210 // we will check the '%' in the first pass, the case independent 'a' in the
   3211 // second pass and the character class in the last pass.
   3212 //
   3213 // The passes are done from right to left, so for example to test for /bar/
   3214 // we will first test for an 'r' with offset 2, then an 'a' with offset 1
   3215 // and then a 'b' with offset 0.  This means we can avoid the end-of-input
   3216 // bounds check most of the time.  In the example we only need to check for
   3217 // end-of-input when loading the putative 'r'.
   3218 //
   3219 // A slight complication involves the fact that the first character may already
   3220 // be fetched into a register by the previous node.  In this case we want to
   3221 // do the test for that character first.  We do this in separate passes.  The
   3222 // 'preloaded' argument indicates that we are doing such a 'pass'.  If such a
   3223 // pass has been performed then subsequent passes will have true in
   3224 // first_element_checked to indicate that that character does not need to be
   3225 // checked again.
   3226 //
   3227 // In addition to all this we are passed a Trace, which can
   3228 // contain an AlternativeGeneration object.  In this AlternativeGeneration
   3229 // object we can see details of any quick check that was already passed in
   3230 // order to get to the code we are now generating.  The quick check can involve
   3231 // loading characters, which means we do not need to recheck the bounds
   3232 // up to the limit the quick check already checked.  In addition the quick
   3233 // check can have involved a mask and compare operation which may simplify
   3234 // or obviate the need for further checks at some character positions.
   3235 void TextNode::TextEmitPass(RegExpCompiler* compiler,
   3236                             TextEmitPassType pass,
   3237                             bool preloaded,
   3238                             Trace* trace,
   3239                             bool first_element_checked,
   3240                             int* checked_up_to) {
   3241   RegExpMacroAssembler* assembler = compiler->macro_assembler();
   3242   Isolate* isolate = assembler->isolate();
   3243   bool one_byte = compiler->one_byte();
   3244   Label* backtrack = trace->backtrack();
   3245   QuickCheckDetails* quick_check = trace->quick_check_performed();
   3246   int element_count = elements()->length();
   3247   int backward_offset = read_backward() ? -Length() : 0;
   3248   for (int i = preloaded ? 0 : element_count - 1; i >= 0; i--) {
   3249     TextElement elm = elements()->at(i);
   3250     int cp_offset = trace->cp_offset() + elm.cp_offset() + backward_offset;
   3251     if (elm.text_type() == TextElement::ATOM) {
   3252       Vector<const uc16> quarks = elm.atom()->data();
   3253       for (int j = preloaded ? 0 : quarks.length() - 1; j >= 0; j--) {
   3254         if (first_element_checked && i == 0 && j == 0) continue;
   3255         if (DeterminedAlready(quick_check, elm.cp_offset() + j)) continue;
   3256         EmitCharacterFunction* emit_function = NULL;
   3257         switch (pass) {
   3258           case NON_LATIN1_MATCH:
   3259             DCHECK(one_byte);
   3260             if (quarks[j] > String::kMaxOneByteCharCode) {
   3261               assembler->GoTo(backtrack);
   3262               return;
   3263             }
   3264             break;
   3265           case NON_LETTER_CHARACTER_MATCH:
   3266             emit_function = &EmitAtomNonLetter;
   3267             break;
   3268           case SIMPLE_CHARACTER_MATCH:
   3269             emit_function = &EmitSimpleCharacter;
   3270             break;
   3271           case CASE_CHARACTER_MATCH:
   3272             emit_function = &EmitAtomLetter;
   3273             break;
   3274           default:
   3275             break;
   3276         }
   3277         if (emit_function != NULL) {
   3278           bool bounds_check = *checked_up_to < cp_offset + j || read_backward();
   3279           bool bound_checked =
   3280               emit_function(isolate, compiler, quarks[j], backtrack,
   3281                             cp_offset + j, bounds_check, preloaded);
   3282           if (bound_checked) UpdateBoundsCheck(cp_offset + j, checked_up_to);
   3283         }
   3284       }
   3285     } else {
   3286       DCHECK_EQ(TextElement::CHAR_CLASS, elm.text_type());
   3287       if (pass == CHARACTER_CLASS_MATCH) {
   3288         if (first_element_checked && i == 0) continue;
   3289         if (DeterminedAlready(quick_check, elm.cp_offset())) continue;
   3290         RegExpCharacterClass* cc = elm.char_class();
   3291         bool bounds_check = *checked_up_to < cp_offset || read_backward();
   3292         EmitCharClass(assembler, cc, one_byte, backtrack, cp_offset,
   3293                       bounds_check, preloaded, zone());
   3294         UpdateBoundsCheck(cp_offset, checked_up_to);
   3295       }
   3296     }
   3297   }
   3298 }
   3299 
   3300 
   3301 int TextNode::Length() {
   3302   TextElement elm = elements()->last();
   3303   DCHECK(elm.cp_offset() >= 0);
   3304   return elm.cp_offset() + elm.length();
   3305 }
   3306 
   3307 
   3308 bool TextNode::SkipPass(int int_pass, bool ignore_case) {
   3309   TextEmitPassType pass = static_cast<TextEmitPassType>(int_pass);
   3310   if (ignore_case) {
   3311     return pass == SIMPLE_CHARACTER_MATCH;
   3312   } else {
   3313     return pass == NON_LETTER_CHARACTER_MATCH || pass == CASE_CHARACTER_MATCH;
   3314   }
   3315 }
   3316 
   3317 
   3318 TextNode* TextNode::CreateForCharacterRanges(Zone* zone,
   3319                                              ZoneList<CharacterRange>* ranges,
   3320                                              bool read_backward,
   3321                                              RegExpNode* on_success) {
   3322   DCHECK_NOT_NULL(ranges);
   3323   ZoneList<TextElement>* elms = new (zone) ZoneList<TextElement>(1, zone);
   3324   elms->Add(
   3325       TextElement::CharClass(new (zone) RegExpCharacterClass(ranges, false)),
   3326       zone);
   3327   return new (zone) TextNode(elms, read_backward, on_success);
   3328 }
   3329 
   3330 
   3331 TextNode* TextNode::CreateForSurrogatePair(Zone* zone, CharacterRange lead,
   3332                                            CharacterRange trail,
   3333                                            bool read_backward,
   3334                                            RegExpNode* on_success) {
   3335   ZoneList<CharacterRange>* lead_ranges = CharacterRange::List(zone, lead);
   3336   ZoneList<CharacterRange>* trail_ranges = CharacterRange::List(zone, trail);
   3337   ZoneList<TextElement>* elms = new (zone) ZoneList<TextElement>(2, zone);
   3338   elms->Add(TextElement::CharClass(
   3339                 new (zone) RegExpCharacterClass(lead_ranges, false)),
   3340             zone);
   3341   elms->Add(TextElement::CharClass(
   3342                 new (zone) RegExpCharacterClass(trail_ranges, false)),
   3343             zone);
   3344   return new (zone) TextNode(elms, read_backward, on_success);
   3345 }
   3346 
   3347 
   3348 // This generates the code to match a text node.  A text node can contain
   3349 // straight character sequences (possibly to be matched in a case-independent
   3350 // way) and character classes.  For efficiency we do not do this in a single
   3351 // pass from left to right.  Instead we pass over the text node several times,
   3352 // emitting code for some character positions every time.  See the comment on
   3353 // TextEmitPass for details.
   3354 void TextNode::Emit(RegExpCompiler* compiler, Trace* trace) {
   3355   LimitResult limit_result = LimitVersions(compiler, trace);
   3356   if (limit_result == DONE) return;
   3357   DCHECK(limit_result == CONTINUE);
   3358 
   3359   if (trace->cp_offset() + Length() > RegExpMacroAssembler::kMaxCPOffset) {
   3360     compiler->SetRegExpTooBig();
   3361     return;
   3362   }
   3363 
   3364   if (compiler->one_byte()) {
   3365     int dummy = 0;
   3366     TextEmitPass(compiler, NON_LATIN1_MATCH, false, trace, false, &dummy);
   3367   }
   3368 
   3369   bool first_elt_done = false;
   3370   int bound_checked_to = trace->cp_offset() - 1;
   3371   bound_checked_to += trace->bound_checked_up_to();
   3372 
   3373   // If a character is preloaded into the current character register then
   3374   // check that now.
   3375   if (trace->characters_preloaded() == 1) {
   3376     for (int pass = kFirstRealPass; pass <= kLastPass; pass++) {
   3377       if (!SkipPass(pass, compiler->ignore_case())) {
   3378         TextEmitPass(compiler,
   3379                      static_cast<TextEmitPassType>(pass),
   3380                      true,
   3381                      trace,
   3382                      false,
   3383                      &bound_checked_to);
   3384       }
   3385     }
   3386     first_elt_done = true;
   3387   }
   3388 
   3389   for (int pass = kFirstRealPass; pass <= kLastPass; pass++) {
   3390     if (!SkipPass(pass, compiler->ignore_case())) {
   3391       TextEmitPass(compiler,
   3392                    static_cast<TextEmitPassType>(pass),
   3393                    false,
   3394                    trace,
   3395                    first_elt_done,
   3396                    &bound_checked_to);
   3397     }
   3398   }
   3399 
   3400   Trace successor_trace(*trace);
   3401   // If we advance backward, we may end up at the start.
   3402   successor_trace.AdvanceCurrentPositionInTrace(
   3403       read_backward() ? -Length() : Length(), compiler);
   3404   successor_trace.set_at_start(read_backward() ? Trace::UNKNOWN
   3405                                                : Trace::FALSE_VALUE);
   3406   RecursionCheck rc(compiler);
   3407   on_success()->Emit(compiler, &successor_trace);
   3408 }
   3409 
   3410 
   3411 void Trace::InvalidateCurrentCharacter() {
   3412   characters_preloaded_ = 0;
   3413 }
   3414 
   3415 
   3416 void Trace::AdvanceCurrentPositionInTrace(int by, RegExpCompiler* compiler) {
   3417   // We don't have an instruction for shifting the current character register
   3418   // down or for using a shifted value for anything so lets just forget that
   3419   // we preloaded any characters into it.
   3420   characters_preloaded_ = 0;
   3421   // Adjust the offsets of the quick check performed information.  This
   3422   // information is used to find out what we already determined about the
   3423   // characters by means of mask and compare.
   3424   quick_check_performed_.Advance(by, compiler->one_byte());
   3425   cp_offset_ += by;
   3426   if (cp_offset_ > RegExpMacroAssembler::kMaxCPOffset) {
   3427     compiler->SetRegExpTooBig();
   3428     cp_offset_ = 0;
   3429   }
   3430   bound_checked_up_to_ = Max(0, bound_checked_up_to_ - by);
   3431 }
   3432 
   3433 
   3434 void TextNode::MakeCaseIndependent(Isolate* isolate, bool is_one_byte) {
   3435   int element_count = elements()->length();
   3436   for (int i = 0; i < element_count; i++) {
   3437     TextElement elm = elements()->at(i);
   3438     if (elm.text_type() == TextElement::CHAR_CLASS) {
   3439       RegExpCharacterClass* cc = elm.char_class();
   3440       // None of the standard character classes is different in the case
   3441       // independent case and it slows us down if we don't know that.
   3442       if (cc->is_standard(zone())) continue;
   3443       ZoneList<CharacterRange>* ranges = cc->ranges(zone());
   3444       CharacterRange::AddCaseEquivalents(isolate, zone(), ranges, is_one_byte);
   3445     }
   3446   }
   3447 }
   3448 
   3449 
   3450 int TextNode::GreedyLoopTextLength() { return Length(); }
   3451 
   3452 
   3453 RegExpNode* TextNode::GetSuccessorOfOmnivorousTextNode(
   3454     RegExpCompiler* compiler) {
   3455   if (read_backward()) return NULL;
   3456   if (elements()->length() != 1) return NULL;
   3457   TextElement elm = elements()->at(0);
   3458   if (elm.text_type() != TextElement::CHAR_CLASS) return NULL;
   3459   RegExpCharacterClass* node = elm.char_class();
   3460   ZoneList<CharacterRange>* ranges = node->ranges(zone());
   3461   CharacterRange::Canonicalize(ranges);
   3462   if (node->is_negated()) {
   3463     return ranges->length() == 0 ? on_success() : NULL;
   3464   }
   3465   if (ranges->length() != 1) return NULL;
   3466   uint32_t max_char;
   3467   if (compiler->one_byte()) {
   3468     max_char = String::kMaxOneByteCharCode;
   3469   } else {
   3470     max_char = String::kMaxUtf16CodeUnit;
   3471   }
   3472   return ranges->at(0).IsEverything(max_char) ? on_success() : NULL;
   3473 }
   3474 
   3475 
   3476 // Finds the fixed match length of a sequence of nodes that goes from
   3477 // this alternative and back to this choice node.  If there are variable
   3478 // length nodes or other complications in the way then return a sentinel
   3479 // value indicating that a greedy loop cannot be constructed.
   3480 int ChoiceNode::GreedyLoopTextLengthForAlternative(
   3481     GuardedAlternative* alternative) {
   3482   int length = 0;
   3483   RegExpNode* node = alternative->node();
   3484   // Later we will generate code for all these text nodes using recursion
   3485   // so we have to limit the max number.
   3486   int recursion_depth = 0;
   3487   while (node != this) {
   3488     if (recursion_depth++ > RegExpCompiler::kMaxRecursion) {
   3489       return kNodeIsTooComplexForGreedyLoops;
   3490     }
   3491     int node_length = node->GreedyLoopTextLength();
   3492     if (node_length == kNodeIsTooComplexForGreedyLoops) {
   3493       return kNodeIsTooComplexForGreedyLoops;
   3494     }
   3495     length += node_length;
   3496     SeqRegExpNode* seq_node = static_cast<SeqRegExpNode*>(node);
   3497     node = seq_node->on_success();
   3498   }
   3499   return read_backward() ? -length : length;
   3500 }
   3501 
   3502 
   3503 void LoopChoiceNode::AddLoopAlternative(GuardedAlternative alt) {
   3504   DCHECK_NULL(loop_node_);
   3505   AddAlternative(alt);
   3506   loop_node_ = alt.node();
   3507 }
   3508 
   3509 
   3510 void LoopChoiceNode::AddContinueAlternative(GuardedAlternative alt) {
   3511   DCHECK_NULL(continue_node_);
   3512   AddAlternative(alt);
   3513   continue_node_ = alt.node();
   3514 }
   3515 
   3516 
   3517 void LoopChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
   3518   RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
   3519   if (trace->stop_node() == this) {
   3520     // Back edge of greedy optimized loop node graph.
   3521     int text_length =
   3522         GreedyLoopTextLengthForAlternative(&(alternatives_->at(0)));
   3523     DCHECK(text_length != kNodeIsTooComplexForGreedyLoops);
   3524     // Update the counter-based backtracking info on the stack.  This is an
   3525     // optimization for greedy loops (see below).
   3526     DCHECK(trace->cp_offset() == text_length);
   3527     macro_assembler->AdvanceCurrentPosition(text_length);
   3528     macro_assembler->GoTo(trace->loop_label());
   3529     return;
   3530   }
   3531   DCHECK_NULL(trace->stop_node());
   3532   if (!trace->is_trivial()) {
   3533     trace->Flush(compiler, this);
   3534     return;
   3535   }
   3536   ChoiceNode::Emit(compiler, trace);
   3537 }
   3538 
   3539 
   3540 int ChoiceNode::CalculatePreloadCharacters(RegExpCompiler* compiler,
   3541                                            int eats_at_least) {
   3542   int preload_characters = Min(4, eats_at_least);
   3543   if (compiler->macro_assembler()->CanReadUnaligned()) {
   3544     bool one_byte = compiler->one_byte();
   3545     if (one_byte) {
   3546       if (preload_characters > 4) preload_characters = 4;
   3547       // We can't preload 3 characters because there is no machine instruction
   3548       // to do that.  We can't just load 4 because we could be reading
   3549       // beyond the end of the string, which could cause a memory fault.
   3550       if (preload_characters == 3) preload_characters = 2;
   3551     } else {
   3552       if (preload_characters > 2) preload_characters = 2;
   3553     }
   3554   } else {
   3555     if (preload_characters > 1) preload_characters = 1;
   3556   }
   3557   return preload_characters;
   3558 }
   3559 
   3560 
   3561 // This class is used when generating the alternatives in a choice node.  It
   3562 // records the way the alternative is being code generated.
   3563 class AlternativeGeneration: public Malloced {
   3564  public:
   3565   AlternativeGeneration()
   3566       : possible_success(),
   3567         expects_preload(false),
   3568         after(),
   3569         quick_check_details() { }
   3570   Label possible_success;
   3571   bool expects_preload;
   3572   Label after;
   3573   QuickCheckDetails quick_check_details;
   3574 };
   3575 
   3576 
   3577 // Creates a list of AlternativeGenerations.  If the list has a reasonable
   3578 // size then it is on the stack, otherwise the excess is on the heap.
   3579 class AlternativeGenerationList {
   3580  public:
   3581   AlternativeGenerationList(int count, Zone* zone)
   3582       : alt_gens_(count, zone) {
   3583     for (int i = 0; i < count && i < kAFew; i++) {
   3584       alt_gens_.Add(a_few_alt_gens_ + i, zone);
   3585     }
   3586     for (int i = kAFew; i < count; i++) {
   3587       alt_gens_.Add(new AlternativeGeneration(), zone);
   3588     }
   3589   }
   3590   ~AlternativeGenerationList() {
   3591     for (int i = kAFew; i < alt_gens_.length(); i++) {
   3592       delete alt_gens_[i];
   3593       alt_gens_[i] = NULL;
   3594     }
   3595   }
   3596 
   3597   AlternativeGeneration* at(int i) {
   3598     return alt_gens_[i];
   3599   }
   3600 
   3601  private:
   3602   static const int kAFew = 10;
   3603   ZoneList<AlternativeGeneration*> alt_gens_;
   3604   AlternativeGeneration a_few_alt_gens_[kAFew];
   3605 };
   3606 
   3607 
   3608 static const uc32 kRangeEndMarker = 0x110000;
   3609 
   3610 // The '2' variant is has inclusive from and exclusive to.
   3611 // This covers \s as defined in ECMA-262 5.1, 15.10.2.12,
   3612 // which include WhiteSpace (7.2) or LineTerminator (7.3) values.
   3613 static const int kSpaceRanges[] = {
   3614     '\t',   '\r' + 1, ' ',    ' ' + 1, 0x00A0, 0x00A1, 0x1680,         0x1681,
   3615     0x180E, 0x180F,   0x2000, 0x200B,  0x2028, 0x202A, 0x202F,         0x2030,
   3616     0x205F, 0x2060,   0x3000, 0x3001,  0xFEFF, 0xFF00, kRangeEndMarker};
   3617 static const int kSpaceRangeCount = arraysize(kSpaceRanges);
   3618 
   3619 static const int kWordRanges[] = {
   3620     '0', '9' + 1, 'A', 'Z' + 1, '_', '_' + 1, 'a', 'z' + 1, kRangeEndMarker};
   3621 static const int kWordRangeCount = arraysize(kWordRanges);
   3622 static const int kDigitRanges[] = {'0', '9' + 1, kRangeEndMarker};
   3623 static const int kDigitRangeCount = arraysize(kDigitRanges);
   3624 static const int kSurrogateRanges[] = {
   3625     kLeadSurrogateStart, kLeadSurrogateStart + 1, kRangeEndMarker};
   3626 static const int kSurrogateRangeCount = arraysize(kSurrogateRanges);
   3627 static const int kLineTerminatorRanges[] = {
   3628     0x000A, 0x000B, 0x000D, 0x000E, 0x2028, 0x202A, kRangeEndMarker};
   3629 static const int kLineTerminatorRangeCount = arraysize(kLineTerminatorRanges);
   3630 
   3631 void BoyerMoorePositionInfo::Set(int character) {
   3632   SetInterval(Interval(character, character));
   3633 }
   3634 
   3635 
   3636 void BoyerMoorePositionInfo::SetInterval(const Interval& interval) {
   3637   s_ = AddRange(s_, kSpaceRanges, kSpaceRangeCount, interval);
   3638   w_ = AddRange(w_, kWordRanges, kWordRangeCount, interval);
   3639   d_ = AddRange(d_, kDigitRanges, kDigitRangeCount, interval);
   3640   surrogate_ =
   3641       AddRange(surrogate_, kSurrogateRanges, kSurrogateRangeCount, interval);
   3642   if (interval.to() - interval.from() >= kMapSize - 1) {
   3643     if (map_count_ != kMapSize) {
   3644       map_count_ = kMapSize;
   3645       for (int i = 0; i < kMapSize; i++) map_->at(i) = true;
   3646     }
   3647     return;
   3648   }
   3649   for (int i = interval.from(); i <= interval.to(); i++) {
   3650     int mod_character = (i & kMask);
   3651     if (!map_->at(mod_character)) {
   3652       map_count_++;
   3653       map_->at(mod_character) = true;
   3654     }
   3655     if (map_count_ == kMapSize) return;
   3656   }
   3657 }
   3658 
   3659 
   3660 void BoyerMoorePositionInfo::SetAll() {
   3661   s_ = w_ = d_ = kLatticeUnknown;
   3662   if (map_count_ != kMapSize) {
   3663     map_count_ = kMapSize;
   3664     for (int i = 0; i < kMapSize; i++) map_->at(i) = true;
   3665   }
   3666 }
   3667 
   3668 
   3669 BoyerMooreLookahead::BoyerMooreLookahead(
   3670     int length, RegExpCompiler* compiler, Zone* zone)
   3671     : length_(length),
   3672       compiler_(compiler) {
   3673   if (compiler->one_byte()) {
   3674     max_char_ = String::kMaxOneByteCharCode;
   3675   } else {
   3676     max_char_ = String::kMaxUtf16CodeUnit;
   3677   }
   3678   bitmaps_ = new(zone) ZoneList<BoyerMoorePositionInfo*>(length, zone);
   3679   for (int i = 0; i < length; i++) {
   3680     bitmaps_->Add(new(zone) BoyerMoorePositionInfo(zone), zone);
   3681   }
   3682 }
   3683 
   3684 
   3685 // Find the longest range of lookahead that has the fewest number of different
   3686 // characters that can occur at a given position.  Since we are optimizing two
   3687 // different parameters at once this is a tradeoff.
   3688 bool BoyerMooreLookahead::FindWorthwhileInterval(int* from, int* to) {
   3689   int biggest_points = 0;
   3690   // If more than 32 characters out of 128 can occur it is unlikely that we can
   3691   // be lucky enough to step forwards much of the time.
   3692   const int kMaxMax = 32;
   3693   for (int max_number_of_chars = 4;
   3694        max_number_of_chars < kMaxMax;
   3695        max_number_of_chars *= 2) {
   3696     biggest_points =
   3697         FindBestInterval(max_number_of_chars, biggest_points, from, to);
   3698   }
   3699   if (biggest_points == 0) return false;
   3700   return true;
   3701 }
   3702 
   3703 
   3704 // Find the highest-points range between 0 and length_ where the character
   3705 // information is not too vague.  'Too vague' means that there are more than
   3706 // max_number_of_chars that can occur at this position.  Calculates the number
   3707 // of points as the product of width-of-the-range and
   3708 // probability-of-finding-one-of-the-characters, where the probability is
   3709 // calculated using the frequency distribution of the sample subject string.
   3710 int BoyerMooreLookahead::FindBestInterval(
   3711     int max_number_of_chars, int old_biggest_points, int* from, int* to) {
   3712   int biggest_points = old_biggest_points;
   3713   static const int kSize = RegExpMacroAssembler::kTableSize;
   3714   for (int i = 0; i < length_; ) {
   3715     while (i < length_ && Count(i) > max_number_of_chars) i++;
   3716     if (i == length_) break;
   3717     int remembered_from = i;
   3718     bool union_map[kSize];
   3719     for (int j = 0; j < kSize; j++) union_map[j] = false;
   3720     while (i < length_ && Count(i) <= max_number_of_chars) {
   3721       BoyerMoorePositionInfo* map = bitmaps_->at(i);
   3722       for (int j = 0; j < kSize; j++) union_map[j] |= map->at(j);
   3723       i++;
   3724     }
   3725     int frequency = 0;
   3726     for (int j = 0; j < kSize; j++) {
   3727       if (union_map[j]) {
   3728         // Add 1 to the frequency to give a small per-character boost for
   3729         // the cases where our sampling is not good enough and many
   3730         // characters have a frequency of zero.  This means the frequency
   3731         // can theoretically be up to 2*kSize though we treat it mostly as
   3732         // a fraction of kSize.
   3733         frequency += compiler_->frequency_collator()->Frequency(j) + 1;
   3734       }
   3735     }
   3736     // We use the probability of skipping times the distance we are skipping to
   3737     // judge the effectiveness of this.  Actually we have a cut-off:  By
   3738     // dividing by 2 we switch off the skipping if the probability of skipping
   3739     // is less than 50%.  This is because the multibyte mask-and-compare
   3740     // skipping in quickcheck is more likely to do well on this case.
   3741     bool in_quickcheck_range =
   3742         ((i - remembered_from < 4) ||
   3743          (compiler_->one_byte() ? remembered_from <= 4 : remembered_from <= 2));
   3744     // Called 'probability' but it is only a rough estimate and can actually
   3745     // be outside the 0-kSize range.
   3746     int probability = (in_quickcheck_range ? kSize / 2 : kSize) - frequency;
   3747     int points = (i - remembered_from) * probability;
   3748     if (points > biggest_points) {
   3749       *from = remembered_from;
   3750       *to = i - 1;
   3751       biggest_points = points;
   3752     }
   3753   }
   3754   return biggest_points;
   3755 }
   3756 
   3757 
   3758 // Take all the characters that will not prevent a successful match if they
   3759 // occur in the subject string in the range between min_lookahead and
   3760 // max_lookahead (inclusive) measured from the current position.  If the
   3761 // character at max_lookahead offset is not one of these characters, then we
   3762 // can safely skip forwards by the number of characters in the range.
   3763 int BoyerMooreLookahead::GetSkipTable(int min_lookahead,
   3764                                       int max_lookahead,
   3765                                       Handle<ByteArray> boolean_skip_table) {
   3766   const int kSize = RegExpMacroAssembler::kTableSize;
   3767 
   3768   const int kSkipArrayEntry = 0;
   3769   const int kDontSkipArrayEntry = 1;
   3770 
   3771   for (int i = 0; i < kSize; i++) {
   3772     boolean_skip_table->set(i, kSkipArrayEntry);
   3773   }
   3774   int skip = max_lookahead + 1 - min_lookahead;
   3775 
   3776   for (int i = max_lookahead; i >= min_lookahead; i--) {
   3777     BoyerMoorePositionInfo* map = bitmaps_->at(i);
   3778     for (int j = 0; j < kSize; j++) {
   3779       if (map->at(j)) {
   3780         boolean_skip_table->set(j, kDontSkipArrayEntry);
   3781       }
   3782     }
   3783   }
   3784 
   3785   return skip;
   3786 }
   3787 
   3788 
   3789 // See comment above on the implementation of GetSkipTable.
   3790 void BoyerMooreLookahead::EmitSkipInstructions(RegExpMacroAssembler* masm) {
   3791   const int kSize = RegExpMacroAssembler::kTableSize;
   3792 
   3793   int min_lookahead = 0;
   3794   int max_lookahead = 0;
   3795 
   3796   if (!FindWorthwhileInterval(&min_lookahead, &max_lookahead)) return;
   3797 
   3798   bool found_single_character = false;
   3799   int single_character = 0;
   3800   for (int i = max_lookahead; i >= min_lookahead; i--) {
   3801     BoyerMoorePositionInfo* map = bitmaps_->at(i);
   3802     if (map->map_count() > 1 ||
   3803         (found_single_character && map->map_count() != 0)) {
   3804       found_single_character = false;
   3805       break;
   3806     }
   3807     for (int j = 0; j < kSize; j++) {
   3808       if (map->at(j)) {
   3809         found_single_character = true;
   3810         single_character = j;
   3811         break;
   3812       }
   3813     }
   3814   }
   3815 
   3816   int lookahead_width = max_lookahead + 1 - min_lookahead;
   3817 
   3818   if (found_single_character && lookahead_width == 1 && max_lookahead < 3) {
   3819     // The mask-compare can probably handle this better.
   3820     return;
   3821   }
   3822 
   3823   if (found_single_character) {
   3824     Label cont, again;
   3825     masm->Bind(&again);
   3826     masm->LoadCurrentCharacter(max_lookahead, &cont, true);
   3827     if (max_char_ > kSize) {
   3828       masm->CheckCharacterAfterAnd(single_character,
   3829                                    RegExpMacroAssembler::kTableMask,
   3830                                    &cont);
   3831     } else {
   3832       masm->CheckCharacter(single_character, &cont);
   3833     }
   3834     masm->AdvanceCurrentPosition(lookahead_width);
   3835     masm->GoTo(&again);
   3836     masm->Bind(&cont);
   3837     return;
   3838   }
   3839 
   3840   Factory* factory = masm->isolate()->factory();
   3841   Handle<ByteArray> boolean_skip_table = factory->NewByteArray(kSize, TENURED);
   3842   int skip_distance = GetSkipTable(
   3843       min_lookahead, max_lookahead, boolean_skip_table);
   3844   DCHECK(skip_distance != 0);
   3845 
   3846   Label cont, again;
   3847   masm->Bind(&again);
   3848   masm->LoadCurrentCharacter(max_lookahead, &cont, true);
   3849   masm->CheckBitInTable(boolean_skip_table, &cont);
   3850   masm->AdvanceCurrentPosition(skip_distance);
   3851   masm->GoTo(&again);
   3852   masm->Bind(&cont);
   3853 }
   3854 
   3855 
   3856 /* Code generation for choice nodes.
   3857  *
   3858  * We generate quick checks that do a mask and compare to eliminate a
   3859  * choice.  If the quick check succeeds then it jumps to the continuation to
   3860  * do slow checks and check subsequent nodes.  If it fails (the common case)
   3861  * it falls through to the next choice.
   3862  *
   3863  * Here is the desired flow graph.  Nodes directly below each other imply
   3864  * fallthrough.  Alternatives 1 and 2 have quick checks.  Alternative
   3865  * 3 doesn't have a quick check so we have to call the slow check.
   3866  * Nodes are marked Qn for quick checks and Sn for slow checks.  The entire
   3867  * regexp continuation is generated directly after the Sn node, up to the
   3868  * next GoTo if we decide to reuse some already generated code.  Some
   3869  * nodes expect preload_characters to be preloaded into the current
   3870  * character register.  R nodes do this preloading.  Vertices are marked
   3871  * F for failures and S for success (possible success in the case of quick
   3872  * nodes).  L, V, < and > are used as arrow heads.
   3873  *
   3874  * ----------> R
   3875  *             |
   3876  *             V
   3877  *            Q1 -----> S1
   3878  *             |   S   /
   3879  *            F|      /
   3880  *             |    F/
   3881  *             |    /
   3882  *             |   R
   3883  *             |  /
   3884  *             V L
   3885  *            Q2 -----> S2
   3886  *             |   S   /
   3887  *            F|      /
   3888  *             |    F/
   3889  *             |    /
   3890  *             |   R
   3891  *             |  /
   3892  *             V L
   3893  *            S3
   3894  *             |
   3895  *            F|
   3896  *             |
   3897  *             R
   3898  *             |
   3899  * backtrack   V
   3900  * <----------Q4
   3901  *   \    F    |
   3902  *    \        |S
   3903  *     \   F   V
   3904  *      \-----S4
   3905  *
   3906  * For greedy loops we push the current position, then generate the code that
   3907  * eats the input specially in EmitGreedyLoop.  The other choice (the
   3908  * continuation) is generated by the normal code in EmitChoices, and steps back
   3909  * in the input to the starting position when it fails to match.  The loop code
   3910  * looks like this (U is the unwind code that steps back in the greedy loop).
   3911  *
   3912  *              _____
   3913  *             /     \
   3914  *             V     |
   3915  * ----------> S1    |
   3916  *            /|     |
   3917  *           / |S    |
   3918  *         F/  \_____/
   3919  *         /
   3920  *        |<-----
   3921  *        |      \
   3922  *        V       |S
   3923  *        Q2 ---> U----->backtrack
   3924  *        |  F   /
   3925  *       S|     /
   3926  *        V  F /
   3927  *        S2--/
   3928  */
   3929 
   3930 GreedyLoopState::GreedyLoopState(bool not_at_start) {
   3931   counter_backtrack_trace_.set_backtrack(&label_);
   3932   if (not_at_start) counter_backtrack_trace_.set_at_start(Trace::FALSE_VALUE);
   3933 }
   3934 
   3935 
   3936 void ChoiceNode::AssertGuardsMentionRegisters(Trace* trace) {
   3937 #ifdef DEBUG
   3938   int choice_count = alternatives_->length();
   3939   for (int i = 0; i < choice_count - 1; i++) {
   3940     GuardedAlternative alternative = alternatives_->at(i);
   3941     ZoneList<Guard*>* guards = alternative.guards();
   3942     int guard_count = (guards == NULL) ? 0 : guards->length();
   3943     for (int j = 0; j < guard_count; j++) {
   3944       DCHECK(!trace->mentions_reg(guards->at(j)->reg()));
   3945     }
   3946   }
   3947 #endif
   3948 }
   3949 
   3950 
   3951 void ChoiceNode::SetUpPreLoad(RegExpCompiler* compiler,
   3952                               Trace* current_trace,
   3953                               PreloadState* state) {
   3954     if (state->eats_at_least_ == PreloadState::kEatsAtLeastNotYetInitialized) {
   3955       // Save some time by looking at most one machine word ahead.
   3956       state->eats_at_least_ =
   3957           EatsAtLeast(compiler->one_byte() ? 4 : 2, kRecursionBudget,
   3958                       current_trace->at_start() == Trace::FALSE_VALUE);
   3959     }
   3960     state->preload_characters_ =
   3961         CalculatePreloadCharacters(compiler, state->eats_at_least_);
   3962 
   3963     state->preload_is_current_ =
   3964         (current_trace->characters_preloaded() == state->preload_characters_);
   3965     state->preload_has_checked_bounds_ = state->preload_is_current_;
   3966 }
   3967 
   3968 
   3969 void ChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
   3970   int choice_count = alternatives_->length();
   3971 
   3972   if (choice_count == 1 && alternatives_->at(0).guards() == NULL) {
   3973     alternatives_->at(0).node()->Emit(compiler, trace);
   3974     return;
   3975   }
   3976 
   3977   AssertGuardsMentionRegisters(trace);
   3978 
   3979   LimitResult limit_result = LimitVersions(compiler, trace);
   3980   if (limit_result == DONE) return;
   3981   DCHECK(limit_result == CONTINUE);
   3982 
   3983   // For loop nodes we already flushed (see LoopChoiceNode::Emit), but for
   3984   // other choice nodes we only flush if we are out of code size budget.
   3985   if (trace->flush_budget() == 0 && trace->actions() != NULL) {
   3986     trace->Flush(compiler, this);
   3987     return;
   3988   }
   3989 
   3990   RecursionCheck rc(compiler);
   3991 
   3992   PreloadState preload;
   3993   preload.init();
   3994   GreedyLoopState greedy_loop_state(not_at_start());
   3995 
   3996   int text_length = GreedyLoopTextLengthForAlternative(&alternatives_->at(0));
   3997   AlternativeGenerationList alt_gens(choice_count, zone());
   3998 
   3999   if (choice_count > 1 && text_length != kNodeIsTooComplexForGreedyLoops) {
   4000     trace = EmitGreedyLoop(compiler,
   4001                            trace,
   4002                            &alt_gens,
   4003                            &preload,
   4004                            &greedy_loop_state,
   4005                            text_length);
   4006   } else {
   4007     // TODO(erikcorry): Delete this.  We don't need this label, but it makes us
   4008     // match the traces produced pre-cleanup.
   4009     Label second_choice;
   4010     compiler->macro_assembler()->Bind(&second_choice);
   4011 
   4012     preload.eats_at_least_ = EmitOptimizedUnanchoredSearch(compiler, trace);
   4013 
   4014     EmitChoices(compiler,
   4015                 &alt_gens,
   4016                 0,
   4017                 trace,
   4018                 &preload);
   4019   }
   4020 
   4021   // At this point we need to generate slow checks for the alternatives where
   4022   // the quick check was inlined.  We can recognize these because the associated
   4023   // label was bound.
   4024   int new_flush_budget = trace->flush_budget() / choice_count;
   4025   for (int i = 0; i < choice_count; i++) {
   4026     AlternativeGeneration* alt_gen = alt_gens.at(i);
   4027     Trace new_trace(*trace);
   4028     // If there are actions to be flushed we have to limit how many times
   4029     // they are flushed.  Take the budget of the parent trace and distribute
   4030     // it fairly amongst the children.
   4031     if (new_trace.actions() != NULL) {
   4032       new_trace.set_flush_budget(new_flush_budget);
   4033     }
   4034     bool next_expects_preload =
   4035         i == choice_count - 1 ? false : alt_gens.at(i + 1)->expects_preload;
   4036     EmitOutOfLineContinuation(compiler,
   4037                               &new_trace,
   4038                               alternatives_->at(i),
   4039                               alt_gen,
   4040                               preload.preload_characters_,
   4041                               next_expects_preload);
   4042   }
   4043 }
   4044 
   4045 
   4046 Trace* ChoiceNode::EmitGreedyLoop(RegExpCompiler* compiler,
   4047                                   Trace* trace,
   4048                                   AlternativeGenerationList* alt_gens,
   4049                                   PreloadState* preload,
   4050                                   GreedyLoopState* greedy_loop_state,
   4051                                   int text_length) {
   4052   RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
   4053   // Here we have special handling for greedy loops containing only text nodes
   4054   // and other simple nodes.  These are handled by pushing the current
   4055   // position on the stack and then incrementing the current position each
   4056   // time around the switch.  On backtrack we decrement the current position
   4057   // and check it against the pushed value.  This avoids pushing backtrack
   4058   // information for each iteration of the loop, which could take up a lot of
   4059   // space.
   4060   DCHECK(trace->stop_node() == NULL);
   4061   macro_assembler->PushCurrentPosition();
   4062   Label greedy_match_failed;
   4063   Trace greedy_match_trace;
   4064   if (not_at_start()) greedy_match_trace.set_at_start(Trace::FALSE_VALUE);
   4065   greedy_match_trace.set_backtrack(&greedy_match_failed);
   4066   Label loop_label;
   4067   macro_assembler->Bind(&loop_label);
   4068   greedy_match_trace.set_stop_node(this);
   4069   greedy_match_trace.set_loop_label(&loop_label);
   4070   alternatives_->at(0).node()->Emit(compiler, &greedy_match_trace);
   4071   macro_assembler->Bind(&greedy_match_failed);
   4072 
   4073   Label second_choice;  // For use in greedy matches.
   4074   macro_assembler->Bind(&second_choice);
   4075 
   4076   Trace* new_trace = greedy_loop_state->counter_backtrack_trace();
   4077 
   4078   EmitChoices(compiler,
   4079               alt_gens,
   4080               1,
   4081               new_trace,
   4082               preload);
   4083 
   4084   macro_assembler->Bind(greedy_loop_state->label());
   4085   // If we have unwound to the bottom then backtrack.
   4086   macro_assembler->CheckGreedyLoop(trace->backtrack());
   4087   // Otherwise try the second priority at an earlier position.
   4088   macro_assembler->AdvanceCurrentPosition(-text_length);
   4089   macro_assembler->GoTo(&second_choice);
   4090   return new_trace;
   4091 }
   4092 
   4093 int ChoiceNode::EmitOptimizedUnanchoredSearch(RegExpCompiler* compiler,
   4094                                               Trace* trace) {
   4095   int eats_at_least = PreloadState::kEatsAtLeastNotYetInitialized;
   4096   if (alternatives_->length() != 2) return eats_at_least;
   4097 
   4098   GuardedAlternative alt1 = alternatives_->at(1);
   4099   if (alt1.guards() != NULL && alt1.guards()->length() != 0) {
   4100     return eats_at_least;
   4101   }
   4102   RegExpNode* eats_anything_node = alt1.node();
   4103   if (eats_anything_node->GetSuccessorOfOmnivorousTextNode(compiler) != this) {
   4104     return eats_at_least;
   4105   }
   4106 
   4107   // Really we should be creating a new trace when we execute this function,
   4108   // but there is no need, because the code it generates cannot backtrack, and
   4109   // we always arrive here with a trivial trace (since it's the entry to a
   4110   // loop.  That also implies that there are no preloaded characters, which is
   4111   // good, because it means we won't be violating any assumptions by
   4112   // overwriting those characters with new load instructions.
   4113   DCHECK(trace->is_trivial());
   4114 
   4115   RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
   4116   Isolate* isolate = macro_assembler->isolate();
   4117   // At this point we know that we are at a non-greedy loop that will eat
   4118   // any character one at a time.  Any non-anchored regexp has such a
   4119   // loop prepended to it in order to find where it starts.  We look for
   4120   // a pattern of the form ...abc... where we can look 6 characters ahead
   4121   // and step forwards 3 if the character is not one of abc.  Abc need
   4122   // not be atoms, they can be any reasonably limited character class or
   4123   // small alternation.
   4124   BoyerMooreLookahead* bm = bm_info(false);
   4125   if (bm == NULL) {
   4126     eats_at_least = Min(kMaxLookaheadForBoyerMoore,
   4127                         EatsAtLeast(kMaxLookaheadForBoyerMoore,
   4128                                     kRecursionBudget,
   4129                                     false));
   4130     if (eats_at_least >= 1) {
   4131       bm = new(zone()) BoyerMooreLookahead(eats_at_least,
   4132                                            compiler,
   4133                                            zone());
   4134       GuardedAlternative alt0 = alternatives_->at(0);
   4135       alt0.node()->FillInBMInfo(isolate, 0, kRecursionBudget, bm, false);
   4136     }
   4137   }
   4138   if (bm != NULL) {
   4139     bm->EmitSkipInstructions(macro_assembler);
   4140   }
   4141   return eats_at_least;
   4142 }
   4143 
   4144 
   4145 void ChoiceNode::EmitChoices(RegExpCompiler* compiler,
   4146                              AlternativeGenerationList* alt_gens,
   4147                              int first_choice,
   4148                              Trace* trace,
   4149                              PreloadState* preload) {
   4150   RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
   4151   SetUpPreLoad(compiler, trace, preload);
   4152 
   4153   // For now we just call all choices one after the other.  The idea ultimately
   4154   // is to use the Dispatch table to try only the relevant ones.
   4155   int choice_count = alternatives_->length();
   4156 
   4157   int new_flush_budget = trace->flush_budget() / choice_count;
   4158 
   4159   for (int i = first_choice; i < choice_count; i++) {
   4160     bool is_last = i == choice_count - 1;
   4161     bool fall_through_on_failure = !is_last;
   4162     GuardedAlternative alternative = alternatives_->at(i);
   4163     AlternativeGeneration* alt_gen = alt_gens->at(i);
   4164     alt_gen->quick_check_details.set_characters(preload->preload_characters_);
   4165     ZoneList<Guard*>* guards = alternative.guards();
   4166     int guard_count = (guards == NULL) ? 0 : guards->length();
   4167     Trace new_trace(*trace);
   4168     new_trace.set_characters_preloaded(preload->preload_is_current_ ?
   4169                                          preload->preload_characters_ :
   4170                                          0);
   4171     if (preload->preload_has_checked_bounds_) {
   4172       new_trace.set_bound_checked_up_to(preload->preload_characters_);
   4173     }
   4174     new_trace.quick_check_performed()->Clear();
   4175     if (not_at_start_) new_trace.set_at_start(Trace::FALSE_VALUE);
   4176     if (!is_last) {
   4177       new_trace.set_backtrack(&alt_gen->after);
   4178     }
   4179     alt_gen->expects_preload = preload->preload_is_current_;
   4180     bool generate_full_check_inline = false;
   4181     if (compiler->optimize() &&
   4182         try_to_emit_quick_check_for_alternative(i == 0) &&
   4183         alternative.node()->EmitQuickCheck(
   4184             compiler, trace, &new_trace, preload->preload_has_checked_bounds_,
   4185             &alt_gen->possible_success, &alt_gen->quick_check_details,
   4186             fall_through_on_failure)) {
   4187       // Quick check was generated for this choice.
   4188       preload->preload_is_current_ = true;
   4189       preload->preload_has_checked_bounds_ = true;
   4190       // If we generated the quick check to fall through on possible success,
   4191       // we now need to generate the full check inline.
   4192       if (!fall_through_on_failure) {
   4193         macro_assembler->Bind(&alt_gen->possible_success);
   4194         new_trace.set_quick_check_performed(&alt_gen->quick_check_details);
   4195         new_trace.set_characters_preloaded(preload->preload_characters_);
   4196         new_trace.set_bound_checked_up_to(preload->preload_characters_);
   4197         generate_full_check_inline = true;
   4198       }
   4199     } else if (alt_gen->quick_check_details.cannot_match()) {
   4200       if (!fall_through_on_failure) {
   4201         macro_assembler->GoTo(trace->backtrack());
   4202       }
   4203       continue;
   4204     } else {
   4205       // No quick check was generated.  Put the full code here.
   4206       // If this is not the first choice then there could be slow checks from
   4207       // previous cases that go here when they fail.  There's no reason to
   4208       // insist that they preload characters since the slow check we are about
   4209       // to generate probably can't use it.
   4210       if (i != first_choice) {
   4211         alt_gen->expects_preload = false;
   4212         new_trace.InvalidateCurrentCharacter();
   4213       }
   4214       generate_full_check_inline = true;
   4215     }
   4216     if (generate_full_check_inline) {
   4217       if (new_trace.actions() != NULL) {
   4218         new_trace.set_flush_budget(new_flush_budget);
   4219       }
   4220       for (int j = 0; j < guard_count; j++) {
   4221         GenerateGuard(macro_assembler, guards->at(j), &new_trace);
   4222       }
   4223       alternative.node()->Emit(compiler, &new_trace);
   4224       preload->preload_is_current_ = false;
   4225     }
   4226     macro_assembler->Bind(&alt_gen->after);
   4227   }
   4228 }
   4229 
   4230 
   4231 void ChoiceNode::EmitOutOfLineContinuation(RegExpCompiler* compiler,
   4232                                            Trace* trace,
   4233                                            GuardedAlternative alternative,
   4234                                            AlternativeGeneration* alt_gen,
   4235                                            int preload_characters,
   4236                                            bool next_expects_preload) {
   4237   if (!alt_gen->possible_success.is_linked()) return;
   4238 
   4239   RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
   4240   macro_assembler->Bind(&alt_gen->possible_success);
   4241   Trace out_of_line_trace(*trace);
   4242   out_of_line_trace.set_characters_preloaded(preload_characters);
   4243   out_of_line_trace.set_quick_check_performed(&alt_gen->quick_check_details);
   4244   if (not_at_start_) out_of_line_trace.set_at_start(Trace::FALSE_VALUE);
   4245   ZoneList<Guard*>* guards = alternative.guards();
   4246   int guard_count = (guards == NULL) ? 0 : guards->length();
   4247   if (next_expects_preload) {
   4248     Label reload_current_char;
   4249     out_of_line_trace.set_backtrack(&reload_current_char);
   4250     for (int j = 0; j < guard_count; j++) {
   4251       GenerateGuard(macro_assembler, guards->at(j), &out_of_line_trace);
   4252     }
   4253     alternative.node()->Emit(compiler, &out_of_line_trace);
   4254     macro_assembler->Bind(&reload_current_char);
   4255     // Reload the current character, since the next quick check expects that.
   4256     // We don't need to check bounds here because we only get into this
   4257     // code through a quick check which already did the checked load.
   4258     macro_assembler->LoadCurrentCharacter(trace->cp_offset(),
   4259                                           NULL,
   4260                                           false,
   4261                                           preload_characters);
   4262     macro_assembler->GoTo(&(alt_gen->after));
   4263   } else {
   4264     out_of_line_trace.set_backtrack(&(alt_gen->after));
   4265     for (int j = 0; j < guard_count; j++) {
   4266       GenerateGuard(macro_assembler, guards->at(j), &out_of_line_trace);
   4267     }
   4268     alternative.node()->Emit(compiler, &out_of_line_trace);
   4269   }
   4270 }
   4271 
   4272 
   4273 void ActionNode::Emit(RegExpCompiler* compiler, Trace* trace) {
   4274   RegExpMacroAssembler* assembler = compiler->macro_assembler();
   4275   LimitResult limit_result = LimitVersions(compiler, trace);
   4276   if (limit_result == DONE) return;
   4277   DCHECK(limit_result == CONTINUE);
   4278 
   4279   RecursionCheck rc(compiler);
   4280 
   4281   switch (action_type_) {
   4282     case STORE_POSITION: {
   4283       Trace::DeferredCapture
   4284           new_capture(data_.u_position_register.reg,
   4285                       data_.u_position_register.is_capture,
   4286                       trace);
   4287       Trace new_trace = *trace;
   4288       new_trace.add_action(&new_capture);
   4289       on_success()->Emit(compiler, &new_trace);
   4290       break;
   4291     }
   4292     case INCREMENT_REGISTER: {
   4293       Trace::DeferredIncrementRegister
   4294           new_increment(data_.u_increment_register.reg);
   4295       Trace new_trace = *trace;
   4296       new_trace.add_action(&new_increment);
   4297       on_success()->Emit(compiler, &new_trace);
   4298       break;
   4299     }
   4300     case SET_REGISTER: {
   4301       Trace::DeferredSetRegister
   4302           new_set(data_.u_store_register.reg, data_.u_store_register.value);
   4303       Trace new_trace = *trace;
   4304       new_trace.add_action(&new_set);
   4305       on_success()->Emit(compiler, &new_trace);
   4306       break;
   4307     }
   4308     case CLEAR_CAPTURES: {
   4309       Trace::DeferredClearCaptures
   4310         new_capture(Interval(data_.u_clear_captures.range_from,
   4311                              data_.u_clear_captures.range_to));
   4312       Trace new_trace = *trace;
   4313       new_trace.add_action(&new_capture);
   4314       on_success()->Emit(compiler, &new_trace);
   4315       break;
   4316     }
   4317     case BEGIN_SUBMATCH:
   4318       if (!trace->is_trivial()) {
   4319         trace->Flush(compiler, this);
   4320       } else {
   4321         assembler->WriteCurrentPositionToRegister(
   4322             data_.u_submatch.current_position_register, 0);
   4323         assembler->WriteStackPointerToRegister(
   4324             data_.u_submatch.stack_pointer_register);
   4325         on_success()->Emit(compiler, trace);
   4326       }
   4327       break;
   4328     case EMPTY_MATCH_CHECK: {
   4329       int start_pos_reg = data_.u_empty_match_check.start_register;
   4330       int stored_pos = 0;
   4331       int rep_reg = data_.u_empty_match_check.repetition_register;
   4332       bool has_minimum = (rep_reg != RegExpCompiler::kNoRegister);
   4333       bool know_dist = trace->GetStoredPosition(start_pos_reg, &stored_pos);
   4334       if (know_dist && !has_minimum && stored_pos == trace->cp_offset()) {
   4335         // If we know we haven't advanced and there is no minimum we
   4336         // can just backtrack immediately.
   4337         assembler->GoTo(trace->backtrack());
   4338       } else if (know_dist && stored_pos < trace->cp_offset()) {
   4339         // If we know we've advanced we can generate the continuation
   4340         // immediately.
   4341         on_success()->Emit(compiler, trace);
   4342       } else if (!trace->is_trivial()) {
   4343         trace->Flush(compiler, this);
   4344       } else {
   4345         Label skip_empty_check;
   4346         // If we have a minimum number of repetitions we check the current
   4347         // number first and skip the empty check if it's not enough.
   4348         if (has_minimum) {
   4349           int limit = data_.u_empty_match_check.repetition_limit;
   4350           assembler->IfRegisterLT(rep_reg, limit, &skip_empty_check);
   4351         }
   4352         // If the match is empty we bail out, otherwise we fall through
   4353         // to the on-success continuation.
   4354         assembler->IfRegisterEqPos(data_.u_empty_match_check.start_register,
   4355                                    trace->backtrack());
   4356         assembler->Bind(&skip_empty_check);
   4357         on_success()->Emit(compiler, trace);
   4358       }
   4359       break;
   4360     }
   4361     case POSITIVE_SUBMATCH_SUCCESS: {
   4362       if (!trace->is_trivial()) {
   4363         trace->Flush(compiler, this);
   4364         return;
   4365       }
   4366       assembler->ReadCurrentPositionFromRegister(
   4367           data_.u_submatch.current_position_register);
   4368       assembler->ReadStackPointerFromRegister(
   4369           data_.u_submatch.stack_pointer_register);
   4370       int clear_register_count = data_.u_submatch.clear_register_count;
   4371       if (clear_register_count == 0) {
   4372         on_success()->Emit(compiler, trace);
   4373         return;
   4374       }
   4375       int clear_registers_from = data_.u_submatch.clear_register_from;
   4376       Label clear_registers_backtrack;
   4377       Trace new_trace = *trace;
   4378       new_trace.set_backtrack(&clear_registers_backtrack);
   4379       on_success()->Emit(compiler, &new_trace);
   4380 
   4381       assembler->Bind(&clear_registers_backtrack);
   4382       int clear_registers_to = clear_registers_from + clear_register_count - 1;
   4383       assembler->ClearRegisters(clear_registers_from, clear_registers_to);
   4384 
   4385       DCHECK(trace->backtrack() == NULL);
   4386       assembler->Backtrack();
   4387       return;
   4388     }
   4389     default:
   4390       UNREACHABLE();
   4391   }
   4392 }
   4393 
   4394 
   4395 void BackReferenceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
   4396   RegExpMacroAssembler* assembler = compiler->macro_assembler();
   4397   if (!trace->is_trivial()) {
   4398     trace->Flush(compiler, this);
   4399     return;
   4400   }
   4401 
   4402   LimitResult limit_result = LimitVersions(compiler, trace);
   4403   if (limit_result == DONE) return;
   4404   DCHECK(limit_result == CONTINUE);
   4405 
   4406   RecursionCheck rc(compiler);
   4407 
   4408   DCHECK_EQ(start_reg_ + 1, end_reg_);
   4409   if (compiler->ignore_case()) {
   4410     assembler->CheckNotBackReferenceIgnoreCase(
   4411         start_reg_, read_backward(), compiler->unicode(), trace->backtrack());
   4412   } else {
   4413     assembler->CheckNotBackReference(start_reg_, read_backward(),
   4414                                      trace->backtrack());
   4415   }
   4416   // We are going to advance backward, so we may end up at the start.
   4417   if (read_backward()) trace->set_at_start(Trace::UNKNOWN);
   4418 
   4419   // Check that the back reference does not end inside a surrogate pair.
   4420   if (compiler->unicode() && !compiler->one_byte()) {
   4421     assembler->CheckNotInSurrogatePair(trace->cp_offset(), trace->backtrack());
   4422   }
   4423   on_success()->Emit(compiler, trace);
   4424 }
   4425 
   4426 
   4427 // -------------------------------------------------------------------
   4428 // Dot/dotty output
   4429 
   4430 
   4431 #ifdef DEBUG
   4432 
   4433 
   4434 class DotPrinter: public NodeVisitor {
   4435  public:
   4436   DotPrinter(std::ostream& os, bool ignore_case)  // NOLINT
   4437       : os_(os),
   4438         ignore_case_(ignore_case) {}
   4439   void PrintNode(const char* label, RegExpNode* node);
   4440   void Visit(RegExpNode* node);
   4441   void PrintAttributes(RegExpNode* from);
   4442   void PrintOnFailure(RegExpNode* from, RegExpNode* to);
   4443 #define DECLARE_VISIT(Type)                                          \
   4444   virtual void Visit##Type(Type##Node* that);
   4445 FOR_EACH_NODE_TYPE(DECLARE_VISIT)
   4446 #undef DECLARE_VISIT
   4447  private:
   4448   std::ostream& os_;
   4449   bool ignore_case_;
   4450 };
   4451 
   4452 
   4453 void DotPrinter::PrintNode(const char* label, RegExpNode* node) {
   4454   os_ << "digraph G {\n  graph [label=\"";
   4455   for (int i = 0; label[i]; i++) {
   4456     switch (label[i]) {
   4457       case '\\':
   4458         os_ << "\\\\";
   4459         break;
   4460       case '"':
   4461         os_ << "\"";
   4462         break;
   4463       default:
   4464         os_ << label[i];
   4465         break;
   4466     }
   4467   }
   4468   os_ << "\"];\n";
   4469   Visit(node);
   4470   os_ << "}" << std::endl;
   4471 }
   4472 
   4473 
   4474 void DotPrinter::Visit(RegExpNode* node) {
   4475   if (node->info()->visited) return;
   4476   node->info()->visited = true;
   4477   node->Accept(this);
   4478 }
   4479 
   4480 
   4481 void DotPrinter::PrintOnFailure(RegExpNode* from, RegExpNode* on_failure) {
   4482   os_ << "  n" << from << " -> n" << on_failure << " [style=dotted];\n";
   4483   Visit(on_failure);
   4484 }
   4485 
   4486 
   4487 class TableEntryBodyPrinter {
   4488  public:
   4489   TableEntryBodyPrinter(std::ostream& os, ChoiceNode* choice)  // NOLINT
   4490       : os_(os),
   4491         choice_(choice) {}
   4492   void Call(uc16 from, DispatchTable::Entry entry) {
   4493     OutSet* out_set = entry.out_set();
   4494     for (unsigned i = 0; i < OutSet::kFirstLimit; i++) {
   4495       if (out_set->Get(i)) {
   4496         os_ << "    n" << choice() << ":s" << from << "o" << i << " -> n"
   4497             << choice()->alternatives()->at(i).node() << ";\n";
   4498       }
   4499     }
   4500   }
   4501  private:
   4502   ChoiceNode* choice() { return choice_; }
   4503   std::ostream& os_;
   4504   ChoiceNode* choice_;
   4505 };
   4506 
   4507 
   4508 class TableEntryHeaderPrinter {
   4509  public:
   4510   explicit TableEntryHeaderPrinter(std::ostream& os)  // NOLINT
   4511       : first_(true),
   4512         os_(os) {}
   4513   void Call(uc16 from, DispatchTable::Entry entry) {
   4514     if (first_) {
   4515       first_ = false;
   4516     } else {
   4517       os_ << "|";
   4518     }
   4519     os_ << "{\\" << AsUC16(from) << "-\\" << AsUC16(entry.to()) << "|{";
   4520     OutSet* out_set = entry.out_set();
   4521     int priority = 0;
   4522     for (unsigned i = 0; i < OutSet::kFirstLimit; i++) {
   4523       if (out_set->Get(i)) {
   4524         if (priority > 0) os_ << "|";
   4525         os_ << "<s" << from << "o" << i << "> " << priority;
   4526         priority++;
   4527       }
   4528     }
   4529     os_ << "}}";
   4530   }
   4531 
   4532  private:
   4533   bool first_;
   4534   std::ostream& os_;
   4535 };
   4536 
   4537 
   4538 class AttributePrinter {
   4539  public:
   4540   explicit AttributePrinter(std::ostream& os)  // NOLINT
   4541       : os_(os),
   4542         first_(true) {}
   4543   void PrintSeparator() {
   4544     if (first_) {
   4545       first_ = false;
   4546     } else {
   4547       os_ << "|";
   4548     }
   4549   }
   4550   void PrintBit(const char* name, bool value) {
   4551     if (!value) return;
   4552     PrintSeparator();
   4553     os_ << "{" << name << "}";
   4554   }
   4555   void PrintPositive(const char* name, int value) {
   4556     if (value < 0) return;
   4557     PrintSeparator();
   4558     os_ << "{" << name << "|" << value << "}";
   4559   }
   4560 
   4561  private:
   4562   std::ostream& os_;
   4563   bool first_;
   4564 };
   4565 
   4566 
   4567 void DotPrinter::PrintAttributes(RegExpNode* that) {
   4568   os_ << "  a" << that << " [shape=Mrecord, color=grey, fontcolor=grey, "
   4569       << "margin=0.1, fontsize=10, label=\"{";
   4570   AttributePrinter printer(os_);
   4571   NodeInfo* info = that->info();
   4572   printer.PrintBit("NI", info->follows_newline_interest);
   4573   printer.PrintBit("WI", info->follows_word_interest);
   4574   printer.PrintBit("SI", info->follows_start_interest);
   4575   Label* label = that->label();
   4576   if (label->is_bound())
   4577     printer.PrintPositive("@", label->pos());
   4578   os_ << "}\"];\n"
   4579       << "  a" << that << " -> n" << that
   4580       << " [style=dashed, color=grey, arrowhead=none];\n";
   4581 }
   4582 
   4583 
   4584 static const bool kPrintDispatchTable = false;
   4585 void DotPrinter::VisitChoice(ChoiceNode* that) {
   4586   if (kPrintDispatchTable) {
   4587     os_ << "  n" << that << " [shape=Mrecord, label=\"";
   4588     TableEntryHeaderPrinter header_printer(os_);
   4589     that->GetTable(ignore_case_)->ForEach(&header_printer);
   4590     os_ << "\"]\n";
   4591     PrintAttributes(that);
   4592     TableEntryBodyPrinter body_printer(os_, that);
   4593     that->GetTable(ignore_case_)->ForEach(&body_printer);
   4594   } else {
   4595     os_ << "  n" << that << " [shape=Mrecord, label=\"?\"];\n";
   4596     for (int i = 0; i < that->alternatives()->length(); i++) {
   4597       GuardedAlternative alt = that->alternatives()->at(i);
   4598       os_ << "  n" << that << " -> n" << alt.node();
   4599     }
   4600   }
   4601   for (int i = 0; i < that->alternatives()->length(); i++) {
   4602     GuardedAlternative alt = that->alternatives()->at(i);
   4603     alt.node()->Accept(this);
   4604   }
   4605 }
   4606 
   4607 
   4608 void DotPrinter::VisitText(TextNode* that) {
   4609   Zone* zone = that->zone();
   4610   os_ << "  n" << that << " [label=\"";
   4611   for (int i = 0; i < that->elements()->length(); i++) {
   4612     if (i > 0) os_ << " ";
   4613     TextElement elm = that->elements()->at(i);
   4614     switch (elm.text_type()) {
   4615       case TextElement::ATOM: {
   4616         Vector<const uc16> data = elm.atom()->data();
   4617         for (int i = 0; i < data.length(); i++) {
   4618           os_ << static_cast<char>(data[i]);
   4619         }
   4620         break;
   4621       }
   4622       case TextElement::CHAR_CLASS: {
   4623         RegExpCharacterClass* node = elm.char_class();
   4624         os_ << "[";
   4625         if (node->is_negated()) os_ << "^";
   4626         for (int j = 0; j < node->ranges(zone)->length(); j++) {
   4627           CharacterRange range = node->ranges(zone)->at(j);
   4628           os_ << AsUC16(range.from()) << "-" << AsUC16(range.to());
   4629         }
   4630         os_ << "]";
   4631         break;
   4632       }
   4633       default:
   4634         UNREACHABLE();
   4635     }
   4636   }
   4637   os_ << "\", shape=box, peripheries=2];\n";
   4638   PrintAttributes(that);
   4639   os_ << "  n" << that << " -> n" << that->on_success() << ";\n";
   4640   Visit(that->on_success());
   4641 }
   4642 
   4643 
   4644 void DotPrinter::VisitBackReference(BackReferenceNode* that) {
   4645   os_ << "  n" << that << " [label=\"$" << that->start_register() << "..$"
   4646       << that->end_register() << "\", shape=doubleoctagon];\n";
   4647   PrintAttributes(that);
   4648   os_ << "  n" << that << " -> n" << that->on_success() << ";\n";
   4649   Visit(that->on_success());
   4650 }
   4651 
   4652 
   4653 void DotPrinter::VisitEnd(EndNode* that) {
   4654   os_ << "  n" << that << " [style=bold, shape=point];\n";
   4655   PrintAttributes(that);
   4656 }
   4657 
   4658 
   4659 void DotPrinter::VisitAssertion(AssertionNode* that) {
   4660   os_ << "  n" << that << " [";
   4661   switch (that->assertion_type()) {
   4662     case AssertionNode::AT_END:
   4663       os_ << "label=\"$\", shape=septagon";
   4664       break;
   4665     case AssertionNode::AT_START:
   4666       os_ << "label=\"^\", shape=septagon";
   4667       break;
   4668     case AssertionNode::AT_BOUNDARY:
   4669       os_ << "label=\"\\b\", shape=septagon";
   4670       break;
   4671     case AssertionNode::AT_NON_BOUNDARY:
   4672       os_ << "label=\"\\B\", shape=septagon";
   4673       break;
   4674     case AssertionNode::AFTER_NEWLINE:
   4675       os_ << "label=\"(?<=\\n)\", shape=septagon";
   4676       break;
   4677   }
   4678   os_ << "];\n";
   4679   PrintAttributes(that);
   4680   RegExpNode* successor = that->on_success();
   4681   os_ << "  n" << that << " -> n" << successor << ";\n";
   4682   Visit(successor);
   4683 }
   4684 
   4685 
   4686 void DotPrinter::VisitAction(ActionNode* that) {
   4687   os_ << "  n" << that << " [";
   4688   switch (that->action_type_) {
   4689     case ActionNode::SET_REGISTER:
   4690       os_ << "label=\"$" << that->data_.u_store_register.reg
   4691           << ":=" << that->data_.u_store_register.value << "\", shape=octagon";
   4692       break;
   4693     case ActionNode::INCREMENT_REGISTER:
   4694       os_ << "label=\"$" << that->data_.u_increment_register.reg
   4695           << "++\", shape=octagon";
   4696       break;
   4697     case ActionNode::STORE_POSITION:
   4698       os_ << "label=\"$" << that->data_.u_position_register.reg
   4699           << ":=$pos\", shape=octagon";
   4700       break;
   4701     case ActionNode::BEGIN_SUBMATCH:
   4702       os_ << "label=\"$" << that->data_.u_submatch.current_position_register
   4703           << ":=$pos,begin\", shape=septagon";
   4704       break;
   4705     case ActionNode::POSITIVE_SUBMATCH_SUCCESS:
   4706       os_ << "label=\"escape\", shape=septagon";
   4707       break;
   4708     case ActionNode::EMPTY_MATCH_CHECK:
   4709       os_ << "label=\"$" << that->data_.u_empty_match_check.start_register
   4710           << "=$pos?,$" << that->data_.u_empty_match_check.repetition_register
   4711           << "<" << that->data_.u_empty_match_check.repetition_limit
   4712           << "?\", shape=septagon";
   4713       break;
   4714     case ActionNode::CLEAR_CAPTURES: {
   4715       os_ << "label=\"clear $" << that->data_.u_clear_captures.range_from
   4716           << " to $" << that->data_.u_clear_captures.range_to
   4717           << "\", shape=septagon";
   4718       break;
   4719     }
   4720   }
   4721   os_ << "];\n";
   4722   PrintAttributes(that);
   4723   RegExpNode* successor = that->on_success();
   4724   os_ << "  n" << that << " -> n" << successor << ";\n";
   4725   Visit(successor);
   4726 }
   4727 
   4728 
   4729 class DispatchTableDumper {
   4730  public:
   4731   explicit DispatchTableDumper(std::ostream& os) : os_(os) {}
   4732   void Call(uc16 key, DispatchTable::Entry entry);
   4733  private:
   4734   std::ostream& os_;
   4735 };
   4736 
   4737 
   4738 void DispatchTableDumper::Call(uc16 key, DispatchTable::Entry entry) {
   4739   os_ << "[" << AsUC16(key) << "-" << AsUC16(entry.to()) << "]: {";
   4740   OutSet* set = entry.out_set();
   4741   bool first = true;
   4742   for (unsigned i = 0; i < OutSet::kFirstLimit; i++) {
   4743     if (set->Get(i)) {
   4744       if (first) {
   4745         first = false;
   4746       } else {
   4747         os_ << ", ";
   4748       }
   4749       os_ << i;
   4750     }
   4751   }
   4752   os_ << "}\n";
   4753 }
   4754 
   4755 
   4756 void DispatchTable::Dump() {
   4757   OFStream os(stderr);
   4758   DispatchTableDumper dumper(os);
   4759   tree()->ForEach(&dumper);
   4760 }
   4761 
   4762 
   4763 void RegExpEngine::DotPrint(const char* label,
   4764                             RegExpNode* node,
   4765                             bool ignore_case) {
   4766   OFStream os(stdout);
   4767   DotPrinter printer(os, ignore_case);
   4768   printer.PrintNode(label, node);
   4769 }
   4770 
   4771 
   4772 #endif  // DEBUG
   4773 
   4774 
   4775 // -------------------------------------------------------------------
   4776 // Tree to graph conversion
   4777 
   4778 RegExpNode* RegExpAtom::ToNode(RegExpCompiler* compiler,
   4779                                RegExpNode* on_success) {
   4780   ZoneList<TextElement>* elms =
   4781       new(compiler->zone()) ZoneList<TextElement>(1, compiler->zone());
   4782   elms->Add(TextElement::Atom(this), compiler->zone());
   4783   return new (compiler->zone())
   4784       TextNode(elms, compiler->read_backward(), on_success);
   4785 }
   4786 
   4787 
   4788 RegExpNode* RegExpText::ToNode(RegExpCompiler* compiler,
   4789                                RegExpNode* on_success) {
   4790   return new (compiler->zone())
   4791       TextNode(elements(), compiler->read_backward(), on_success);
   4792 }
   4793 
   4794 
   4795 static bool CompareInverseRanges(ZoneList<CharacterRange>* ranges,
   4796                                  const int* special_class,
   4797                                  int length) {
   4798   length--;  // Remove final marker.
   4799   DCHECK(special_class[length] == kRangeEndMarker);
   4800   DCHECK(ranges->length() != 0);
   4801   DCHECK(length != 0);
   4802   DCHECK(special_class[0] != 0);
   4803   if (ranges->length() != (length >> 1) + 1) {
   4804     return false;
   4805   }
   4806   CharacterRange range = ranges->at(0);
   4807   if (range.from() != 0) {
   4808     return false;
   4809   }
   4810   for (int i = 0; i < length; i += 2) {
   4811     if (special_class[i] != (range.to() + 1)) {
   4812       return false;
   4813     }
   4814     range = ranges->at((i >> 1) + 1);
   4815     if (special_class[i+1] != range.from()) {
   4816       return false;
   4817     }
   4818   }
   4819   if (range.to() != String::kMaxCodePoint) {
   4820     return false;
   4821   }
   4822   return true;
   4823 }
   4824 
   4825 
   4826 static bool CompareRanges(ZoneList<CharacterRange>* ranges,
   4827                           const int* special_class,
   4828                           int length) {
   4829   length--;  // Remove final marker.
   4830   DCHECK(special_class[length] == kRangeEndMarker);
   4831   if (ranges->length() * 2 != length) {
   4832     return false;
   4833   }
   4834   for (int i = 0; i < length; i += 2) {
   4835     CharacterRange range = ranges->at(i >> 1);
   4836     if (range.from() != special_class[i] ||
   4837         range.to() != special_class[i + 1] - 1) {
   4838       return false;
   4839     }
   4840   }
   4841   return true;
   4842 }
   4843 
   4844 
   4845 bool RegExpCharacterClass::is_standard(Zone* zone) {
   4846   // TODO(lrn): Remove need for this function, by not throwing away information
   4847   // along the way.
   4848   if (is_negated_) {
   4849     return false;
   4850   }
   4851   if (set_.is_standard()) {
   4852     return true;
   4853   }
   4854   if (CompareRanges(set_.ranges(zone), kSpaceRanges, kSpaceRangeCount)) {
   4855     set_.set_standard_set_type('s');
   4856     return true;
   4857   }
   4858   if (CompareInverseRanges(set_.ranges(zone), kSpaceRanges, kSpaceRangeCount)) {
   4859     set_.set_standard_set_type('S');
   4860     return true;
   4861   }
   4862   if (CompareInverseRanges(set_.ranges(zone),
   4863                            kLineTerminatorRanges,
   4864                            kLineTerminatorRangeCount)) {
   4865     set_.set_standard_set_type('.');
   4866     return true;
   4867   }
   4868   if (CompareRanges(set_.ranges(zone),
   4869                     kLineTerminatorRanges,
   4870                     kLineTerminatorRangeCount)) {
   4871     set_.set_standard_set_type('n');
   4872     return true;
   4873   }
   4874   if (CompareRanges(set_.ranges(zone), kWordRanges, kWordRangeCount)) {
   4875     set_.set_standard_set_type('w');
   4876     return true;
   4877   }
   4878   if (CompareInverseRanges(set_.ranges(zone), kWordRanges, kWordRangeCount)) {
   4879     set_.set_standard_set_type('W');
   4880     return true;
   4881   }
   4882   return false;
   4883 }
   4884 
   4885 
   4886 UnicodeRangeSplitter::UnicodeRangeSplitter(Zone* zone,
   4887                                            ZoneList<CharacterRange>* base)
   4888     : zone_(zone),
   4889       table_(zone),
   4890       bmp_(nullptr),
   4891       lead_surrogates_(nullptr),
   4892       trail_surrogates_(nullptr),
   4893       non_bmp_(nullptr) {
   4894   // The unicode range splitter categorizes given character ranges into:
   4895   // - Code points from the BMP representable by one code unit.
   4896   // - Code points outside the BMP that need to be split into surrogate pairs.
   4897   // - Lone lead surrogates.
   4898   // - Lone trail surrogates.
   4899   // Lone surrogates are valid code points, even though no actual characters.
   4900   // They require special matching to make sure we do not split surrogate pairs.
   4901   // We use the dispatch table to accomplish this. The base range is split up
   4902   // by the table by the overlay ranges, and the Call callback is used to
   4903   // filter and collect ranges for each category.
   4904   for (int i = 0; i < base->length(); i++) {
   4905     table_.AddRange(base->at(i), kBase, zone_);
   4906   }
   4907   // Add overlay ranges.
   4908   table_.AddRange(CharacterRange::Range(0, kLeadSurrogateStart - 1),
   4909                   kBmpCodePoints, zone_);
   4910   table_.AddRange(CharacterRange::Range(kLeadSurrogateStart, kLeadSurrogateEnd),
   4911                   kLeadSurrogates, zone_);
   4912   table_.AddRange(
   4913       CharacterRange::Range(kTrailSurrogateStart, kTrailSurrogateEnd),
   4914       kTrailSurrogates, zone_);
   4915   table_.AddRange(
   4916       CharacterRange::Range(kTrailSurrogateEnd + 1, kNonBmpStart - 1),
   4917       kBmpCodePoints, zone_);
   4918   table_.AddRange(CharacterRange::Range(kNonBmpStart, kNonBmpEnd),
   4919                   kNonBmpCodePoints, zone_);
   4920   table_.ForEach(this);
   4921 }
   4922 
   4923 
   4924 void UnicodeRangeSplitter::Call(uc32 from, DispatchTable::Entry entry) {
   4925   OutSet* outset = entry.out_set();
   4926   if (!outset->Get(kBase)) return;
   4927   ZoneList<CharacterRange>** target = NULL;
   4928   if (outset->Get(kBmpCodePoints)) {
   4929     target = &bmp_;
   4930   } else if (outset->Get(kLeadSurrogates)) {
   4931     target = &lead_surrogates_;
   4932   } else if (outset->Get(kTrailSurrogates)) {
   4933     target = &trail_surrogates_;
   4934   } else {
   4935     DCHECK(outset->Get(kNonBmpCodePoints));
   4936     target = &non_bmp_;
   4937   }
   4938   if (*target == NULL) *target = new (zone_) ZoneList<CharacterRange>(2, zone_);
   4939   (*target)->Add(CharacterRange::Range(entry.from(), entry.to()), zone_);
   4940 }
   4941 
   4942 
   4943 void AddBmpCharacters(RegExpCompiler* compiler, ChoiceNode* result,
   4944                       RegExpNode* on_success, UnicodeRangeSplitter* splitter) {
   4945   ZoneList<CharacterRange>* bmp = splitter->bmp();
   4946   if (bmp == nullptr) return;
   4947   result->AddAlternative(GuardedAlternative(TextNode::CreateForCharacterRanges(
   4948       compiler->zone(), bmp, compiler->read_backward(), on_success)));
   4949 }
   4950 
   4951 
   4952 void AddNonBmpSurrogatePairs(RegExpCompiler* compiler, ChoiceNode* result,
   4953                              RegExpNode* on_success,
   4954                              UnicodeRangeSplitter* splitter) {
   4955   ZoneList<CharacterRange>* non_bmp = splitter->non_bmp();
   4956   if (non_bmp == nullptr) return;
   4957   DCHECK(compiler->unicode());
   4958   DCHECK(!compiler->one_byte());
   4959   Zone* zone = compiler->zone();
   4960   CharacterRange::Canonicalize(non_bmp);
   4961   for (int i = 0; i < non_bmp->length(); i++) {
   4962     // Match surrogate pair.
   4963     // E.g. [\u10005-\u11005] becomes
   4964     //      \ud800[\udc05-\udfff]|
   4965     //      [\ud801-\ud803][\udc00-\udfff]|
   4966     //      \ud804[\udc00-\udc05]
   4967     uc32 from = non_bmp->at(i).from();
   4968     uc32 to = non_bmp->at(i).to();
   4969     uc16 from_l = unibrow::Utf16::LeadSurrogate(from);
   4970     uc16 from_t = unibrow::Utf16::TrailSurrogate(from);
   4971     uc16 to_l = unibrow::Utf16::LeadSurrogate(to);
   4972     uc16 to_t = unibrow::Utf16::TrailSurrogate(to);
   4973     if (from_l == to_l) {
   4974       // The lead surrogate is the same.
   4975       result->AddAlternative(
   4976           GuardedAlternative(TextNode::CreateForSurrogatePair(
   4977               zone, CharacterRange::Singleton(from_l),
   4978               CharacterRange::Range(from_t, to_t), compiler->read_backward(),
   4979               on_success)));
   4980     } else {
   4981       if (from_t != kTrailSurrogateStart) {
   4982         // Add [from_l][from_t-\udfff]
   4983         result->AddAlternative(
   4984             GuardedAlternative(TextNode::CreateForSurrogatePair(
   4985                 zone, CharacterRange::Singleton(from_l),
   4986                 CharacterRange::Range(from_t, kTrailSurrogateEnd),
   4987                 compiler->read_backward(), on_success)));
   4988         from_l++;
   4989       }
   4990       if (to_t != kTrailSurrogateEnd) {
   4991         // Add [to_l][\udc00-to_t]
   4992         result->AddAlternative(
   4993             GuardedAlternative(TextNode::CreateForSurrogatePair(
   4994                 zone, CharacterRange::Singleton(to_l),
   4995                 CharacterRange::Range(kTrailSurrogateStart, to_t),
   4996                 compiler->read_backward(), on_success)));
   4997         to_l--;
   4998       }
   4999       if (from_l <= to_l) {
   5000         // Add [from_l-to_l][\udc00-\udfff]
   5001         result->AddAlternative(
   5002             GuardedAlternative(TextNode::CreateForSurrogatePair(
   5003                 zone, CharacterRange::Range(from_l, to_l),
   5004                 CharacterRange::Range(kTrailSurrogateStart, kTrailSurrogateEnd),
   5005                 compiler->read_backward(), on_success)));
   5006       }
   5007     }
   5008   }
   5009 }
   5010 
   5011 
   5012 RegExpNode* NegativeLookaroundAgainstReadDirectionAndMatch(
   5013     RegExpCompiler* compiler, ZoneList<CharacterRange>* lookbehind,
   5014     ZoneList<CharacterRange>* match, RegExpNode* on_success,
   5015     bool read_backward) {
   5016   Zone* zone = compiler->zone();
   5017   RegExpNode* match_node = TextNode::CreateForCharacterRanges(
   5018       zone, match, read_backward, on_success);
   5019   int stack_register = compiler->UnicodeLookaroundStackRegister();
   5020   int position_register = compiler->UnicodeLookaroundPositionRegister();
   5021   RegExpLookaround::Builder lookaround(false, match_node, stack_register,
   5022                                        position_register);
   5023   RegExpNode* negative_match = TextNode::CreateForCharacterRanges(
   5024       zone, lookbehind, !read_backward, lookaround.on_match_success());
   5025   return lookaround.ForMatch(negative_match);
   5026 }
   5027 
   5028 
   5029 RegExpNode* MatchAndNegativeLookaroundInReadDirection(
   5030     RegExpCompiler* compiler, ZoneList<CharacterRange>* match,
   5031     ZoneList<CharacterRange>* lookahead, RegExpNode* on_success,
   5032     bool read_backward) {
   5033   Zone* zone = compiler->zone();
   5034   int stack_register = compiler->UnicodeLookaroundStackRegister();
   5035   int position_register = compiler->UnicodeLookaroundPositionRegister();
   5036   RegExpLookaround::Builder lookaround(false, on_success, stack_register,
   5037                                        position_register);
   5038   RegExpNode* negative_match = TextNode::CreateForCharacterRanges(
   5039       zone, lookahead, read_backward, lookaround.on_match_success());
   5040   return TextNode::CreateForCharacterRanges(
   5041       zone, match, read_backward, lookaround.ForMatch(negative_match));
   5042 }
   5043 
   5044 
   5045 void AddLoneLeadSurrogates(RegExpCompiler* compiler, ChoiceNode* result,
   5046                            RegExpNode* on_success,
   5047                            UnicodeRangeSplitter* splitter) {
   5048   ZoneList<CharacterRange>* lead_surrogates = splitter->lead_surrogates();
   5049   if (lead_surrogates == nullptr) return;
   5050   Zone* zone = compiler->zone();
   5051   // E.g. \ud801 becomes \ud801(?![\udc00-\udfff]).
   5052   ZoneList<CharacterRange>* trail_surrogates = CharacterRange::List(
   5053       zone, CharacterRange::Range(kTrailSurrogateStart, kTrailSurrogateEnd));
   5054 
   5055   RegExpNode* match;
   5056   if (compiler->read_backward()) {
   5057     // Reading backward. Assert that reading forward, there is no trail
   5058     // surrogate, and then backward match the lead surrogate.
   5059     match = NegativeLookaroundAgainstReadDirectionAndMatch(
   5060         compiler, trail_surrogates, lead_surrogates, on_success, true);
   5061   } else {
   5062     // Reading forward. Forward match the lead surrogate and assert that
   5063     // no trail surrogate follows.
   5064     match = MatchAndNegativeLookaroundInReadDirection(
   5065         compiler, lead_surrogates, trail_surrogates, on_success, false);
   5066   }
   5067   result->AddAlternative(GuardedAlternative(match));
   5068 }
   5069 
   5070 
   5071 void AddLoneTrailSurrogates(RegExpCompiler* compiler, ChoiceNode* result,
   5072                             RegExpNode* on_success,
   5073                             UnicodeRangeSplitter* splitter) {
   5074   ZoneList<CharacterRange>* trail_surrogates = splitter->trail_surrogates();
   5075   if (trail_surrogates == nullptr) return;
   5076   Zone* zone = compiler->zone();
   5077   // E.g. \udc01 becomes (?<![\ud800-\udbff])\udc01
   5078   ZoneList<CharacterRange>* lead_surrogates = CharacterRange::List(
   5079       zone, CharacterRange::Range(kLeadSurrogateStart, kLeadSurrogateEnd));
   5080 
   5081   RegExpNode* match;
   5082   if (compiler->read_backward()) {
   5083     // Reading backward. Backward match the trail surrogate and assert that no
   5084     // lead surrogate precedes it.
   5085     match = MatchAndNegativeLookaroundInReadDirection(
   5086         compiler, trail_surrogates, lead_surrogates, on_success, true);
   5087   } else {
   5088     // Reading forward. Assert that reading backward, there is no lead
   5089     // surrogate, and then forward match the trail surrogate.
   5090     match = NegativeLookaroundAgainstReadDirectionAndMatch(
   5091         compiler, lead_surrogates, trail_surrogates, on_success, false);
   5092   }
   5093   result->AddAlternative(GuardedAlternative(match));
   5094 }
   5095 
   5096 RegExpNode* UnanchoredAdvance(RegExpCompiler* compiler,
   5097                               RegExpNode* on_success) {
   5098   // This implements ES2015 21.2.5.2.3, AdvanceStringIndex.
   5099   DCHECK(!compiler->read_backward());
   5100   Zone* zone = compiler->zone();
   5101   // Advance any character. If the character happens to be a lead surrogate and
   5102   // we advanced into the middle of a surrogate pair, it will work out, as
   5103   // nothing will match from there. We will have to advance again, consuming
   5104   // the associated trail surrogate.
   5105   ZoneList<CharacterRange>* range = CharacterRange::List(
   5106       zone, CharacterRange::Range(0, String::kMaxUtf16CodeUnit));
   5107   return TextNode::CreateForCharacterRanges(zone, range, false, on_success);
   5108 }
   5109 
   5110 
   5111 void AddUnicodeCaseEquivalents(RegExpCompiler* compiler,
   5112                                ZoneList<CharacterRange>* ranges) {
   5113 #ifdef V8_I18N_SUPPORT
   5114   // Use ICU to compute the case fold closure over the ranges.
   5115   DCHECK(compiler->unicode());
   5116   DCHECK(compiler->ignore_case());
   5117   USet* set = uset_openEmpty();
   5118   for (int i = 0; i < ranges->length(); i++) {
   5119     uset_addRange(set, ranges->at(i).from(), ranges->at(i).to());
   5120   }
   5121   ranges->Clear();
   5122   uset_closeOver(set, USET_CASE_INSENSITIVE);
   5123   // Full case mapping map single characters to multiple characters.
   5124   // Those are represented as strings in the set. Remove them so that
   5125   // we end up with only simple and common case mappings.
   5126   uset_removeAllStrings(set);
   5127   int item_count = uset_getItemCount(set);
   5128   int item_result = 0;
   5129   UErrorCode ec = U_ZERO_ERROR;
   5130   Zone* zone = compiler->zone();
   5131   for (int i = 0; i < item_count; i++) {
   5132     uc32 start = 0;
   5133     uc32 end = 0;
   5134     item_result += uset_getItem(set, i, &start, &end, nullptr, 0, &ec);
   5135     ranges->Add(CharacterRange::Range(start, end), zone);
   5136   }
   5137   // No errors and everything we collected have been ranges.
   5138   DCHECK_EQ(U_ZERO_ERROR, ec);
   5139   DCHECK_EQ(0, item_result);
   5140   uset_close(set);
   5141 #else
   5142   // Fallback if ICU is not included.
   5143   CharacterRange::AddCaseEquivalents(compiler->isolate(), compiler->zone(),
   5144                                      ranges, compiler->one_byte());
   5145 #endif  // V8_I18N_SUPPORT
   5146   CharacterRange::Canonicalize(ranges);
   5147 }
   5148 
   5149 
   5150 RegExpNode* RegExpCharacterClass::ToNode(RegExpCompiler* compiler,
   5151                                          RegExpNode* on_success) {
   5152   set_.Canonicalize();
   5153   Zone* zone = compiler->zone();
   5154   ZoneList<CharacterRange>* ranges = this->ranges(zone);
   5155   if (compiler->unicode() && compiler->ignore_case()) {
   5156     AddUnicodeCaseEquivalents(compiler, ranges);
   5157   }
   5158   if (compiler->unicode() && !compiler->one_byte()) {
   5159     if (is_negated()) {
   5160       ZoneList<CharacterRange>* negated =
   5161           new (zone) ZoneList<CharacterRange>(2, zone);
   5162       CharacterRange::Negate(ranges, negated, zone);
   5163       ranges = negated;
   5164     }
   5165     if (ranges->length() == 0) {
   5166       ranges->Add(CharacterRange::Everything(), zone);
   5167       RegExpCharacterClass* fail =
   5168           new (zone) RegExpCharacterClass(ranges, true);
   5169       return new (zone) TextNode(fail, compiler->read_backward(), on_success);
   5170     }
   5171     if (standard_type() == '*') {
   5172       return UnanchoredAdvance(compiler, on_success);
   5173     } else {
   5174       ChoiceNode* result = new (zone) ChoiceNode(2, zone);
   5175       UnicodeRangeSplitter splitter(zone, ranges);
   5176       AddBmpCharacters(compiler, result, on_success, &splitter);
   5177       AddNonBmpSurrogatePairs(compiler, result, on_success, &splitter);
   5178       AddLoneLeadSurrogates(compiler, result, on_success, &splitter);
   5179       AddLoneTrailSurrogates(compiler, result, on_success, &splitter);
   5180       return result;
   5181     }
   5182   } else {
   5183     return new (zone) TextNode(this, compiler->read_backward(), on_success);
   5184   }
   5185 }
   5186 
   5187 
   5188 int CompareFirstChar(RegExpTree* const* a, RegExpTree* const* b) {
   5189   RegExpAtom* atom1 = (*a)->AsAtom();
   5190   RegExpAtom* atom2 = (*b)->AsAtom();
   5191   uc16 character1 = atom1->data().at(0);
   5192   uc16 character2 = atom2->data().at(0);
   5193   if (character1 < character2) return -1;
   5194   if (character1 > character2) return 1;
   5195   return 0;
   5196 }
   5197 
   5198 
   5199 static unibrow::uchar Canonical(
   5200     unibrow::Mapping<unibrow::Ecma262Canonicalize>* canonicalize,
   5201     unibrow::uchar c) {
   5202   unibrow::uchar chars[unibrow::Ecma262Canonicalize::kMaxWidth];
   5203   int length = canonicalize->get(c, '\0', chars);
   5204   DCHECK_LE(length, 1);
   5205   unibrow::uchar canonical = c;
   5206   if (length == 1) canonical = chars[0];
   5207   return canonical;
   5208 }
   5209 
   5210 
   5211 int CompareFirstCharCaseIndependent(
   5212     unibrow::Mapping<unibrow::Ecma262Canonicalize>* canonicalize,
   5213     RegExpTree* const* a, RegExpTree* const* b) {
   5214   RegExpAtom* atom1 = (*a)->AsAtom();
   5215   RegExpAtom* atom2 = (*b)->AsAtom();
   5216   unibrow::uchar character1 = atom1->data().at(0);
   5217   unibrow::uchar character2 = atom2->data().at(0);
   5218   if (character1 == character2) return 0;
   5219   if (character1 >= 'a' || character2 >= 'a') {
   5220     character1 = Canonical(canonicalize, character1);
   5221     character2 = Canonical(canonicalize, character2);
   5222   }
   5223   return static_cast<int>(character1) - static_cast<int>(character2);
   5224 }
   5225 
   5226 
   5227 // We can stable sort runs of atoms, since the order does not matter if they
   5228 // start with different characters.
   5229 // Returns true if any consecutive atoms were found.
   5230 bool RegExpDisjunction::SortConsecutiveAtoms(RegExpCompiler* compiler) {
   5231   ZoneList<RegExpTree*>* alternatives = this->alternatives();
   5232   int length = alternatives->length();
   5233   bool found_consecutive_atoms = false;
   5234   for (int i = 0; i < length; i++) {
   5235     while (i < length) {
   5236       RegExpTree* alternative = alternatives->at(i);
   5237       if (alternative->IsAtom()) break;
   5238       i++;
   5239     }
   5240     // i is length or it is the index of an atom.
   5241     if (i == length) break;
   5242     int first_atom = i;
   5243     i++;
   5244     while (i < length) {
   5245       RegExpTree* alternative = alternatives->at(i);
   5246       if (!alternative->IsAtom()) break;
   5247       i++;
   5248     }
   5249     // Sort atoms to get ones with common prefixes together.
   5250     // This step is more tricky if we are in a case-independent regexp,
   5251     // because it would change /is|I/ to /I|is/, and order matters when
   5252     // the regexp parts don't match only disjoint starting points. To fix
   5253     // this we have a version of CompareFirstChar that uses case-
   5254     // independent character classes for comparison.
   5255     DCHECK_LT(first_atom, alternatives->length());
   5256     DCHECK_LE(i, alternatives->length());
   5257     DCHECK_LE(first_atom, i);
   5258     if (compiler->ignore_case()) {
   5259       unibrow::Mapping<unibrow::Ecma262Canonicalize>* canonicalize =
   5260           compiler->isolate()->regexp_macro_assembler_canonicalize();
   5261       auto compare_closure =
   5262           [canonicalize](RegExpTree* const* a, RegExpTree* const* b) {
   5263             return CompareFirstCharCaseIndependent(canonicalize, a, b);
   5264           };
   5265       alternatives->StableSort(compare_closure, first_atom, i - first_atom);
   5266     } else {
   5267       alternatives->StableSort(CompareFirstChar, first_atom, i - first_atom);
   5268     }
   5269     if (i - first_atom > 1) found_consecutive_atoms = true;
   5270   }
   5271   return found_consecutive_atoms;
   5272 }
   5273 
   5274 
   5275 // Optimizes ab|ac|az to a(?:b|c|d).
   5276 void RegExpDisjunction::RationalizeConsecutiveAtoms(RegExpCompiler* compiler) {
   5277   Zone* zone = compiler->zone();
   5278   ZoneList<RegExpTree*>* alternatives = this->alternatives();
   5279   int length = alternatives->length();
   5280 
   5281   int write_posn = 0;
   5282   int i = 0;
   5283   while (i < length) {
   5284     RegExpTree* alternative = alternatives->at(i);
   5285     if (!alternative->IsAtom()) {
   5286       alternatives->at(write_posn++) = alternatives->at(i);
   5287       i++;
   5288       continue;
   5289     }
   5290     RegExpAtom* atom = alternative->AsAtom();
   5291     unibrow::uchar common_prefix = atom->data().at(0);
   5292     int first_with_prefix = i;
   5293     int prefix_length = atom->length();
   5294     i++;
   5295     while (i < length) {
   5296       alternative = alternatives->at(i);
   5297       if (!alternative->IsAtom()) break;
   5298       atom = alternative->AsAtom();
   5299       unibrow::uchar new_prefix = atom->data().at(0);
   5300       if (new_prefix != common_prefix) {
   5301         if (!compiler->ignore_case()) break;
   5302         unibrow::Mapping<unibrow::Ecma262Canonicalize>* canonicalize =
   5303             compiler->isolate()->regexp_macro_assembler_canonicalize();
   5304         new_prefix = Canonical(canonicalize, new_prefix);
   5305         common_prefix = Canonical(canonicalize, common_prefix);
   5306         if (new_prefix != common_prefix) break;
   5307       }
   5308       prefix_length = Min(prefix_length, atom->length());
   5309       i++;
   5310     }
   5311     if (i > first_with_prefix + 2) {
   5312       // Found worthwhile run of alternatives with common prefix of at least one
   5313       // character.  The sorting function above did not sort on more than one
   5314       // character for reasons of correctness, but there may still be a longer
   5315       // common prefix if the terms were similar or presorted in the input.
   5316       // Find out how long the common prefix is.
   5317       int run_length = i - first_with_prefix;
   5318       atom = alternatives->at(first_with_prefix)->AsAtom();
   5319       for (int j = 1; j < run_length && prefix_length > 1; j++) {
   5320         RegExpAtom* old_atom =
   5321             alternatives->at(j + first_with_prefix)->AsAtom();
   5322         for (int k = 1; k < prefix_length; k++) {
   5323           if (atom->data().at(k) != old_atom->data().at(k)) {
   5324             prefix_length = k;
   5325             break;
   5326           }
   5327         }
   5328       }
   5329       RegExpAtom* prefix =
   5330           new (zone) RegExpAtom(atom->data().SubVector(0, prefix_length));
   5331       ZoneList<RegExpTree*>* pair = new (zone) ZoneList<RegExpTree*>(2, zone);
   5332       pair->Add(prefix, zone);
   5333       ZoneList<RegExpTree*>* suffixes =
   5334           new (zone) ZoneList<RegExpTree*>(run_length, zone);
   5335       for (int j = 0; j < run_length; j++) {
   5336         RegExpAtom* old_atom =
   5337             alternatives->at(j + first_with_prefix)->AsAtom();
   5338         int len = old_atom->length();
   5339         if (len == prefix_length) {
   5340           suffixes->Add(new (zone) RegExpEmpty(), zone);
   5341         } else {
   5342           RegExpTree* suffix = new (zone) RegExpAtom(
   5343               old_atom->data().SubVector(prefix_length, old_atom->length()));
   5344           suffixes->Add(suffix, zone);
   5345         }
   5346       }
   5347       pair->Add(new (zone) RegExpDisjunction(suffixes), zone);
   5348       alternatives->at(write_posn++) = new (zone) RegExpAlternative(pair);
   5349     } else {
   5350       // Just copy any non-worthwhile alternatives.
   5351       for (int j = first_with_prefix; j < i; j++) {
   5352         alternatives->at(write_posn++) = alternatives->at(j);
   5353       }
   5354     }
   5355   }
   5356   alternatives->Rewind(write_posn);  // Trim end of array.
   5357 }
   5358 
   5359 
   5360 // Optimizes b|c|z to [bcz].
   5361 void RegExpDisjunction::FixSingleCharacterDisjunctions(
   5362     RegExpCompiler* compiler) {
   5363   Zone* zone = compiler->zone();
   5364   ZoneList<RegExpTree*>* alternatives = this->alternatives();
   5365   int length = alternatives->length();
   5366 
   5367   int write_posn = 0;
   5368   int i = 0;
   5369   while (i < length) {
   5370     RegExpTree* alternative = alternatives->at(i);
   5371     if (!alternative->IsAtom()) {
   5372       alternatives->at(write_posn++) = alternatives->at(i);
   5373       i++;
   5374       continue;
   5375     }
   5376     RegExpAtom* atom = alternative->AsAtom();
   5377     if (atom->length() != 1) {
   5378       alternatives->at(write_posn++) = alternatives->at(i);
   5379       i++;
   5380       continue;
   5381     }
   5382     int first_in_run = i;
   5383     i++;
   5384     while (i < length) {
   5385       alternative = alternatives->at(i);
   5386       if (!alternative->IsAtom()) break;
   5387       atom = alternative->AsAtom();
   5388       if (atom->length() != 1) break;
   5389       i++;
   5390     }
   5391     if (i > first_in_run + 1) {
   5392       // Found non-trivial run of single-character alternatives.
   5393       int run_length = i - first_in_run;
   5394       ZoneList<CharacterRange>* ranges =
   5395           new (zone) ZoneList<CharacterRange>(2, zone);
   5396       for (int j = 0; j < run_length; j++) {
   5397         RegExpAtom* old_atom = alternatives->at(j + first_in_run)->AsAtom();
   5398         DCHECK_EQ(old_atom->length(), 1);
   5399         ranges->Add(CharacterRange::Singleton(old_atom->data().at(0)), zone);
   5400       }
   5401       alternatives->at(write_posn++) =
   5402           new (zone) RegExpCharacterClass(ranges, false);
   5403     } else {
   5404       // Just copy any trivial alternatives.
   5405       for (int j = first_in_run; j < i; j++) {
   5406         alternatives->at(write_posn++) = alternatives->at(j);
   5407       }
   5408     }
   5409   }
   5410   alternatives->Rewind(write_posn);  // Trim end of array.
   5411 }
   5412 
   5413 
   5414 RegExpNode* RegExpDisjunction::ToNode(RegExpCompiler* compiler,
   5415                                       RegExpNode* on_success) {
   5416   ZoneList<RegExpTree*>* alternatives = this->alternatives();
   5417 
   5418   if (alternatives->length() > 2) {
   5419     bool found_consecutive_atoms = SortConsecutiveAtoms(compiler);
   5420     if (found_consecutive_atoms) RationalizeConsecutiveAtoms(compiler);
   5421     FixSingleCharacterDisjunctions(compiler);
   5422     if (alternatives->length() == 1) {
   5423       return alternatives->at(0)->ToNode(compiler, on_success);
   5424     }
   5425   }
   5426 
   5427   int length = alternatives->length();
   5428 
   5429   ChoiceNode* result =
   5430       new(compiler->zone()) ChoiceNode(length, compiler->zone());
   5431   for (int i = 0; i < length; i++) {
   5432     GuardedAlternative alternative(alternatives->at(i)->ToNode(compiler,
   5433                                                                on_success));
   5434     result->AddAlternative(alternative);
   5435   }
   5436   return result;
   5437 }
   5438 
   5439 
   5440 RegExpNode* RegExpQuantifier::ToNode(RegExpCompiler* compiler,
   5441                                      RegExpNode* on_success) {
   5442   return ToNode(min(),
   5443                 max(),
   5444                 is_greedy(),
   5445                 body(),
   5446                 compiler,
   5447                 on_success);
   5448 }
   5449 
   5450 
   5451 // Scoped object to keep track of how much we unroll quantifier loops in the
   5452 // regexp graph generator.
   5453 class RegExpExpansionLimiter {
   5454  public:
   5455   static const int kMaxExpansionFactor = 6;
   5456   RegExpExpansionLimiter(RegExpCompiler* compiler, int factor)
   5457       : compiler_(compiler),
   5458         saved_expansion_factor_(compiler->current_expansion_factor()),
   5459         ok_to_expand_(saved_expansion_factor_ <= kMaxExpansionFactor) {
   5460     DCHECK(factor > 0);
   5461     if (ok_to_expand_) {
   5462       if (factor > kMaxExpansionFactor) {
   5463         // Avoid integer overflow of the current expansion factor.
   5464         ok_to_expand_ = false;
   5465         compiler->set_current_expansion_factor(kMaxExpansionFactor + 1);
   5466       } else {
   5467         int new_factor = saved_expansion_factor_ * factor;
   5468         ok_to_expand_ = (new_factor <= kMaxExpansionFactor);
   5469         compiler->set_current_expansion_factor(new_factor);
   5470       }
   5471     }
   5472   }
   5473 
   5474   ~RegExpExpansionLimiter() {
   5475     compiler_->set_current_expansion_factor(saved_expansion_factor_);
   5476   }
   5477 
   5478   bool ok_to_expand() { return ok_to_expand_; }
   5479 
   5480  private:
   5481   RegExpCompiler* compiler_;
   5482   int saved_expansion_factor_;
   5483   bool ok_to_expand_;
   5484 
   5485   DISALLOW_IMPLICIT_CONSTRUCTORS(RegExpExpansionLimiter);
   5486 };
   5487 
   5488 
   5489 RegExpNode* RegExpQuantifier::ToNode(int min,
   5490                                      int max,
   5491                                      bool is_greedy,
   5492                                      RegExpTree* body,
   5493                                      RegExpCompiler* compiler,
   5494                                      RegExpNode* on_success,
   5495                                      bool not_at_start) {
   5496   // x{f, t} becomes this:
   5497   //
   5498   //             (r++)<-.
   5499   //               |     `
   5500   //               |     (x)
   5501   //               v     ^
   5502   //      (r=0)-->(?)---/ [if r < t]
   5503   //               |
   5504   //   [if r >= f] \----> ...
   5505   //
   5506 
   5507   // 15.10.2.5 RepeatMatcher algorithm.
   5508   // The parser has already eliminated the case where max is 0.  In the case
   5509   // where max_match is zero the parser has removed the quantifier if min was
   5510   // > 0 and removed the atom if min was 0.  See AddQuantifierToAtom.
   5511 
   5512   // If we know that we cannot match zero length then things are a little
   5513   // simpler since we don't need to make the special zero length match check
   5514   // from step 2.1.  If the min and max are small we can unroll a little in
   5515   // this case.
   5516   static const int kMaxUnrolledMinMatches = 3;  // Unroll (foo)+ and (foo){3,}
   5517   static const int kMaxUnrolledMaxMatches = 3;  // Unroll (foo)? and (foo){x,3}
   5518   if (max == 0) return on_success;  // This can happen due to recursion.
   5519   bool body_can_be_empty = (body->min_match() == 0);
   5520   int body_start_reg = RegExpCompiler::kNoRegister;
   5521   Interval capture_registers = body->CaptureRegisters();
   5522   bool needs_capture_clearing = !capture_registers.is_empty();
   5523   Zone* zone = compiler->zone();
   5524 
   5525   if (body_can_be_empty) {
   5526     body_start_reg = compiler->AllocateRegister();
   5527   } else if (compiler->optimize() && !needs_capture_clearing) {
   5528     // Only unroll if there are no captures and the body can't be
   5529     // empty.
   5530     {
   5531       RegExpExpansionLimiter limiter(
   5532           compiler, min + ((max != min) ? 1 : 0));
   5533       if (min > 0 && min <= kMaxUnrolledMinMatches && limiter.ok_to_expand()) {
   5534         int new_max = (max == kInfinity) ? max : max - min;
   5535         // Recurse once to get the loop or optional matches after the fixed
   5536         // ones.
   5537         RegExpNode* answer = ToNode(
   5538             0, new_max, is_greedy, body, compiler, on_success, true);
   5539         // Unroll the forced matches from 0 to min.  This can cause chains of
   5540         // TextNodes (which the parser does not generate).  These should be
   5541         // combined if it turns out they hinder good code generation.
   5542         for (int i = 0; i < min; i++) {
   5543           answer = body->ToNode(compiler, answer);
   5544         }
   5545         return answer;
   5546       }
   5547     }
   5548     if (max <= kMaxUnrolledMaxMatches && min == 0) {
   5549       DCHECK(max > 0);  // Due to the 'if' above.
   5550       RegExpExpansionLimiter limiter(compiler, max);
   5551       if (limiter.ok_to_expand()) {
   5552         // Unroll the optional matches up to max.
   5553         RegExpNode* answer = on_success;
   5554         for (int i = 0; i < max; i++) {
   5555           ChoiceNode* alternation = new(zone) ChoiceNode(2, zone);
   5556           if (is_greedy) {
   5557             alternation->AddAlternative(
   5558                 GuardedAlternative(body->ToNode(compiler, answer)));
   5559             alternation->AddAlternative(GuardedAlternative(on_success));
   5560           } else {
   5561             alternation->AddAlternative(GuardedAlternative(on_success));
   5562             alternation->AddAlternative(
   5563                 GuardedAlternative(body->ToNode(compiler, answer)));
   5564           }
   5565           answer = alternation;
   5566           if (not_at_start && !compiler->read_backward()) {
   5567             alternation->set_not_at_start();
   5568           }
   5569         }
   5570         return answer;
   5571       }
   5572     }
   5573   }
   5574   bool has_min = min > 0;
   5575   bool has_max = max < RegExpTree::kInfinity;
   5576   bool needs_counter = has_min || has_max;
   5577   int reg_ctr = needs_counter
   5578       ? compiler->AllocateRegister()
   5579       : RegExpCompiler::kNoRegister;
   5580   LoopChoiceNode* center = new (zone)
   5581       LoopChoiceNode(body->min_match() == 0, compiler->read_backward(), zone);
   5582   if (not_at_start && !compiler->read_backward()) center->set_not_at_start();
   5583   RegExpNode* loop_return = needs_counter
   5584       ? static_cast<RegExpNode*>(ActionNode::IncrementRegister(reg_ctr, center))
   5585       : static_cast<RegExpNode*>(center);
   5586   if (body_can_be_empty) {
   5587     // If the body can be empty we need to check if it was and then
   5588     // backtrack.
   5589     loop_return = ActionNode::EmptyMatchCheck(body_start_reg,
   5590                                               reg_ctr,
   5591                                               min,
   5592                                               loop_return);
   5593   }
   5594   RegExpNode* body_node = body->ToNode(compiler, loop_return);
   5595   if (body_can_be_empty) {
   5596     // If the body can be empty we need to store the start position
   5597     // so we can bail out if it was empty.
   5598     body_node = ActionNode::StorePosition(body_start_reg, false, body_node);
   5599   }
   5600   if (needs_capture_clearing) {
   5601     // Before entering the body of this loop we need to clear captures.
   5602     body_node = ActionNode::ClearCaptures(capture_registers, body_node);
   5603   }
   5604   GuardedAlternative body_alt(body_node);
   5605   if (has_max) {
   5606     Guard* body_guard =
   5607         new(zone) Guard(reg_ctr, Guard::LT, max);
   5608     body_alt.AddGuard(body_guard, zone);
   5609   }
   5610   GuardedAlternative rest_alt(on_success);
   5611   if (has_min) {
   5612     Guard* rest_guard = new(compiler->zone()) Guard(reg_ctr, Guard::GEQ, min);
   5613     rest_alt.AddGuard(rest_guard, zone);
   5614   }
   5615   if (is_greedy) {
   5616     center->AddLoopAlternative(body_alt);
   5617     center->AddContinueAlternative(rest_alt);
   5618   } else {
   5619     center->AddContinueAlternative(rest_alt);
   5620     center->AddLoopAlternative(body_alt);
   5621   }
   5622   if (needs_counter) {
   5623     return ActionNode::SetRegister(reg_ctr, 0, center);
   5624   } else {
   5625     return center;
   5626   }
   5627 }
   5628 
   5629 
   5630 RegExpNode* RegExpAssertion::ToNode(RegExpCompiler* compiler,
   5631                                     RegExpNode* on_success) {
   5632   NodeInfo info;
   5633   Zone* zone = compiler->zone();
   5634 
   5635   switch (assertion_type()) {
   5636     case START_OF_LINE:
   5637       return AssertionNode::AfterNewline(on_success);
   5638     case START_OF_INPUT:
   5639       return AssertionNode::AtStart(on_success);
   5640     case BOUNDARY:
   5641       return AssertionNode::AtBoundary(on_success);
   5642     case NON_BOUNDARY:
   5643       return AssertionNode::AtNonBoundary(on_success);
   5644     case END_OF_INPUT:
   5645       return AssertionNode::AtEnd(on_success);
   5646     case END_OF_LINE: {
   5647       // Compile $ in multiline regexps as an alternation with a positive
   5648       // lookahead in one side and an end-of-input on the other side.
   5649       // We need two registers for the lookahead.
   5650       int stack_pointer_register = compiler->AllocateRegister();
   5651       int position_register = compiler->AllocateRegister();
   5652       // The ChoiceNode to distinguish between a newline and end-of-input.
   5653       ChoiceNode* result = new(zone) ChoiceNode(2, zone);
   5654       // Create a newline atom.
   5655       ZoneList<CharacterRange>* newline_ranges =
   5656           new(zone) ZoneList<CharacterRange>(3, zone);
   5657       CharacterRange::AddClassEscape('n', newline_ranges, zone);
   5658       RegExpCharacterClass* newline_atom = new (zone) RegExpCharacterClass('n');
   5659       TextNode* newline_matcher = new (zone) TextNode(
   5660           newline_atom, false, ActionNode::PositiveSubmatchSuccess(
   5661                                    stack_pointer_register, position_register,
   5662                                    0,   // No captures inside.
   5663                                    -1,  // Ignored if no captures.
   5664                                    on_success));
   5665       // Create an end-of-input matcher.
   5666       RegExpNode* end_of_line = ActionNode::BeginSubmatch(
   5667           stack_pointer_register,
   5668           position_register,
   5669           newline_matcher);
   5670       // Add the two alternatives to the ChoiceNode.
   5671       GuardedAlternative eol_alternative(end_of_line);
   5672       result->AddAlternative(eol_alternative);
   5673       GuardedAlternative end_alternative(AssertionNode::AtEnd(on_success));
   5674       result->AddAlternative(end_alternative);
   5675       return result;
   5676     }
   5677     default:
   5678       UNREACHABLE();
   5679   }
   5680   return on_success;
   5681 }
   5682 
   5683 
   5684 RegExpNode* RegExpBackReference::ToNode(RegExpCompiler* compiler,
   5685                                         RegExpNode* on_success) {
   5686   return new (compiler->zone())
   5687       BackReferenceNode(RegExpCapture::StartRegister(index()),
   5688                         RegExpCapture::EndRegister(index()),
   5689                         compiler->read_backward(), on_success);
   5690 }
   5691 
   5692 
   5693 RegExpNode* RegExpEmpty::ToNode(RegExpCompiler* compiler,
   5694                                 RegExpNode* on_success) {
   5695   return on_success;
   5696 }
   5697 
   5698 
   5699 RegExpLookaround::Builder::Builder(bool is_positive, RegExpNode* on_success,
   5700                                    int stack_pointer_register,
   5701                                    int position_register,
   5702                                    int capture_register_count,
   5703                                    int capture_register_start)
   5704     : is_positive_(is_positive),
   5705       on_success_(on_success),
   5706       stack_pointer_register_(stack_pointer_register),
   5707       position_register_(position_register) {
   5708   if (is_positive_) {
   5709     on_match_success_ = ActionNode::PositiveSubmatchSuccess(
   5710         stack_pointer_register, position_register, capture_register_count,
   5711         capture_register_start, on_success_);
   5712   } else {
   5713     Zone* zone = on_success_->zone();
   5714     on_match_success_ = new (zone) NegativeSubmatchSuccess(
   5715         stack_pointer_register, position_register, capture_register_count,
   5716         capture_register_start, zone);
   5717   }
   5718 }
   5719 
   5720 
   5721 RegExpNode* RegExpLookaround::Builder::ForMatch(RegExpNode* match) {
   5722   if (is_positive_) {
   5723     return ActionNode::BeginSubmatch(stack_pointer_register_,
   5724                                      position_register_, match);
   5725   } else {
   5726     Zone* zone = on_success_->zone();
   5727     // We use a ChoiceNode to represent the negative lookaround. The first
   5728     // alternative is the negative match. On success, the end node backtracks.
   5729     // On failure, the second alternative is tried and leads to success.
   5730     // NegativeLookaheadChoiceNode is a special ChoiceNode that ignores the
   5731     // first exit when calculating quick checks.
   5732     ChoiceNode* choice_node = new (zone) NegativeLookaroundChoiceNode(
   5733         GuardedAlternative(match), GuardedAlternative(on_success_), zone);
   5734     return ActionNode::BeginSubmatch(stack_pointer_register_,
   5735                                      position_register_, choice_node);
   5736   }
   5737 }
   5738 
   5739 
   5740 RegExpNode* RegExpLookaround::ToNode(RegExpCompiler* compiler,
   5741                                      RegExpNode* on_success) {
   5742   int stack_pointer_register = compiler->AllocateRegister();
   5743   int position_register = compiler->AllocateRegister();
   5744 
   5745   const int registers_per_capture = 2;
   5746   const int register_of_first_capture = 2;
   5747   int register_count = capture_count_ * registers_per_capture;
   5748   int register_start =
   5749     register_of_first_capture + capture_from_ * registers_per_capture;
   5750 
   5751   RegExpNode* result;
   5752   bool was_reading_backward = compiler->read_backward();
   5753   compiler->set_read_backward(type() == LOOKBEHIND);
   5754   Builder builder(is_positive(), on_success, stack_pointer_register,
   5755                   position_register, register_count, register_start);
   5756   RegExpNode* match = body_->ToNode(compiler, builder.on_match_success());
   5757   result = builder.ForMatch(match);
   5758   compiler->set_read_backward(was_reading_backward);
   5759   return result;
   5760 }
   5761 
   5762 
   5763 RegExpNode* RegExpCapture::ToNode(RegExpCompiler* compiler,
   5764                                   RegExpNode* on_success) {
   5765   return ToNode(body(), index(), compiler, on_success);
   5766 }
   5767 
   5768 
   5769 RegExpNode* RegExpCapture::ToNode(RegExpTree* body,
   5770                                   int index,
   5771                                   RegExpCompiler* compiler,
   5772                                   RegExpNode* on_success) {
   5773   DCHECK_NOT_NULL(body);
   5774   int start_reg = RegExpCapture::StartRegister(index);
   5775   int end_reg = RegExpCapture::EndRegister(index);
   5776   if (compiler->read_backward()) std::swap(start_reg, end_reg);
   5777   RegExpNode* store_end = ActionNode::StorePosition(end_reg, true, on_success);
   5778   RegExpNode* body_node = body->ToNode(compiler, store_end);
   5779   return ActionNode::StorePosition(start_reg, true, body_node);
   5780 }
   5781 
   5782 
   5783 RegExpNode* RegExpAlternative::ToNode(RegExpCompiler* compiler,
   5784                                       RegExpNode* on_success) {
   5785   ZoneList<RegExpTree*>* children = nodes();
   5786   RegExpNode* current = on_success;
   5787   if (compiler->read_backward()) {
   5788     for (int i = 0; i < children->length(); i++) {
   5789       current = children->at(i)->ToNode(compiler, current);
   5790     }
   5791   } else {
   5792     for (int i = children->length() - 1; i >= 0; i--) {
   5793       current = children->at(i)->ToNode(compiler, current);
   5794     }
   5795   }
   5796   return current;
   5797 }
   5798 
   5799 
   5800 static void AddClass(const int* elmv,
   5801                      int elmc,
   5802                      ZoneList<CharacterRange>* ranges,
   5803                      Zone* zone) {
   5804   elmc--;
   5805   DCHECK(elmv[elmc] == kRangeEndMarker);
   5806   for (int i = 0; i < elmc; i += 2) {
   5807     DCHECK(elmv[i] < elmv[i + 1]);
   5808     ranges->Add(CharacterRange::Range(elmv[i], elmv[i + 1] - 1), zone);
   5809   }
   5810 }
   5811 
   5812 
   5813 static void AddClassNegated(const int *elmv,
   5814                             int elmc,
   5815                             ZoneList<CharacterRange>* ranges,
   5816                             Zone* zone) {
   5817   elmc--;
   5818   DCHECK(elmv[elmc] == kRangeEndMarker);
   5819   DCHECK(elmv[0] != 0x0000);
   5820   DCHECK(elmv[elmc - 1] != String::kMaxCodePoint);
   5821   uc16 last = 0x0000;
   5822   for (int i = 0; i < elmc; i += 2) {
   5823     DCHECK(last <= elmv[i] - 1);
   5824     DCHECK(elmv[i] < elmv[i + 1]);
   5825     ranges->Add(CharacterRange::Range(last, elmv[i] - 1), zone);
   5826     last = elmv[i + 1];
   5827   }
   5828   ranges->Add(CharacterRange::Range(last, String::kMaxCodePoint), zone);
   5829 }
   5830 
   5831 
   5832 void CharacterRange::AddClassEscape(uc16 type,
   5833                                     ZoneList<CharacterRange>* ranges,
   5834                                     Zone* zone) {
   5835   switch (type) {
   5836     case 's':
   5837       AddClass(kSpaceRanges, kSpaceRangeCount, ranges, zone);
   5838       break;
   5839     case 'S':
   5840       AddClassNegated(kSpaceRanges, kSpaceRangeCount, ranges, zone);
   5841       break;
   5842     case 'w':
   5843       AddClass(kWordRanges, kWordRangeCount, ranges, zone);
   5844       break;
   5845     case 'W':
   5846       AddClassNegated(kWordRanges, kWordRangeCount, ranges, zone);
   5847       break;
   5848     case 'd':
   5849       AddClass(kDigitRanges, kDigitRangeCount, ranges, zone);
   5850       break;
   5851     case 'D':
   5852       AddClassNegated(kDigitRanges, kDigitRangeCount, ranges, zone);
   5853       break;
   5854     case '.':
   5855       AddClassNegated(kLineTerminatorRanges,
   5856                       kLineTerminatorRangeCount,
   5857                       ranges,
   5858                       zone);
   5859       break;
   5860     // This is not a character range as defined by the spec but a
   5861     // convenient shorthand for a character class that matches any
   5862     // character.
   5863     case '*':
   5864       ranges->Add(CharacterRange::Everything(), zone);
   5865       break;
   5866     // This is the set of characters matched by the $ and ^ symbols
   5867     // in multiline mode.
   5868     case 'n':
   5869       AddClass(kLineTerminatorRanges,
   5870                kLineTerminatorRangeCount,
   5871                ranges,
   5872                zone);
   5873       break;
   5874     default:
   5875       UNREACHABLE();
   5876   }
   5877 }
   5878 
   5879 
   5880 Vector<const int> CharacterRange::GetWordBounds() {
   5881   return Vector<const int>(kWordRanges, kWordRangeCount - 1);
   5882 }
   5883 
   5884 
   5885 void CharacterRange::AddCaseEquivalents(Isolate* isolate, Zone* zone,
   5886                                         ZoneList<CharacterRange>* ranges,
   5887                                         bool is_one_byte) {
   5888   CharacterRange::Canonicalize(ranges);
   5889   int range_count = ranges->length();
   5890   for (int i = 0; i < range_count; i++) {
   5891     CharacterRange range = ranges->at(i);
   5892     uc32 bottom = range.from();
   5893     if (bottom > String::kMaxUtf16CodeUnit) return;
   5894     uc32 top = Min(range.to(), String::kMaxUtf16CodeUnit);
   5895     // Nothing to be done for surrogates.
   5896     if (bottom >= kLeadSurrogateStart && top <= kTrailSurrogateEnd) return;
   5897     if (is_one_byte && !RangeContainsLatin1Equivalents(range)) {
   5898       if (bottom > String::kMaxOneByteCharCode) return;
   5899       if (top > String::kMaxOneByteCharCode) top = String::kMaxOneByteCharCode;
   5900     }
   5901     unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
   5902     if (top == bottom) {
   5903       // If this is a singleton we just expand the one character.
   5904       int length = isolate->jsregexp_uncanonicalize()->get(bottom, '\0', chars);
   5905       for (int i = 0; i < length; i++) {
   5906         uc32 chr = chars[i];
   5907         if (chr != bottom) {
   5908           ranges->Add(CharacterRange::Singleton(chars[i]), zone);
   5909         }
   5910       }
   5911     } else {
   5912       // If this is a range we expand the characters block by block, expanding
   5913       // contiguous subranges (blocks) one at a time.  The approach is as
   5914       // follows.  For a given start character we look up the remainder of the
   5915       // block that contains it (represented by the end point), for instance we
   5916       // find 'z' if the character is 'c'.  A block is characterized by the
   5917       // property that all characters uncanonicalize in the same way, except
   5918       // that each entry in the result is incremented by the distance from the
   5919       // first element.  So a-z is a block because 'a' uncanonicalizes to ['a',
   5920       // 'A'] and the k'th letter uncanonicalizes to ['a' + k, 'A' + k].  Once
   5921       // we've found the end point we look up its uncanonicalization and
   5922       // produce a range for each element.  For instance for [c-f] we look up
   5923       // ['z', 'Z'] and produce [c-f] and [C-F].  We then only add a range if
   5924       // it is not already contained in the input, so [c-f] will be skipped but
   5925       // [C-F] will be added.  If this range is not completely contained in a
   5926       // block we do this for all the blocks covered by the range (handling
   5927       // characters that is not in a block as a "singleton block").
   5928       unibrow::uchar equivalents[unibrow::Ecma262UnCanonicalize::kMaxWidth];
   5929       int pos = bottom;
   5930       while (pos <= top) {
   5931         int length =
   5932             isolate->jsregexp_canonrange()->get(pos, '\0', equivalents);
   5933         uc32 block_end;
   5934         if (length == 0) {
   5935           block_end = pos;
   5936         } else {
   5937           DCHECK_EQ(1, length);
   5938           block_end = equivalents[0];
   5939         }
   5940         int end = (block_end > top) ? top : block_end;
   5941         length = isolate->jsregexp_uncanonicalize()->get(block_end, '\0',
   5942                                                          equivalents);
   5943         for (int i = 0; i < length; i++) {
   5944           uc32 c = equivalents[i];
   5945           uc32 range_from = c - (block_end - pos);
   5946           uc32 range_to = c - (block_end - end);
   5947           if (!(bottom <= range_from && range_to <= top)) {
   5948             ranges->Add(CharacterRange::Range(range_from, range_to), zone);
   5949           }
   5950         }
   5951         pos = end + 1;
   5952       }
   5953     }
   5954   }
   5955 }
   5956 
   5957 
   5958 bool CharacterRange::IsCanonical(ZoneList<CharacterRange>* ranges) {
   5959   DCHECK_NOT_NULL(ranges);
   5960   int n = ranges->length();
   5961   if (n <= 1) return true;
   5962   int max = ranges->at(0).to();
   5963   for (int i = 1; i < n; i++) {
   5964     CharacterRange next_range = ranges->at(i);
   5965     if (next_range.from() <= max + 1) return false;
   5966     max = next_range.to();
   5967   }
   5968   return true;
   5969 }
   5970 
   5971 
   5972 ZoneList<CharacterRange>* CharacterSet::ranges(Zone* zone) {
   5973   if (ranges_ == NULL) {
   5974     ranges_ = new(zone) ZoneList<CharacterRange>(2, zone);
   5975     CharacterRange::AddClassEscape(standard_set_type_, ranges_, zone);
   5976   }
   5977   return ranges_;
   5978 }
   5979 
   5980 
   5981 // Move a number of elements in a zonelist to another position
   5982 // in the same list. Handles overlapping source and target areas.
   5983 static void MoveRanges(ZoneList<CharacterRange>* list,
   5984                        int from,
   5985                        int to,
   5986                        int count) {
   5987   // Ranges are potentially overlapping.
   5988   if (from < to) {
   5989     for (int i = count - 1; i >= 0; i--) {
   5990       list->at(to + i) = list->at(from + i);
   5991     }
   5992   } else {
   5993     for (int i = 0; i < count; i++) {
   5994       list->at(to + i) = list->at(from + i);
   5995     }
   5996   }
   5997 }
   5998 
   5999 
   6000 static int InsertRangeInCanonicalList(ZoneList<CharacterRange>* list,
   6001                                       int count,
   6002                                       CharacterRange insert) {
   6003   // Inserts a range into list[0..count[, which must be sorted
   6004   // by from value and non-overlapping and non-adjacent, using at most
   6005   // list[0..count] for the result. Returns the number of resulting
   6006   // canonicalized ranges. Inserting a range may collapse existing ranges into
   6007   // fewer ranges, so the return value can be anything in the range 1..count+1.
   6008   uc32 from = insert.from();
   6009   uc32 to = insert.to();
   6010   int start_pos = 0;
   6011   int end_pos = count;
   6012   for (int i = count - 1; i >= 0; i--) {
   6013     CharacterRange current = list->at(i);
   6014     if (current.from() > to + 1) {
   6015       end_pos = i;
   6016     } else if (current.to() + 1 < from) {
   6017       start_pos = i + 1;
   6018       break;
   6019     }
   6020   }
   6021 
   6022   // Inserted range overlaps, or is adjacent to, ranges at positions
   6023   // [start_pos..end_pos[. Ranges before start_pos or at or after end_pos are
   6024   // not affected by the insertion.
   6025   // If start_pos == end_pos, the range must be inserted before start_pos.
   6026   // if start_pos < end_pos, the entire range from start_pos to end_pos
   6027   // must be merged with the insert range.
   6028 
   6029   if (start_pos == end_pos) {
   6030     // Insert between existing ranges at position start_pos.
   6031     if (start_pos < count) {
   6032       MoveRanges(list, start_pos, start_pos + 1, count - start_pos);
   6033     }
   6034     list->at(start_pos) = insert;
   6035     return count + 1;
   6036   }
   6037   if (start_pos + 1 == end_pos) {
   6038     // Replace single existing range at position start_pos.
   6039     CharacterRange to_replace = list->at(start_pos);
   6040     int new_from = Min(to_replace.from(), from);
   6041     int new_to = Max(to_replace.to(), to);
   6042     list->at(start_pos) = CharacterRange::Range(new_from, new_to);
   6043     return count;
   6044   }
   6045   // Replace a number of existing ranges from start_pos to end_pos - 1.
   6046   // Move the remaining ranges down.
   6047 
   6048   int new_from = Min(list->at(start_pos).from(), from);
   6049   int new_to = Max(list->at(end_pos - 1).to(), to);
   6050   if (end_pos < count) {
   6051     MoveRanges(list, end_pos, start_pos + 1, count - end_pos);
   6052   }
   6053   list->at(start_pos) = CharacterRange::Range(new_from, new_to);
   6054   return count - (end_pos - start_pos) + 1;
   6055 }
   6056 
   6057 
   6058 void CharacterSet::Canonicalize() {
   6059   // Special/default classes are always considered canonical. The result
   6060   // of calling ranges() will be sorted.
   6061   if (ranges_ == NULL) return;
   6062   CharacterRange::Canonicalize(ranges_);
   6063 }
   6064 
   6065 
   6066 void CharacterRange::Canonicalize(ZoneList<CharacterRange>* character_ranges) {
   6067   if (character_ranges->length() <= 1) return;
   6068   // Check whether ranges are already canonical (increasing, non-overlapping,
   6069   // non-adjacent).
   6070   int n = character_ranges->length();
   6071   int max = character_ranges->at(0).to();
   6072   int i = 1;
   6073   while (i < n) {
   6074     CharacterRange current = character_ranges->at(i);
   6075     if (current.from() <= max + 1) {
   6076       break;
   6077     }
   6078     max = current.to();
   6079     i++;
   6080   }
   6081   // Canonical until the i'th range. If that's all of them, we are done.
   6082   if (i == n) return;
   6083 
   6084   // The ranges at index i and forward are not canonicalized. Make them so by
   6085   // doing the equivalent of insertion sort (inserting each into the previous
   6086   // list, in order).
   6087   // Notice that inserting a range can reduce the number of ranges in the
   6088   // result due to combining of adjacent and overlapping ranges.
   6089   int read = i;  // Range to insert.
   6090   int num_canonical = i;  // Length of canonicalized part of list.
   6091   do {
   6092     num_canonical = InsertRangeInCanonicalList(character_ranges,
   6093                                                num_canonical,
   6094                                                character_ranges->at(read));
   6095     read++;
   6096   } while (read < n);
   6097   character_ranges->Rewind(num_canonical);
   6098 
   6099   DCHECK(CharacterRange::IsCanonical(character_ranges));
   6100 }
   6101 
   6102 
   6103 void CharacterRange::Negate(ZoneList<CharacterRange>* ranges,
   6104                             ZoneList<CharacterRange>* negated_ranges,
   6105                             Zone* zone) {
   6106   DCHECK(CharacterRange::IsCanonical(ranges));
   6107   DCHECK_EQ(0, negated_ranges->length());
   6108   int range_count = ranges->length();
   6109   uc32 from = 0;
   6110   int i = 0;
   6111   if (range_count > 0 && ranges->at(0).from() == 0) {
   6112     from = ranges->at(0).to() + 1;
   6113     i = 1;
   6114   }
   6115   while (i < range_count) {
   6116     CharacterRange range = ranges->at(i);
   6117     negated_ranges->Add(CharacterRange::Range(from, range.from() - 1), zone);
   6118     from = range.to() + 1;
   6119     i++;
   6120   }
   6121   if (from < String::kMaxCodePoint) {
   6122     negated_ranges->Add(CharacterRange::Range(from, String::kMaxCodePoint),
   6123                         zone);
   6124   }
   6125 }
   6126 
   6127 
   6128 // -------------------------------------------------------------------
   6129 // Splay tree
   6130 
   6131 
   6132 OutSet* OutSet::Extend(unsigned value, Zone* zone) {
   6133   if (Get(value))
   6134     return this;
   6135   if (successors(zone) != NULL) {
   6136     for (int i = 0; i < successors(zone)->length(); i++) {
   6137       OutSet* successor = successors(zone)->at(i);
   6138       if (successor->Get(value))
   6139         return successor;
   6140     }
   6141   } else {
   6142     successors_ = new(zone) ZoneList<OutSet*>(2, zone);
   6143   }
   6144   OutSet* result = new(zone) OutSet(first_, remaining_);
   6145   result->Set(value, zone);
   6146   successors(zone)->Add(result, zone);
   6147   return result;
   6148 }
   6149 
   6150 
   6151 void OutSet::Set(unsigned value, Zone *zone) {
   6152   if (value < kFirstLimit) {
   6153     first_ |= (1 << value);
   6154   } else {
   6155     if (remaining_ == NULL)
   6156       remaining_ = new(zone) ZoneList<unsigned>(1, zone);
   6157     if (remaining_->is_empty() || !remaining_->Contains(value))
   6158       remaining_->Add(value, zone);
   6159   }
   6160 }
   6161 
   6162 
   6163 bool OutSet::Get(unsigned value) const {
   6164   if (value < kFirstLimit) {
   6165     return (first_ & (1 << value)) != 0;
   6166   } else if (remaining_ == NULL) {
   6167     return false;
   6168   } else {
   6169     return remaining_->Contains(value);
   6170   }
   6171 }
   6172 
   6173 
   6174 const uc32 DispatchTable::Config::kNoKey = unibrow::Utf8::kBadChar;
   6175 
   6176 
   6177 void DispatchTable::AddRange(CharacterRange full_range, int value,
   6178                              Zone* zone) {
   6179   CharacterRange current = full_range;
   6180   if (tree()->is_empty()) {
   6181     // If this is the first range we just insert into the table.
   6182     ZoneSplayTree<Config>::Locator loc;
   6183     bool inserted = tree()->Insert(current.from(), &loc);
   6184     DCHECK(inserted);
   6185     USE(inserted);
   6186     loc.set_value(Entry(current.from(), current.to(),
   6187                         empty()->Extend(value, zone)));
   6188     return;
   6189   }
   6190   // First see if there is a range to the left of this one that
   6191   // overlaps.
   6192   ZoneSplayTree<Config>::Locator loc;
   6193   if (tree()->FindGreatestLessThan(current.from(), &loc)) {
   6194     Entry* entry = &loc.value();
   6195     // If we've found a range that overlaps with this one, and it
   6196     // starts strictly to the left of this one, we have to fix it
   6197     // because the following code only handles ranges that start on
   6198     // or after the start point of the range we're adding.
   6199     if (entry->from() < current.from() && entry->to() >= current.from()) {
   6200       // Snap the overlapping range in half around the start point of
   6201       // the range we're adding.
   6202       CharacterRange left =
   6203           CharacterRange::Range(entry->from(), current.from() - 1);
   6204       CharacterRange right = CharacterRange::Range(current.from(), entry->to());
   6205       // The left part of the overlapping range doesn't overlap.
   6206       // Truncate the whole entry to be just the left part.
   6207       entry->set_to(left.to());
   6208       // The right part is the one that overlaps.  We add this part
   6209       // to the map and let the next step deal with merging it with
   6210       // the range we're adding.
   6211       ZoneSplayTree<Config>::Locator loc;
   6212       bool inserted = tree()->Insert(right.from(), &loc);
   6213       DCHECK(inserted);
   6214       USE(inserted);
   6215       loc.set_value(Entry(right.from(),
   6216                           right.to(),
   6217                           entry->out_set()));
   6218     }
   6219   }
   6220   while (current.is_valid()) {
   6221     if (tree()->FindLeastGreaterThan(current.from(), &loc) &&
   6222         (loc.value().from() <= current.to()) &&
   6223         (loc.value().to() >= current.from())) {
   6224       Entry* entry = &loc.value();
   6225       // We have overlap.  If there is space between the start point of
   6226       // the range we're adding and where the overlapping range starts
   6227       // then we have to add a range covering just that space.
   6228       if (current.from() < entry->from()) {
   6229         ZoneSplayTree<Config>::Locator ins;
   6230         bool inserted = tree()->Insert(current.from(), &ins);
   6231         DCHECK(inserted);
   6232         USE(inserted);
   6233         ins.set_value(Entry(current.from(),
   6234                             entry->from() - 1,
   6235                             empty()->Extend(value, zone)));
   6236         current.set_from(entry->from());
   6237       }
   6238       DCHECK_EQ(current.from(), entry->from());
   6239       // If the overlapping range extends beyond the one we want to add
   6240       // we have to snap the right part off and add it separately.
   6241       if (entry->to() > current.to()) {
   6242         ZoneSplayTree<Config>::Locator ins;
   6243         bool inserted = tree()->Insert(current.to() + 1, &ins);
   6244         DCHECK(inserted);
   6245         USE(inserted);
   6246         ins.set_value(Entry(current.to() + 1,
   6247                             entry->to(),
   6248                             entry->out_set()));
   6249         entry->set_to(current.to());
   6250       }
   6251       DCHECK(entry->to() <= current.to());
   6252       // The overlapping range is now completely contained by the range
   6253       // we're adding so we can just update it and move the start point
   6254       // of the range we're adding just past it.
   6255       entry->AddValue(value, zone);
   6256       DCHECK(entry->to() + 1 > current.from());
   6257       current.set_from(entry->to() + 1);
   6258     } else {
   6259       // There is no overlap so we can just add the range
   6260       ZoneSplayTree<Config>::Locator ins;
   6261       bool inserted = tree()->Insert(current.from(), &ins);
   6262       DCHECK(inserted);
   6263       USE(inserted);
   6264       ins.set_value(Entry(current.from(),
   6265                           current.to(),
   6266                           empty()->Extend(value, zone)));
   6267       break;
   6268     }
   6269   }
   6270 }
   6271 
   6272 
   6273 OutSet* DispatchTable::Get(uc32 value) {
   6274   ZoneSplayTree<Config>::Locator loc;
   6275   if (!tree()->FindGreatestLessThan(value, &loc))
   6276     return empty();
   6277   Entry* entry = &loc.value();
   6278   if (value <= entry->to())
   6279     return entry->out_set();
   6280   else
   6281     return empty();
   6282 }
   6283 
   6284 
   6285 // -------------------------------------------------------------------
   6286 // Analysis
   6287 
   6288 
   6289 void Analysis::EnsureAnalyzed(RegExpNode* that) {
   6290   StackLimitCheck check(isolate());
   6291   if (check.HasOverflowed()) {
   6292     fail("Stack overflow");
   6293     return;
   6294   }
   6295   if (that->info()->been_analyzed || that->info()->being_analyzed)
   6296     return;
   6297   that->info()->being_analyzed = true;
   6298   that->Accept(this);
   6299   that->info()->being_analyzed = false;
   6300   that->info()->been_analyzed = true;
   6301 }
   6302 
   6303 
   6304 void Analysis::VisitEnd(EndNode* that) {
   6305   // nothing to do
   6306 }
   6307 
   6308 
   6309 void TextNode::CalculateOffsets() {
   6310   int element_count = elements()->length();
   6311   // Set up the offsets of the elements relative to the start.  This is a fixed
   6312   // quantity since a TextNode can only contain fixed-width things.
   6313   int cp_offset = 0;
   6314   for (int i = 0; i < element_count; i++) {
   6315     TextElement& elm = elements()->at(i);
   6316     elm.set_cp_offset(cp_offset);
   6317     cp_offset += elm.length();
   6318   }
   6319 }
   6320 
   6321 
   6322 void Analysis::VisitText(TextNode* that) {
   6323   if (ignore_case()) {
   6324     that->MakeCaseIndependent(isolate(), is_one_byte_);
   6325   }
   6326   EnsureAnalyzed(that->on_success());
   6327   if (!has_failed()) {
   6328     that->CalculateOffsets();
   6329   }
   6330 }
   6331 
   6332 
   6333 void Analysis::VisitAction(ActionNode* that) {
   6334   RegExpNode* target = that->on_success();
   6335   EnsureAnalyzed(target);
   6336   if (!has_failed()) {
   6337     // If the next node is interested in what it follows then this node
   6338     // has to be interested too so it can pass the information on.
   6339     that->info()->AddFromFollowing(target->info());
   6340   }
   6341 }
   6342 
   6343 
   6344 void Analysis::VisitChoice(ChoiceNode* that) {
   6345   NodeInfo* info = that->info();
   6346   for (int i = 0; i < that->alternatives()->length(); i++) {
   6347     RegExpNode* node = that->alternatives()->at(i).node();
   6348     EnsureAnalyzed(node);
   6349     if (has_failed()) return;
   6350     // Anything the following nodes need to know has to be known by
   6351     // this node also, so it can pass it on.
   6352     info->AddFromFollowing(node->info());
   6353   }
   6354 }
   6355 
   6356 
   6357 void Analysis::VisitLoopChoice(LoopChoiceNode* that) {
   6358   NodeInfo* info = that->info();
   6359   for (int i = 0; i < that->alternatives()->length(); i++) {
   6360     RegExpNode* node = that->alternatives()->at(i).node();
   6361     if (node != that->loop_node()) {
   6362       EnsureAnalyzed(node);
   6363       if (has_failed()) return;
   6364       info->AddFromFollowing(node->info());
   6365     }
   6366   }
   6367   // Check the loop last since it may need the value of this node
   6368   // to get a correct result.
   6369   EnsureAnalyzed(that->loop_node());
   6370   if (!has_failed()) {
   6371     info->AddFromFollowing(that->loop_node()->info());
   6372   }
   6373 }
   6374 
   6375 
   6376 void Analysis::VisitBackReference(BackReferenceNode* that) {
   6377   EnsureAnalyzed(that->on_success());
   6378 }
   6379 
   6380 
   6381 void Analysis::VisitAssertion(AssertionNode* that) {
   6382   EnsureAnalyzed(that->on_success());
   6383 }
   6384 
   6385 
   6386 void BackReferenceNode::FillInBMInfo(Isolate* isolate, int offset, int budget,
   6387                                      BoyerMooreLookahead* bm,
   6388                                      bool not_at_start) {
   6389   // Working out the set of characters that a backreference can match is too
   6390   // hard, so we just say that any character can match.
   6391   bm->SetRest(offset);
   6392   SaveBMInfo(bm, not_at_start, offset);
   6393 }
   6394 
   6395 
   6396 STATIC_ASSERT(BoyerMoorePositionInfo::kMapSize ==
   6397               RegExpMacroAssembler::kTableSize);
   6398 
   6399 
   6400 void ChoiceNode::FillInBMInfo(Isolate* isolate, int offset, int budget,
   6401                               BoyerMooreLookahead* bm, bool not_at_start) {
   6402   ZoneList<GuardedAlternative>* alts = alternatives();
   6403   budget = (budget - 1) / alts->length();
   6404   for (int i = 0; i < alts->length(); i++) {
   6405     GuardedAlternative& alt = alts->at(i);
   6406     if (alt.guards() != NULL && alt.guards()->length() != 0) {
   6407       bm->SetRest(offset);  // Give up trying to fill in info.
   6408       SaveBMInfo(bm, not_at_start, offset);
   6409       return;
   6410     }
   6411     alt.node()->FillInBMInfo(isolate, offset, budget, bm, not_at_start);
   6412   }
   6413   SaveBMInfo(bm, not_at_start, offset);
   6414 }
   6415 
   6416 
   6417 void TextNode::FillInBMInfo(Isolate* isolate, int initial_offset, int budget,
   6418                             BoyerMooreLookahead* bm, bool not_at_start) {
   6419   if (initial_offset >= bm->length()) return;
   6420   int offset = initial_offset;
   6421   int max_char = bm->max_char();
   6422   for (int i = 0; i < elements()->length(); i++) {
   6423     if (offset >= bm->length()) {
   6424       if (initial_offset == 0) set_bm_info(not_at_start, bm);
   6425       return;
   6426     }
   6427     TextElement text = elements()->at(i);
   6428     if (text.text_type() == TextElement::ATOM) {
   6429       RegExpAtom* atom = text.atom();
   6430       for (int j = 0; j < atom->length(); j++, offset++) {
   6431         if (offset >= bm->length()) {
   6432           if (initial_offset == 0) set_bm_info(not_at_start, bm);
   6433           return;
   6434         }
   6435         uc16 character = atom->data()[j];
   6436         if (bm->compiler()->ignore_case()) {
   6437           unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
   6438           int length = GetCaseIndependentLetters(
   6439               isolate, character, bm->max_char() == String::kMaxOneByteCharCode,
   6440               chars);
   6441           for (int j = 0; j < length; j++) {
   6442             bm->Set(offset, chars[j]);
   6443           }
   6444         } else {
   6445           if (character <= max_char) bm->Set(offset, character);
   6446         }
   6447       }
   6448     } else {
   6449       DCHECK_EQ(TextElement::CHAR_CLASS, text.text_type());
   6450       RegExpCharacterClass* char_class = text.char_class();
   6451       ZoneList<CharacterRange>* ranges = char_class->ranges(zone());
   6452       if (char_class->is_negated()) {
   6453         bm->SetAll(offset);
   6454       } else {
   6455         for (int k = 0; k < ranges->length(); k++) {
   6456           CharacterRange& range = ranges->at(k);
   6457           if (range.from() > max_char) continue;
   6458           int to = Min(max_char, static_cast<int>(range.to()));
   6459           bm->SetInterval(offset, Interval(range.from(), to));
   6460         }
   6461       }
   6462       offset++;
   6463     }
   6464   }
   6465   if (offset >= bm->length()) {
   6466     if (initial_offset == 0) set_bm_info(not_at_start, bm);
   6467     return;
   6468   }
   6469   on_success()->FillInBMInfo(isolate, offset, budget - 1, bm,
   6470                              true);  // Not at start after a text node.
   6471   if (initial_offset == 0) set_bm_info(not_at_start, bm);
   6472 }
   6473 
   6474 
   6475 // -------------------------------------------------------------------
   6476 // Dispatch table construction
   6477 
   6478 
   6479 void DispatchTableConstructor::VisitEnd(EndNode* that) {
   6480   AddRange(CharacterRange::Everything());
   6481 }
   6482 
   6483 
   6484 void DispatchTableConstructor::BuildTable(ChoiceNode* node) {
   6485   node->set_being_calculated(true);
   6486   ZoneList<GuardedAlternative>* alternatives = node->alternatives();
   6487   for (int i = 0; i < alternatives->length(); i++) {
   6488     set_choice_index(i);
   6489     alternatives->at(i).node()->Accept(this);
   6490   }
   6491   node->set_being_calculated(false);
   6492 }
   6493 
   6494 
   6495 class AddDispatchRange {
   6496  public:
   6497   explicit AddDispatchRange(DispatchTableConstructor* constructor)
   6498     : constructor_(constructor) { }
   6499   void Call(uc32 from, DispatchTable::Entry entry);
   6500  private:
   6501   DispatchTableConstructor* constructor_;
   6502 };
   6503 
   6504 
   6505 void AddDispatchRange::Call(uc32 from, DispatchTable::Entry entry) {
   6506   constructor_->AddRange(CharacterRange::Range(from, entry.to()));
   6507 }
   6508 
   6509 
   6510 void DispatchTableConstructor::VisitChoice(ChoiceNode* node) {
   6511   if (node->being_calculated())
   6512     return;
   6513   DispatchTable* table = node->GetTable(ignore_case_);
   6514   AddDispatchRange adder(this);
   6515   table->ForEach(&adder);
   6516 }
   6517 
   6518 
   6519 void DispatchTableConstructor::VisitBackReference(BackReferenceNode* that) {
   6520   // TODO(160): Find the node that we refer back to and propagate its start
   6521   // set back to here.  For now we just accept anything.
   6522   AddRange(CharacterRange::Everything());
   6523 }
   6524 
   6525 
   6526 void DispatchTableConstructor::VisitAssertion(AssertionNode* that) {
   6527   RegExpNode* target = that->on_success();
   6528   target->Accept(this);
   6529 }
   6530 
   6531 
   6532 static int CompareRangeByFrom(const CharacterRange* a,
   6533                               const CharacterRange* b) {
   6534   return Compare<uc16>(a->from(), b->from());
   6535 }
   6536 
   6537 
   6538 void DispatchTableConstructor::AddInverse(ZoneList<CharacterRange>* ranges) {
   6539   ranges->Sort(CompareRangeByFrom);
   6540   uc16 last = 0;
   6541   for (int i = 0; i < ranges->length(); i++) {
   6542     CharacterRange range = ranges->at(i);
   6543     if (last < range.from())
   6544       AddRange(CharacterRange::Range(last, range.from() - 1));
   6545     if (range.to() >= last) {
   6546       if (range.to() == String::kMaxCodePoint) {
   6547         return;
   6548       } else {
   6549         last = range.to() + 1;
   6550       }
   6551     }
   6552   }
   6553   AddRange(CharacterRange::Range(last, String::kMaxCodePoint));
   6554 }
   6555 
   6556 
   6557 void DispatchTableConstructor::VisitText(TextNode* that) {
   6558   TextElement elm = that->elements()->at(0);
   6559   switch (elm.text_type()) {
   6560     case TextElement::ATOM: {
   6561       uc16 c = elm.atom()->data()[0];
   6562       AddRange(CharacterRange::Range(c, c));
   6563       break;
   6564     }
   6565     case TextElement::CHAR_CLASS: {
   6566       RegExpCharacterClass* tree = elm.char_class();
   6567       ZoneList<CharacterRange>* ranges = tree->ranges(that->zone());
   6568       if (tree->is_negated()) {
   6569         AddInverse(ranges);
   6570       } else {
   6571         for (int i = 0; i < ranges->length(); i++)
   6572           AddRange(ranges->at(i));
   6573       }
   6574       break;
   6575     }
   6576     default: {
   6577       UNIMPLEMENTED();
   6578     }
   6579   }
   6580 }
   6581 
   6582 
   6583 void DispatchTableConstructor::VisitAction(ActionNode* that) {
   6584   RegExpNode* target = that->on_success();
   6585   target->Accept(this);
   6586 }
   6587 
   6588 
   6589 RegExpNode* OptionallyStepBackToLeadSurrogate(RegExpCompiler* compiler,
   6590                                               RegExpNode* on_success) {
   6591   // If the regexp matching starts within a surrogate pair, step back
   6592   // to the lead surrogate and start matching from there.
   6593   DCHECK(!compiler->read_backward());
   6594   Zone* zone = compiler->zone();
   6595   ZoneList<CharacterRange>* lead_surrogates = CharacterRange::List(
   6596       zone, CharacterRange::Range(kLeadSurrogateStart, kLeadSurrogateEnd));
   6597   ZoneList<CharacterRange>* trail_surrogates = CharacterRange::List(
   6598       zone, CharacterRange::Range(kTrailSurrogateStart, kTrailSurrogateEnd));
   6599 
   6600   ChoiceNode* optional_step_back = new (zone) ChoiceNode(2, zone);
   6601 
   6602   int stack_register = compiler->UnicodeLookaroundStackRegister();
   6603   int position_register = compiler->UnicodeLookaroundPositionRegister();
   6604   RegExpNode* step_back = TextNode::CreateForCharacterRanges(
   6605       zone, lead_surrogates, true, on_success);
   6606   RegExpLookaround::Builder builder(true, step_back, stack_register,
   6607                                     position_register);
   6608   RegExpNode* match_trail = TextNode::CreateForCharacterRanges(
   6609       zone, trail_surrogates, false, builder.on_match_success());
   6610 
   6611   optional_step_back->AddAlternative(
   6612       GuardedAlternative(builder.ForMatch(match_trail)));
   6613   optional_step_back->AddAlternative(GuardedAlternative(on_success));
   6614 
   6615   return optional_step_back;
   6616 }
   6617 
   6618 
   6619 RegExpEngine::CompilationResult RegExpEngine::Compile(
   6620     Isolate* isolate, Zone* zone, RegExpCompileData* data,
   6621     JSRegExp::Flags flags, Handle<String> pattern,
   6622     Handle<String> sample_subject, bool is_one_byte) {
   6623   if ((data->capture_count + 1) * 2 - 1 > RegExpMacroAssembler::kMaxRegister) {
   6624     return IrregexpRegExpTooBig(isolate);
   6625   }
   6626   bool ignore_case = flags & JSRegExp::kIgnoreCase;
   6627   bool is_sticky = flags & JSRegExp::kSticky;
   6628   bool is_global = flags & JSRegExp::kGlobal;
   6629   bool is_unicode = flags & JSRegExp::kUnicode;
   6630   RegExpCompiler compiler(isolate, zone, data->capture_count, flags,
   6631                           is_one_byte);
   6632 
   6633   if (compiler.optimize()) compiler.set_optimize(!TooMuchRegExpCode(pattern));
   6634 
   6635   // Sample some characters from the middle of the string.
   6636   static const int kSampleSize = 128;
   6637 
   6638   sample_subject = String::Flatten(sample_subject);
   6639   int chars_sampled = 0;
   6640   int half_way = (sample_subject->length() - kSampleSize) / 2;
   6641   for (int i = Max(0, half_way);
   6642        i < sample_subject->length() && chars_sampled < kSampleSize;
   6643        i++, chars_sampled++) {
   6644     compiler.frequency_collator()->CountCharacter(sample_subject->Get(i));
   6645   }
   6646 
   6647   // Wrap the body of the regexp in capture #0.
   6648   RegExpNode* captured_body = RegExpCapture::ToNode(data->tree,
   6649                                                     0,
   6650                                                     &compiler,
   6651                                                     compiler.accept());
   6652   RegExpNode* node = captured_body;
   6653   bool is_end_anchored = data->tree->IsAnchoredAtEnd();
   6654   bool is_start_anchored = data->tree->IsAnchoredAtStart();
   6655   int max_length = data->tree->max_match();
   6656   if (!is_start_anchored && !is_sticky) {
   6657     // Add a .*? at the beginning, outside the body capture, unless
   6658     // this expression is anchored at the beginning or sticky.
   6659     RegExpNode* loop_node = RegExpQuantifier::ToNode(
   6660         0, RegExpTree::kInfinity, false, new (zone) RegExpCharacterClass('*'),
   6661         &compiler, captured_body, data->contains_anchor);
   6662 
   6663     if (data->contains_anchor) {
   6664       // Unroll loop once, to take care of the case that might start
   6665       // at the start of input.
   6666       ChoiceNode* first_step_node = new(zone) ChoiceNode(2, zone);
   6667       first_step_node->AddAlternative(GuardedAlternative(captured_body));
   6668       first_step_node->AddAlternative(GuardedAlternative(new (zone) TextNode(
   6669           new (zone) RegExpCharacterClass('*'), false, loop_node)));
   6670       node = first_step_node;
   6671     } else {
   6672       node = loop_node;
   6673     }
   6674   }
   6675   if (is_one_byte) {
   6676     node = node->FilterOneByte(RegExpCompiler::kMaxRecursion, ignore_case);
   6677     // Do it again to propagate the new nodes to places where they were not
   6678     // put because they had not been calculated yet.
   6679     if (node != NULL) {
   6680       node = node->FilterOneByte(RegExpCompiler::kMaxRecursion, ignore_case);
   6681     }
   6682   } else if (compiler.unicode() && (is_global || is_sticky)) {
   6683     node = OptionallyStepBackToLeadSurrogate(&compiler, node);
   6684   }
   6685 
   6686   if (node == NULL) node = new(zone) EndNode(EndNode::BACKTRACK, zone);
   6687   data->node = node;
   6688   Analysis analysis(isolate, flags, is_one_byte);
   6689   analysis.EnsureAnalyzed(node);
   6690   if (analysis.has_failed()) {
   6691     const char* error_message = analysis.error_message();
   6692     return CompilationResult(isolate, error_message);
   6693   }
   6694 
   6695   // Create the correct assembler for the architecture.
   6696 #ifndef V8_INTERPRETED_REGEXP
   6697   // Native regexp implementation.
   6698 
   6699   NativeRegExpMacroAssembler::Mode mode =
   6700       is_one_byte ? NativeRegExpMacroAssembler::LATIN1
   6701                   : NativeRegExpMacroAssembler::UC16;
   6702 
   6703 #if V8_TARGET_ARCH_IA32
   6704   RegExpMacroAssemblerIA32 macro_assembler(isolate, zone, mode,
   6705                                            (data->capture_count + 1) * 2);
   6706 #elif V8_TARGET_ARCH_X64
   6707   RegExpMacroAssemblerX64 macro_assembler(isolate, zone, mode,
   6708                                           (data->capture_count + 1) * 2);
   6709 #elif V8_TARGET_ARCH_ARM
   6710   RegExpMacroAssemblerARM macro_assembler(isolate, zone, mode,
   6711                                           (data->capture_count + 1) * 2);
   6712 #elif V8_TARGET_ARCH_ARM64
   6713   RegExpMacroAssemblerARM64 macro_assembler(isolate, zone, mode,
   6714                                             (data->capture_count + 1) * 2);
   6715 #elif V8_TARGET_ARCH_S390
   6716   RegExpMacroAssemblerS390 macro_assembler(isolate, zone, mode,
   6717                                            (data->capture_count + 1) * 2);
   6718 #elif V8_TARGET_ARCH_PPC
   6719   RegExpMacroAssemblerPPC macro_assembler(isolate, zone, mode,
   6720                                           (data->capture_count + 1) * 2);
   6721 #elif V8_TARGET_ARCH_MIPS
   6722   RegExpMacroAssemblerMIPS macro_assembler(isolate, zone, mode,
   6723                                            (data->capture_count + 1) * 2);
   6724 #elif V8_TARGET_ARCH_MIPS64
   6725   RegExpMacroAssemblerMIPS macro_assembler(isolate, zone, mode,
   6726                                            (data->capture_count + 1) * 2);
   6727 #elif V8_TARGET_ARCH_X87
   6728   RegExpMacroAssemblerX87 macro_assembler(isolate, zone, mode,
   6729                                           (data->capture_count + 1) * 2);
   6730 #else
   6731 #error "Unsupported architecture"
   6732 #endif
   6733 
   6734 #else  // V8_INTERPRETED_REGEXP
   6735   // Interpreted regexp implementation.
   6736   EmbeddedVector<byte, 1024> codes;
   6737   RegExpMacroAssemblerIrregexp macro_assembler(isolate, codes, zone);
   6738 #endif  // V8_INTERPRETED_REGEXP
   6739 
   6740   macro_assembler.set_slow_safe(TooMuchRegExpCode(pattern));
   6741 
   6742   // Inserted here, instead of in Assembler, because it depends on information
   6743   // in the AST that isn't replicated in the Node structure.
   6744   static const int kMaxBacksearchLimit = 1024;
   6745   if (is_end_anchored &&
   6746       !is_start_anchored &&
   6747       max_length < kMaxBacksearchLimit) {
   6748     macro_assembler.SetCurrentPositionFromEnd(max_length);
   6749   }
   6750 
   6751   if (is_global) {
   6752     RegExpMacroAssembler::GlobalMode mode = RegExpMacroAssembler::GLOBAL;
   6753     if (data->tree->min_match() > 0) {
   6754       mode = RegExpMacroAssembler::GLOBAL_NO_ZERO_LENGTH_CHECK;
   6755     } else if (is_unicode) {
   6756       mode = RegExpMacroAssembler::GLOBAL_UNICODE;
   6757     }
   6758     macro_assembler.set_global_mode(mode);
   6759   }
   6760 
   6761   return compiler.Assemble(&macro_assembler,
   6762                            node,
   6763                            data->capture_count,
   6764                            pattern);
   6765 }
   6766 
   6767 
   6768 bool RegExpEngine::TooMuchRegExpCode(Handle<String> pattern) {
   6769   Heap* heap = pattern->GetHeap();
   6770   bool too_much = pattern->length() > RegExpImpl::kRegExpTooLargeToOptimize;
   6771   if (heap->total_regexp_code_generated() > RegExpImpl::kRegExpCompiledLimit &&
   6772       heap->memory_allocator()->SizeExecutable() >
   6773           RegExpImpl::kRegExpExecutableMemoryLimit) {
   6774     too_much = true;
   6775   }
   6776   return too_much;
   6777 }
   6778 
   6779 
   6780 Object* RegExpResultsCache::Lookup(Heap* heap, String* key_string,
   6781                                    Object* key_pattern,
   6782                                    FixedArray** last_match_cache,
   6783                                    ResultsCacheType type) {
   6784   FixedArray* cache;
   6785   if (!key_string->IsInternalizedString()) return Smi::kZero;
   6786   if (type == STRING_SPLIT_SUBSTRINGS) {
   6787     DCHECK(key_pattern->IsString());
   6788     if (!key_pattern->IsInternalizedString()) return Smi::kZero;
   6789     cache = heap->string_split_cache();
   6790   } else {
   6791     DCHECK(type == REGEXP_MULTIPLE_INDICES);
   6792     DCHECK(key_pattern->IsFixedArray());
   6793     cache = heap->regexp_multiple_cache();
   6794   }
   6795 
   6796   uint32_t hash = key_string->Hash();
   6797   uint32_t index = ((hash & (kRegExpResultsCacheSize - 1)) &
   6798                     ~(kArrayEntriesPerCacheEntry - 1));
   6799   if (cache->get(index + kStringOffset) != key_string ||
   6800       cache->get(index + kPatternOffset) != key_pattern) {
   6801     index =
   6802         ((index + kArrayEntriesPerCacheEntry) & (kRegExpResultsCacheSize - 1));
   6803     if (cache->get(index + kStringOffset) != key_string ||
   6804         cache->get(index + kPatternOffset) != key_pattern) {
   6805       return Smi::kZero;
   6806     }
   6807   }
   6808 
   6809   *last_match_cache = FixedArray::cast(cache->get(index + kLastMatchOffset));
   6810   return cache->get(index + kArrayOffset);
   6811 }
   6812 
   6813 
   6814 void RegExpResultsCache::Enter(Isolate* isolate, Handle<String> key_string,
   6815                                Handle<Object> key_pattern,
   6816                                Handle<FixedArray> value_array,
   6817                                Handle<FixedArray> last_match_cache,
   6818                                ResultsCacheType type) {
   6819   Factory* factory = isolate->factory();
   6820   Handle<FixedArray> cache;
   6821   if (!key_string->IsInternalizedString()) return;
   6822   if (type == STRING_SPLIT_SUBSTRINGS) {
   6823     DCHECK(key_pattern->IsString());
   6824     if (!key_pattern->IsInternalizedString()) return;
   6825     cache = factory->string_split_cache();
   6826   } else {
   6827     DCHECK(type == REGEXP_MULTIPLE_INDICES);
   6828     DCHECK(key_pattern->IsFixedArray());
   6829     cache = factory->regexp_multiple_cache();
   6830   }
   6831 
   6832   uint32_t hash = key_string->Hash();
   6833   uint32_t index = ((hash & (kRegExpResultsCacheSize - 1)) &
   6834                     ~(kArrayEntriesPerCacheEntry - 1));
   6835   if (cache->get(index + kStringOffset) == Smi::kZero) {
   6836     cache->set(index + kStringOffset, *key_string);
   6837     cache->set(index + kPatternOffset, *key_pattern);
   6838     cache->set(index + kArrayOffset, *value_array);
   6839     cache->set(index + kLastMatchOffset, *last_match_cache);
   6840   } else {
   6841     uint32_t index2 =
   6842         ((index + kArrayEntriesPerCacheEntry) & (kRegExpResultsCacheSize - 1));
   6843     if (cache->get(index2 + kStringOffset) == Smi::kZero) {
   6844       cache->set(index2 + kStringOffset, *key_string);
   6845       cache->set(index2 + kPatternOffset, *key_pattern);
   6846       cache->set(index2 + kArrayOffset, *value_array);
   6847       cache->set(index2 + kLastMatchOffset, *last_match_cache);
   6848     } else {
   6849       cache->set(index2 + kStringOffset, Smi::kZero);
   6850       cache->set(index2 + kPatternOffset, Smi::kZero);
   6851       cache->set(index2 + kArrayOffset, Smi::kZero);
   6852       cache->set(index2 + kLastMatchOffset, Smi::kZero);
   6853       cache->set(index + kStringOffset, *key_string);
   6854       cache->set(index + kPatternOffset, *key_pattern);
   6855       cache->set(index + kArrayOffset, *value_array);
   6856       cache->set(index + kLastMatchOffset, *last_match_cache);
   6857     }
   6858   }
   6859   // If the array is a reasonably short list of substrings, convert it into a
   6860   // list of internalized strings.
   6861   if (type == STRING_SPLIT_SUBSTRINGS && value_array->length() < 100) {
   6862     for (int i = 0; i < value_array->length(); i++) {
   6863       Handle<String> str(String::cast(value_array->get(i)), isolate);
   6864       Handle<String> internalized_str = factory->InternalizeString(str);
   6865       value_array->set(i, *internalized_str);
   6866     }
   6867   }
   6868   // Convert backing store to a copy-on-write array.
   6869   value_array->set_map_no_write_barrier(isolate->heap()->fixed_cow_array_map());
   6870 }
   6871 
   6872 
   6873 void RegExpResultsCache::Clear(FixedArray* cache) {
   6874   for (int i = 0; i < kRegExpResultsCacheSize; i++) {
   6875     cache->set(i, Smi::kZero);
   6876   }
   6877 }
   6878 
   6879 }  // namespace internal
   6880 }  // namespace v8
   6881