Home | History | Annotate | Download | only in bn
      1 /* Copyright (C) 1995-1998 Eric Young (eay (at) cryptsoft.com)
      2  * All rights reserved.
      3  *
      4  * This package is an SSL implementation written
      5  * by Eric Young (eay (at) cryptsoft.com).
      6  * The implementation was written so as to conform with Netscapes SSL.
      7  *
      8  * This library is free for commercial and non-commercial use as long as
      9  * the following conditions are aheared to.  The following conditions
     10  * apply to all code found in this distribution, be it the RC4, RSA,
     11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
     12  * included with this distribution is covered by the same copyright terms
     13  * except that the holder is Tim Hudson (tjh (at) cryptsoft.com).
     14  *
     15  * Copyright remains Eric Young's, and as such any Copyright notices in
     16  * the code are not to be removed.
     17  * If this package is used in a product, Eric Young should be given attribution
     18  * as the author of the parts of the library used.
     19  * This can be in the form of a textual message at program startup or
     20  * in documentation (online or textual) provided with the package.
     21  *
     22  * Redistribution and use in source and binary forms, with or without
     23  * modification, are permitted provided that the following conditions
     24  * are met:
     25  * 1. Redistributions of source code must retain the copyright
     26  *    notice, this list of conditions and the following disclaimer.
     27  * 2. Redistributions in binary form must reproduce the above copyright
     28  *    notice, this list of conditions and the following disclaimer in the
     29  *    documentation and/or other materials provided with the distribution.
     30  * 3. All advertising materials mentioning features or use of this software
     31  *    must display the following acknowledgement:
     32  *    "This product includes cryptographic software written by
     33  *     Eric Young (eay (at) cryptsoft.com)"
     34  *    The word 'cryptographic' can be left out if the rouines from the library
     35  *    being used are not cryptographic related :-).
     36  * 4. If you include any Windows specific code (or a derivative thereof) from
     37  *    the apps directory (application code) you must include an acknowledgement:
     38  *    "This product includes software written by Tim Hudson (tjh (at) cryptsoft.com)"
     39  *
     40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
     41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     50  * SUCH DAMAGE.
     51  *
     52  * The licence and distribution terms for any publically available version or
     53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
     54  * copied and put under another distribution licence
     55  * [including the GNU Public Licence.] */
     56 
     57 #include <openssl/bn.h>
     58 
     59 #include <assert.h>
     60 #include <limits.h>
     61 
     62 #include <openssl/err.h>
     63 
     64 #include "internal.h"
     65 
     66 
     67 #if !defined(BN_ULLONG)
     68 /* bn_div_words divides a double-width |h|,|l| by |d| and returns the result,
     69  * which must fit in a |BN_ULONG|. */
     70 static BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d) {
     71   BN_ULONG dh, dl, q, ret = 0, th, tl, t;
     72   int i, count = 2;
     73 
     74   if (d == 0) {
     75     return BN_MASK2;
     76   }
     77 
     78   i = BN_num_bits_word(d);
     79   assert((i == BN_BITS2) || (h <= (BN_ULONG)1 << i));
     80 
     81   i = BN_BITS2 - i;
     82   if (h >= d) {
     83     h -= d;
     84   }
     85 
     86   if (i) {
     87     d <<= i;
     88     h = (h << i) | (l >> (BN_BITS2 - i));
     89     l <<= i;
     90   }
     91   dh = (d & BN_MASK2h) >> BN_BITS4;
     92   dl = (d & BN_MASK2l);
     93   for (;;) {
     94     if ((h >> BN_BITS4) == dh) {
     95       q = BN_MASK2l;
     96     } else {
     97       q = h / dh;
     98     }
     99 
    100     th = q * dh;
    101     tl = dl * q;
    102     for (;;) {
    103       t = h - th;
    104       if ((t & BN_MASK2h) ||
    105           ((tl) <= ((t << BN_BITS4) | ((l & BN_MASK2h) >> BN_BITS4)))) {
    106         break;
    107       }
    108       q--;
    109       th -= dh;
    110       tl -= dl;
    111     }
    112     t = (tl >> BN_BITS4);
    113     tl = (tl << BN_BITS4) & BN_MASK2h;
    114     th += t;
    115 
    116     if (l < tl) {
    117       th++;
    118     }
    119     l -= tl;
    120     if (h < th) {
    121       h += d;
    122       q--;
    123     }
    124     h -= th;
    125 
    126     if (--count == 0) {
    127       break;
    128     }
    129 
    130     ret = q << BN_BITS4;
    131     h = ((h << BN_BITS4) | (l >> BN_BITS4)) & BN_MASK2;
    132     l = (l & BN_MASK2l) << BN_BITS4;
    133   }
    134 
    135   ret |= q;
    136   return ret;
    137 }
    138 #endif /* !defined(BN_ULLONG) */
    139 
    140 static inline void bn_div_rem_words(BN_ULONG *quotient_out, BN_ULONG *rem_out,
    141                                     BN_ULONG n0, BN_ULONG n1, BN_ULONG d0) {
    142   /* GCC and Clang generate function calls to |__udivdi3| and |__umoddi3| when
    143    * the |BN_ULLONG|-based C code is used.
    144    *
    145    * GCC bugs:
    146    *   * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=14224
    147    *   * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=43721
    148    *   * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=54183
    149    *   * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58897
    150    *   * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=65668
    151    *
    152    * Clang bugs:
    153    *   * https://llvm.org/bugs/show_bug.cgi?id=6397
    154    *   * https://llvm.org/bugs/show_bug.cgi?id=12418
    155    *
    156    * These issues aren't specific to x86 and x86_64, so it might be worthwhile
    157    * to add more assembly language implementations. */
    158 #if !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86) && defined(__GNUC__)
    159   __asm__ volatile (
    160     "divl %4"
    161     : "=a"(*quotient_out), "=d"(*rem_out)
    162     : "a"(n1), "d"(n0), "rm"(d0)
    163     : "cc" );
    164 #elif !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64) && defined(__GNUC__)
    165   __asm__ volatile (
    166     "divq %4"
    167     : "=a"(*quotient_out), "=d"(*rem_out)
    168     : "a"(n1), "d"(n0), "rm"(d0)
    169     : "cc" );
    170 #else
    171 #if defined(BN_ULLONG)
    172   BN_ULLONG n = (((BN_ULLONG)n0) << BN_BITS2) | n1;
    173   *quotient_out = (BN_ULONG)(n / d0);
    174 #else
    175   *quotient_out = bn_div_words(n0, n1, d0);
    176 #endif
    177   *rem_out = n1 - (*quotient_out * d0);
    178 #endif
    179 }
    180 
    181 /* BN_div computes  dv := num / divisor,  rounding towards
    182  * zero, and sets up rm  such that  dv*divisor + rm = num  holds.
    183  * Thus:
    184  *     dv->neg == num->neg ^ divisor->neg  (unless the result is zero)
    185  *     rm->neg == num->neg                 (unless the remainder is zero)
    186  * If 'dv' or 'rm' is NULL, the respective value is not returned.
    187  *
    188  * This was specifically designed to contain fewer branches that may leak
    189  * sensitive information; see "New Branch Prediction Vulnerabilities in OpenSSL
    190  * and Necessary Software Countermeasures" by Onur Acmez, Shay Gueron, and
    191  * Jean-Pierre Seifert. */
    192 int BN_div(BIGNUM *dv, BIGNUM *rm, const BIGNUM *num, const BIGNUM *divisor,
    193            BN_CTX *ctx) {
    194   int norm_shift, i, loop;
    195   BIGNUM *tmp, wnum, *snum, *sdiv, *res;
    196   BN_ULONG *resp, *wnump;
    197   BN_ULONG d0, d1;
    198   int num_n, div_n;
    199 
    200   /* Invalid zero-padding would have particularly bad consequences
    201    * so don't just rely on bn_check_top() here */
    202   if ((num->top > 0 && num->d[num->top - 1] == 0) ||
    203       (divisor->top > 0 && divisor->d[divisor->top - 1] == 0)) {
    204     OPENSSL_PUT_ERROR(BN, BN_R_NOT_INITIALIZED);
    205     return 0;
    206   }
    207 
    208   if (BN_is_zero(divisor)) {
    209     OPENSSL_PUT_ERROR(BN, BN_R_DIV_BY_ZERO);
    210     return 0;
    211   }
    212 
    213   BN_CTX_start(ctx);
    214   tmp = BN_CTX_get(ctx);
    215   snum = BN_CTX_get(ctx);
    216   sdiv = BN_CTX_get(ctx);
    217   if (dv == NULL) {
    218     res = BN_CTX_get(ctx);
    219   } else {
    220     res = dv;
    221   }
    222   if (sdiv == NULL || res == NULL || tmp == NULL || snum == NULL) {
    223     goto err;
    224   }
    225 
    226   /* First we normalise the numbers */
    227   norm_shift = BN_BITS2 - ((BN_num_bits(divisor)) % BN_BITS2);
    228   if (!(BN_lshift(sdiv, divisor, norm_shift))) {
    229     goto err;
    230   }
    231   sdiv->neg = 0;
    232   norm_shift += BN_BITS2;
    233   if (!(BN_lshift(snum, num, norm_shift))) {
    234     goto err;
    235   }
    236   snum->neg = 0;
    237 
    238   /* Since we don't want to have special-case logic for the case where snum is
    239    * larger than sdiv, we pad snum with enough zeroes without changing its
    240    * value. */
    241   if (snum->top <= sdiv->top + 1) {
    242     if (bn_wexpand(snum, sdiv->top + 2) == NULL) {
    243       goto err;
    244     }
    245     for (i = snum->top; i < sdiv->top + 2; i++) {
    246       snum->d[i] = 0;
    247     }
    248     snum->top = sdiv->top + 2;
    249   } else {
    250     if (bn_wexpand(snum, snum->top + 1) == NULL) {
    251       goto err;
    252     }
    253     snum->d[snum->top] = 0;
    254     snum->top++;
    255   }
    256 
    257   div_n = sdiv->top;
    258   num_n = snum->top;
    259   loop = num_n - div_n;
    260   /* Lets setup a 'window' into snum
    261    * This is the part that corresponds to the current
    262    * 'area' being divided */
    263   wnum.neg = 0;
    264   wnum.d = &(snum->d[loop]);
    265   wnum.top = div_n;
    266   /* only needed when BN_ucmp messes up the values between top and max */
    267   wnum.dmax = snum->dmax - loop; /* so we don't step out of bounds */
    268 
    269   /* Get the top 2 words of sdiv */
    270   /* div_n=sdiv->top; */
    271   d0 = sdiv->d[div_n - 1];
    272   d1 = (div_n == 1) ? 0 : sdiv->d[div_n - 2];
    273 
    274   /* pointer to the 'top' of snum */
    275   wnump = &(snum->d[num_n - 1]);
    276 
    277   /* Setup to 'res' */
    278   res->neg = (num->neg ^ divisor->neg);
    279   if (!bn_wexpand(res, (loop + 1))) {
    280     goto err;
    281   }
    282   res->top = loop - 1;
    283   resp = &(res->d[loop - 1]);
    284 
    285   /* space for temp */
    286   if (!bn_wexpand(tmp, (div_n + 1))) {
    287     goto err;
    288   }
    289 
    290   /* if res->top == 0 then clear the neg value otherwise decrease
    291    * the resp pointer */
    292   if (res->top == 0) {
    293     res->neg = 0;
    294   } else {
    295     resp--;
    296   }
    297 
    298   for (i = 0; i < loop - 1; i++, wnump--, resp--) {
    299     BN_ULONG q, l0;
    300     /* the first part of the loop uses the top two words of snum and sdiv to
    301      * calculate a BN_ULONG q such that | wnum - sdiv * q | < sdiv */
    302     BN_ULONG n0, n1, rem = 0;
    303 
    304     n0 = wnump[0];
    305     n1 = wnump[-1];
    306     if (n0 == d0) {
    307       q = BN_MASK2;
    308     } else {
    309       /* n0 < d0 */
    310       bn_div_rem_words(&q, &rem, n0, n1, d0);
    311 
    312 #ifdef BN_ULLONG
    313       BN_ULLONG t2 = (BN_ULLONG)d1 * q;
    314       for (;;) {
    315         if (t2 <= ((((BN_ULLONG)rem) << BN_BITS2) | wnump[-2])) {
    316           break;
    317         }
    318         q--;
    319         rem += d0;
    320         if (rem < d0) {
    321           break; /* don't let rem overflow */
    322         }
    323         t2 -= d1;
    324       }
    325 #else /* !BN_ULLONG */
    326       BN_ULONG t2l, t2h;
    327       BN_UMULT_LOHI(t2l, t2h, d1, q);
    328       for (;;) {
    329         if ((t2h < rem) || ((t2h == rem) && (t2l <= wnump[-2]))) {
    330           break;
    331         }
    332         q--;
    333         rem += d0;
    334         if (rem < d0) {
    335           break; /* don't let rem overflow */
    336         }
    337         if (t2l < d1) {
    338           t2h--;
    339         }
    340         t2l -= d1;
    341       }
    342 #endif /* !BN_ULLONG */
    343     }
    344 
    345     l0 = bn_mul_words(tmp->d, sdiv->d, div_n, q);
    346     tmp->d[div_n] = l0;
    347     wnum.d--;
    348     /* ingore top values of the bignums just sub the two
    349      * BN_ULONG arrays with bn_sub_words */
    350     if (bn_sub_words(wnum.d, wnum.d, tmp->d, div_n + 1)) {
    351       /* Note: As we have considered only the leading
    352        * two BN_ULONGs in the calculation of q, sdiv * q
    353        * might be greater than wnum (but then (q-1) * sdiv
    354        * is less or equal than wnum)
    355        */
    356       q--;
    357       if (bn_add_words(wnum.d, wnum.d, sdiv->d, div_n)) {
    358         /* we can't have an overflow here (assuming
    359          * that q != 0, but if q == 0 then tmp is
    360          * zero anyway) */
    361         (*wnump)++;
    362       }
    363     }
    364     /* store part of the result */
    365     *resp = q;
    366   }
    367   bn_correct_top(snum);
    368   if (rm != NULL) {
    369     /* Keep a copy of the neg flag in num because if rm==num
    370      * BN_rshift() will overwrite it.
    371      */
    372     int neg = num->neg;
    373     if (!BN_rshift(rm, snum, norm_shift)) {
    374       goto err;
    375     }
    376     if (!BN_is_zero(rm)) {
    377       rm->neg = neg;
    378     }
    379   }
    380   bn_correct_top(res);
    381   BN_CTX_end(ctx);
    382   return 1;
    383 
    384 err:
    385   BN_CTX_end(ctx);
    386   return 0;
    387 }
    388 
    389 int BN_nnmod(BIGNUM *r, const BIGNUM *m, const BIGNUM *d, BN_CTX *ctx) {
    390   if (!(BN_mod(r, m, d, ctx))) {
    391     return 0;
    392   }
    393   if (!r->neg) {
    394     return 1;
    395   }
    396 
    397   /* now -|d| < r < 0, so we have to set r := r + |d|. */
    398   return (d->neg ? BN_sub : BN_add)(r, r, d);
    399 }
    400 
    401 int BN_mod_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
    402                BN_CTX *ctx) {
    403   if (!BN_add(r, a, b)) {
    404     return 0;
    405   }
    406   return BN_nnmod(r, r, m, ctx);
    407 }
    408 
    409 int BN_mod_add_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
    410                      const BIGNUM *m) {
    411   if (!BN_uadd(r, a, b)) {
    412     return 0;
    413   }
    414   if (BN_ucmp(r, m) >= 0) {
    415     return BN_usub(r, r, m);
    416   }
    417   return 1;
    418 }
    419 
    420 int BN_mod_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
    421                BN_CTX *ctx) {
    422   if (!BN_sub(r, a, b)) {
    423     return 0;
    424   }
    425   return BN_nnmod(r, r, m, ctx);
    426 }
    427 
    428 /* BN_mod_sub variant that may be used if both  a  and  b  are non-negative
    429  * and less than  m */
    430 int BN_mod_sub_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
    431                      const BIGNUM *m) {
    432   if (!BN_sub(r, a, b)) {
    433     return 0;
    434   }
    435   if (r->neg) {
    436     return BN_add(r, r, m);
    437   }
    438   return 1;
    439 }
    440 
    441 int BN_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
    442                BN_CTX *ctx) {
    443   BIGNUM *t;
    444   int ret = 0;
    445 
    446   BN_CTX_start(ctx);
    447   t = BN_CTX_get(ctx);
    448   if (t == NULL) {
    449     goto err;
    450   }
    451 
    452   if (a == b) {
    453     if (!BN_sqr(t, a, ctx)) {
    454       goto err;
    455     }
    456   } else {
    457     if (!BN_mul(t, a, b, ctx)) {
    458       goto err;
    459     }
    460   }
    461 
    462   if (!BN_nnmod(r, t, m, ctx)) {
    463     goto err;
    464   }
    465 
    466   ret = 1;
    467 
    468 err:
    469   BN_CTX_end(ctx);
    470   return ret;
    471 }
    472 
    473 int BN_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx) {
    474   if (!BN_sqr(r, a, ctx)) {
    475     return 0;
    476   }
    477 
    478   /* r->neg == 0,  thus we don't need BN_nnmod */
    479   return BN_mod(r, r, m, ctx);
    480 }
    481 
    482 int BN_mod_lshift(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m,
    483                   BN_CTX *ctx) {
    484   BIGNUM *abs_m = NULL;
    485   int ret;
    486 
    487   if (!BN_nnmod(r, a, m, ctx)) {
    488     return 0;
    489   }
    490 
    491   if (m->neg) {
    492     abs_m = BN_dup(m);
    493     if (abs_m == NULL) {
    494       return 0;
    495     }
    496     abs_m->neg = 0;
    497   }
    498 
    499   ret = BN_mod_lshift_quick(r, r, n, (abs_m ? abs_m : m));
    500 
    501   BN_free(abs_m);
    502   return ret;
    503 }
    504 
    505 int BN_mod_lshift_quick(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m) {
    506   if (r != a) {
    507     if (BN_copy(r, a) == NULL) {
    508       return 0;
    509     }
    510   }
    511 
    512   while (n > 0) {
    513     int max_shift;
    514 
    515     /* 0 < r < m */
    516     max_shift = BN_num_bits(m) - BN_num_bits(r);
    517     /* max_shift >= 0 */
    518 
    519     if (max_shift < 0) {
    520       OPENSSL_PUT_ERROR(BN, BN_R_INPUT_NOT_REDUCED);
    521       return 0;
    522     }
    523 
    524     if (max_shift > n) {
    525       max_shift = n;
    526     }
    527 
    528     if (max_shift) {
    529       if (!BN_lshift(r, r, max_shift)) {
    530         return 0;
    531       }
    532       n -= max_shift;
    533     } else {
    534       if (!BN_lshift1(r, r)) {
    535         return 0;
    536       }
    537       --n;
    538     }
    539 
    540     /* BN_num_bits(r) <= BN_num_bits(m) */
    541     if (BN_cmp(r, m) >= 0) {
    542       if (!BN_sub(r, r, m)) {
    543         return 0;
    544       }
    545     }
    546   }
    547 
    548   return 1;
    549 }
    550 
    551 int BN_mod_lshift1(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx) {
    552   if (!BN_lshift1(r, a)) {
    553     return 0;
    554   }
    555 
    556   return BN_nnmod(r, r, m, ctx);
    557 }
    558 
    559 int BN_mod_lshift1_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *m) {
    560   if (!BN_lshift1(r, a)) {
    561     return 0;
    562   }
    563   if (BN_cmp(r, m) >= 0) {
    564     return BN_sub(r, r, m);
    565   }
    566 
    567   return 1;
    568 }
    569 
    570 BN_ULONG BN_div_word(BIGNUM *a, BN_ULONG w) {
    571   BN_ULONG ret = 0;
    572   int i, j;
    573 
    574   w &= BN_MASK2;
    575 
    576   if (!w) {
    577     /* actually this an error (division by zero) */
    578     return (BN_ULONG) - 1;
    579   }
    580 
    581   if (a->top == 0) {
    582     return 0;
    583   }
    584 
    585   /* normalize input for |bn_div_rem_words|. */
    586   j = BN_BITS2 - BN_num_bits_word(w);
    587   w <<= j;
    588   if (!BN_lshift(a, a, j)) {
    589     return (BN_ULONG) - 1;
    590   }
    591 
    592   for (i = a->top - 1; i >= 0; i--) {
    593     BN_ULONG l = a->d[i];
    594     BN_ULONG d;
    595     BN_ULONG unused_rem;
    596     bn_div_rem_words(&d, &unused_rem, ret, l, w);
    597     ret = (l - ((d * w) & BN_MASK2)) & BN_MASK2;
    598     a->d[i] = d;
    599   }
    600 
    601   if ((a->top > 0) && (a->d[a->top - 1] == 0)) {
    602     a->top--;
    603   }
    604 
    605   if (a->top == 0) {
    606     a->neg = 0;
    607   }
    608 
    609   ret >>= j;
    610   return ret;
    611 }
    612 
    613 BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w) {
    614 #ifndef BN_ULLONG
    615   BN_ULONG ret = 0;
    616 #else
    617   BN_ULLONG ret = 0;
    618 #endif
    619   int i;
    620 
    621   if (w == 0) {
    622     return (BN_ULONG) -1;
    623   }
    624 
    625 #ifndef BN_ULLONG
    626   /* If |w| is too long and we don't have |BN_ULLONG| then we need to fall back
    627    * to using |BN_div_word|. */
    628   if (w > ((BN_ULONG)1 << BN_BITS4)) {
    629     BIGNUM *tmp = BN_dup(a);
    630     if (tmp == NULL) {
    631       return (BN_ULONG)-1;
    632     }
    633     ret = BN_div_word(tmp, w);
    634     BN_free(tmp);
    635     return ret;
    636   }
    637 #endif
    638 
    639   w &= BN_MASK2;
    640   for (i = a->top - 1; i >= 0; i--) {
    641 #ifndef BN_ULLONG
    642     ret = ((ret << BN_BITS4) | ((a->d[i] >> BN_BITS4) & BN_MASK2l)) % w;
    643     ret = ((ret << BN_BITS4) | (a->d[i] & BN_MASK2l)) % w;
    644 #else
    645     ret = (BN_ULLONG)(((ret << (BN_ULLONG)BN_BITS2) | a->d[i]) % (BN_ULLONG)w);
    646 #endif
    647   }
    648   return (BN_ULONG)ret;
    649 }
    650 
    651 int BN_mod_pow2(BIGNUM *r, const BIGNUM *a, size_t e) {
    652   if (e == 0 || a->top == 0) {
    653     BN_zero(r);
    654     return 1;
    655   }
    656 
    657   size_t num_words = 1 + ((e - 1) / BN_BITS2);
    658 
    659   /* If |a| definitely has less than |e| bits, just BN_copy. */
    660   if ((size_t) a->top < num_words) {
    661     return BN_copy(r, a) != NULL;
    662   }
    663 
    664   /* Otherwise, first make sure we have enough space in |r|.
    665    * Note that this will fail if num_words > INT_MAX. */
    666   if (bn_wexpand(r, num_words) == NULL) {
    667     return 0;
    668   }
    669 
    670   /* Copy the content of |a| into |r|. */
    671   OPENSSL_memcpy(r->d, a->d, num_words * sizeof(BN_ULONG));
    672 
    673   /* If |e| isn't word-aligned, we have to mask off some of our bits. */
    674   size_t top_word_exponent = e % (sizeof(BN_ULONG) * 8);
    675   if (top_word_exponent != 0) {
    676     r->d[num_words - 1] &= (((BN_ULONG) 1) << top_word_exponent) - 1;
    677   }
    678 
    679   /* Fill in the remaining fields of |r|. */
    680   r->neg = a->neg;
    681   r->top = (int) num_words;
    682   bn_correct_top(r);
    683   return 1;
    684 }
    685 
    686 int BN_nnmod_pow2(BIGNUM *r, const BIGNUM *a, size_t e) {
    687   if (!BN_mod_pow2(r, a, e)) {
    688     return 0;
    689   }
    690 
    691   /* If the returned value was non-negative, we're done. */
    692   if (BN_is_zero(r) || !r->neg) {
    693     return 1;
    694   }
    695 
    696   size_t num_words = 1 + (e - 1) / BN_BITS2;
    697 
    698   /* Expand |r| to the size of our modulus. */
    699   if (bn_wexpand(r, num_words) == NULL) {
    700     return 0;
    701   }
    702 
    703   /* Clear the upper words of |r|. */
    704   OPENSSL_memset(&r->d[r->top], 0, (num_words - r->top) * BN_BYTES);
    705 
    706   /* Set parameters of |r|. */
    707   r->neg = 0;
    708   r->top = (int) num_words;
    709 
    710   /* Now, invert every word. The idea here is that we want to compute 2^e-|x|,
    711    * which is actually equivalent to the twos-complement representation of |x|
    712    * in |e| bits, which is -x = ~x + 1. */
    713   for (int i = 0; i < r->top; i++) {
    714     r->d[i] = ~r->d[i];
    715   }
    716 
    717   /* If our exponent doesn't span the top word, we have to mask the rest. */
    718   size_t top_word_exponent = e % BN_BITS2;
    719   if (top_word_exponent != 0) {
    720     r->d[r->top - 1] &= (((BN_ULONG) 1) << top_word_exponent) - 1;
    721   }
    722 
    723   /* Keep the correct_top invariant for BN_add. */
    724   bn_correct_top(r);
    725 
    726   /* Finally, add one, for the reason described above. */
    727   return BN_add(r, r, BN_value_one());
    728 }
    729