Home | History | Annotate | Download | only in bn
      1 /* Copyright (C) 1995-1998 Eric Young (eay (at) cryptsoft.com)
      2  * All rights reserved.
      3  *
      4  * This package is an SSL implementation written
      5  * by Eric Young (eay (at) cryptsoft.com).
      6  * The implementation was written so as to conform with Netscapes SSL.
      7  *
      8  * This library is free for commercial and non-commercial use as long as
      9  * the following conditions are aheared to.  The following conditions
     10  * apply to all code found in this distribution, be it the RC4, RSA,
     11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
     12  * included with this distribution is covered by the same copyright terms
     13  * except that the holder is Tim Hudson (tjh (at) cryptsoft.com).
     14  *
     15  * Copyright remains Eric Young's, and as such any Copyright notices in
     16  * the code are not to be removed.
     17  * If this package is used in a product, Eric Young should be given attribution
     18  * as the author of the parts of the library used.
     19  * This can be in the form of a textual message at program startup or
     20  * in documentation (online or textual) provided with the package.
     21  *
     22  * Redistribution and use in source and binary forms, with or without
     23  * modification, are permitted provided that the following conditions
     24  * are met:
     25  * 1. Redistributions of source code must retain the copyright
     26  *    notice, this list of conditions and the following disclaimer.
     27  * 2. Redistributions in binary form must reproduce the above copyright
     28  *    notice, this list of conditions and the following disclaimer in the
     29  *    documentation and/or other materials provided with the distribution.
     30  * 3. All advertising materials mentioning features or use of this software
     31  *    must display the following acknowledgement:
     32  *    "This product includes cryptographic software written by
     33  *     Eric Young (eay (at) cryptsoft.com)"
     34  *    The word 'cryptographic' can be left out if the rouines from the library
     35  *    being used are not cryptographic related :-).
     36  * 4. If you include any Windows specific code (or a derivative thereof) from
     37  *    the apps directory (application code) you must include an acknowledgement:
     38  *    "This product includes software written by Tim Hudson (tjh (at) cryptsoft.com)"
     39  *
     40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
     41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     50  * SUCH DAMAGE.
     51  *
     52  * The licence and distribution terms for any publically available version or
     53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
     54  * copied and put under another distribution licence
     55  * [including the GNU Public Licence.] */
     56 
     57 #include <openssl/bn.h>
     58 
     59 #include <assert.h>
     60 #include <ctype.h>
     61 #include <limits.h>
     62 #include <stdio.h>
     63 #include <string.h>
     64 
     65 #include <openssl/bio.h>
     66 #include <openssl/bytestring.h>
     67 #include <openssl/err.h>
     68 #include <openssl/mem.h>
     69 
     70 #include "internal.h"
     71 
     72 BIGNUM *BN_bin2bn(const uint8_t *in, size_t len, BIGNUM *ret) {
     73   size_t num_words;
     74   unsigned m;
     75   BN_ULONG word = 0;
     76   BIGNUM *bn = NULL;
     77 
     78   if (ret == NULL) {
     79     ret = bn = BN_new();
     80   }
     81 
     82   if (ret == NULL) {
     83     return NULL;
     84   }
     85 
     86   if (len == 0) {
     87     ret->top = 0;
     88     return ret;
     89   }
     90 
     91   num_words = ((len - 1) / BN_BYTES) + 1;
     92   m = (len - 1) % BN_BYTES;
     93   if (bn_wexpand(ret, num_words) == NULL) {
     94     if (bn) {
     95       BN_free(bn);
     96     }
     97     return NULL;
     98   }
     99 
    100   /* |bn_wexpand| must check bounds on |num_words| to write it into
    101    * |ret->dmax|. */
    102   assert(num_words <= INT_MAX);
    103   ret->top = (int)num_words;
    104   ret->neg = 0;
    105 
    106   while (len--) {
    107     word = (word << 8) | *(in++);
    108     if (m-- == 0) {
    109       ret->d[--num_words] = word;
    110       word = 0;
    111       m = BN_BYTES - 1;
    112     }
    113   }
    114 
    115   /* need to call this due to clear byte at top if avoiding having the top bit
    116    * set (-ve number) */
    117   bn_correct_top(ret);
    118   return ret;
    119 }
    120 
    121 BIGNUM *BN_le2bn(const uint8_t *in, size_t len, BIGNUM *ret) {
    122   BIGNUM *bn = NULL;
    123   if (ret == NULL) {
    124     bn = BN_new();
    125     ret = bn;
    126   }
    127 
    128   if (ret == NULL) {
    129     return NULL;
    130   }
    131 
    132   if (len == 0) {
    133     ret->top = 0;
    134     ret->neg = 0;
    135     return ret;
    136   }
    137 
    138   /* Reserve enough space in |ret|. */
    139   size_t num_words = ((len - 1) / BN_BYTES) + 1;
    140   if (!bn_wexpand(ret, num_words)) {
    141     BN_free(bn);
    142     return NULL;
    143   }
    144   ret->top = num_words;
    145 
    146   /* Make sure the top bytes will be zeroed. */
    147   ret->d[num_words - 1] = 0;
    148 
    149   /* We only support little-endian platforms, so we can simply memcpy the
    150    * internal representation. */
    151   OPENSSL_memcpy(ret->d, in, len);
    152 
    153   bn_correct_top(ret);
    154   return ret;
    155 }
    156 
    157 size_t BN_bn2bin(const BIGNUM *in, uint8_t *out) {
    158   size_t n, i;
    159   BN_ULONG l;
    160 
    161   n = i = BN_num_bytes(in);
    162   while (i--) {
    163     l = in->d[i / BN_BYTES];
    164     *(out++) = (unsigned char)(l >> (8 * (i % BN_BYTES))) & 0xff;
    165   }
    166   return n;
    167 }
    168 
    169 int BN_bn2le_padded(uint8_t *out, size_t len, const BIGNUM *in) {
    170   /* If we don't have enough space, fail out. */
    171   size_t num_bytes = BN_num_bytes(in);
    172   if (len < num_bytes) {
    173     return 0;
    174   }
    175 
    176   /* We only support little-endian platforms, so we can simply memcpy into the
    177    * internal representation. */
    178   OPENSSL_memcpy(out, in->d, num_bytes);
    179 
    180   /* Pad out the rest of the buffer with zeroes. */
    181   OPENSSL_memset(out + num_bytes, 0, len - num_bytes);
    182 
    183   return 1;
    184 }
    185 
    186 /* constant_time_select_ulong returns |x| if |v| is 1 and |y| if |v| is 0. Its
    187  * behavior is undefined if |v| takes any other value. */
    188 static BN_ULONG constant_time_select_ulong(int v, BN_ULONG x, BN_ULONG y) {
    189   BN_ULONG mask = v;
    190   mask--;
    191 
    192   return (~mask & x) | (mask & y);
    193 }
    194 
    195 /* constant_time_le_size_t returns 1 if |x| <= |y| and 0 otherwise. |x| and |y|
    196  * must not have their MSBs set. */
    197 static int constant_time_le_size_t(size_t x, size_t y) {
    198   return ((x - y - 1) >> (sizeof(size_t) * 8 - 1)) & 1;
    199 }
    200 
    201 /* read_word_padded returns the |i|'th word of |in|, if it is not out of
    202  * bounds. Otherwise, it returns 0. It does so without branches on the size of
    203  * |in|, however it necessarily does not have the same memory access pattern. If
    204  * the access would be out of bounds, it reads the last word of |in|. |in| must
    205  * not be zero. */
    206 static BN_ULONG read_word_padded(const BIGNUM *in, size_t i) {
    207   /* Read |in->d[i]| if valid. Otherwise, read the last word. */
    208   BN_ULONG l = in->d[constant_time_select_ulong(
    209       constant_time_le_size_t(in->dmax, i), in->dmax - 1, i)];
    210 
    211   /* Clamp to zero if above |d->top|. */
    212   return constant_time_select_ulong(constant_time_le_size_t(in->top, i), 0, l);
    213 }
    214 
    215 int BN_bn2bin_padded(uint8_t *out, size_t len, const BIGNUM *in) {
    216   /* Special case for |in| = 0. Just branch as the probability is negligible. */
    217   if (BN_is_zero(in)) {
    218     OPENSSL_memset(out, 0, len);
    219     return 1;
    220   }
    221 
    222   /* Check if the integer is too big. This case can exit early in non-constant
    223    * time. */
    224   if ((size_t)in->top > (len + (BN_BYTES - 1)) / BN_BYTES) {
    225     return 0;
    226   }
    227   if ((len % BN_BYTES) != 0) {
    228     BN_ULONG l = read_word_padded(in, len / BN_BYTES);
    229     if (l >> (8 * (len % BN_BYTES)) != 0) {
    230       return 0;
    231     }
    232   }
    233 
    234   /* Write the bytes out one by one. Serialization is done without branching on
    235    * the bits of |in| or on |in->top|, but if the routine would otherwise read
    236    * out of bounds, the memory access pattern can't be fixed. However, for an
    237    * RSA key of size a multiple of the word size, the probability of BN_BYTES
    238    * leading zero octets is low.
    239    *
    240    * See Falko Stenzke, "Manger's Attack revisited", ICICS 2010. */
    241   size_t i = len;
    242   while (i--) {
    243     BN_ULONG l = read_word_padded(in, i / BN_BYTES);
    244     *(out++) = (uint8_t)(l >> (8 * (i % BN_BYTES))) & 0xff;
    245   }
    246   return 1;
    247 }
    248 
    249 int BN_bn2cbb_padded(CBB *out, size_t len, const BIGNUM *in) {
    250   uint8_t *ptr;
    251   return CBB_add_space(out, &ptr, len) && BN_bn2bin_padded(ptr, len, in);
    252 }
    253 
    254 static const char hextable[] = "0123456789abcdef";
    255 
    256 char *BN_bn2hex(const BIGNUM *bn) {
    257   char *buf = OPENSSL_malloc(1 /* leading '-' */ + 1 /* zero is non-empty */ +
    258                              bn->top * BN_BYTES * 2 + 1 /* trailing NUL */);
    259   if (buf == NULL) {
    260     OPENSSL_PUT_ERROR(BN, ERR_R_MALLOC_FAILURE);
    261     return NULL;
    262   }
    263 
    264   char *p = buf;
    265   if (bn->neg) {
    266     *(p++) = '-';
    267   }
    268 
    269   if (BN_is_zero(bn)) {
    270     *(p++) = '0';
    271   }
    272 
    273   int z = 0;
    274   for (int i = bn->top - 1; i >= 0; i--) {
    275     for (int j = BN_BITS2 - 8; j >= 0; j -= 8) {
    276       /* strip leading zeros */
    277       int v = ((int)(bn->d[i] >> (long)j)) & 0xff;
    278       if (z || v != 0) {
    279         *(p++) = hextable[v >> 4];
    280         *(p++) = hextable[v & 0x0f];
    281         z = 1;
    282       }
    283     }
    284   }
    285   *p = '\0';
    286 
    287   return buf;
    288 }
    289 
    290 /* decode_hex decodes |in_len| bytes of hex data from |in| and updates |bn|. */
    291 static int decode_hex(BIGNUM *bn, const char *in, int in_len) {
    292   if (in_len > INT_MAX/4) {
    293     OPENSSL_PUT_ERROR(BN, BN_R_BIGNUM_TOO_LONG);
    294     return 0;
    295   }
    296   /* |in_len| is the number of hex digits. */
    297   if (bn_expand(bn, in_len * 4) == NULL) {
    298     return 0;
    299   }
    300 
    301   int i = 0;
    302   while (in_len > 0) {
    303     /* Decode one |BN_ULONG| at a time. */
    304     int todo = BN_BYTES * 2;
    305     if (todo > in_len) {
    306       todo = in_len;
    307     }
    308 
    309     BN_ULONG word = 0;
    310     int j;
    311     for (j = todo; j > 0; j--) {
    312       char c = in[in_len - j];
    313 
    314       BN_ULONG hex;
    315       if (c >= '0' && c <= '9') {
    316         hex = c - '0';
    317       } else if (c >= 'a' && c <= 'f') {
    318         hex = c - 'a' + 10;
    319       } else if (c >= 'A' && c <= 'F') {
    320         hex = c - 'A' + 10;
    321       } else {
    322         hex = 0;
    323         /* This shouldn't happen. The caller checks |isxdigit|. */
    324         assert(0);
    325       }
    326       word = (word << 4) | hex;
    327     }
    328 
    329     bn->d[i++] = word;
    330     in_len -= todo;
    331   }
    332   assert(i <= bn->dmax);
    333   bn->top = i;
    334   return 1;
    335 }
    336 
    337 /* decode_dec decodes |in_len| bytes of decimal data from |in| and updates |bn|. */
    338 static int decode_dec(BIGNUM *bn, const char *in, int in_len) {
    339   int i, j;
    340   BN_ULONG l = 0;
    341 
    342   /* Decode |BN_DEC_NUM| digits at a time. */
    343   j = BN_DEC_NUM - (in_len % BN_DEC_NUM);
    344   if (j == BN_DEC_NUM) {
    345     j = 0;
    346   }
    347   l = 0;
    348   for (i = 0; i < in_len; i++) {
    349     l *= 10;
    350     l += in[i] - '0';
    351     if (++j == BN_DEC_NUM) {
    352       if (!BN_mul_word(bn, BN_DEC_CONV) ||
    353           !BN_add_word(bn, l)) {
    354         return 0;
    355       }
    356       l = 0;
    357       j = 0;
    358     }
    359   }
    360   return 1;
    361 }
    362 
    363 typedef int (*decode_func) (BIGNUM *bn, const char *in, int in_len);
    364 typedef int (*char_test_func) (int c);
    365 
    366 static int bn_x2bn(BIGNUM **outp, const char *in, decode_func decode, char_test_func want_char) {
    367   BIGNUM *ret = NULL;
    368   int neg = 0, i;
    369   int num;
    370 
    371   if (in == NULL || *in == 0) {
    372     return 0;
    373   }
    374 
    375   if (*in == '-') {
    376     neg = 1;
    377     in++;
    378   }
    379 
    380   for (i = 0; want_char((unsigned char)in[i]) && i + neg < INT_MAX; i++) {}
    381 
    382   num = i + neg;
    383   if (outp == NULL) {
    384     return num;
    385   }
    386 
    387   /* in is the start of the hex digits, and it is 'i' long */
    388   if (*outp == NULL) {
    389     ret = BN_new();
    390     if (ret == NULL) {
    391       return 0;
    392     }
    393   } else {
    394     ret = *outp;
    395     BN_zero(ret);
    396   }
    397 
    398   if (!decode(ret, in, i)) {
    399     goto err;
    400   }
    401 
    402   bn_correct_top(ret);
    403   if (!BN_is_zero(ret)) {
    404     ret->neg = neg;
    405   }
    406 
    407   *outp = ret;
    408   return num;
    409 
    410 err:
    411   if (*outp == NULL) {
    412     BN_free(ret);
    413   }
    414 
    415   return 0;
    416 }
    417 
    418 int BN_hex2bn(BIGNUM **outp, const char *in) {
    419   return bn_x2bn(outp, in, decode_hex, isxdigit);
    420 }
    421 
    422 char *BN_bn2dec(const BIGNUM *a) {
    423   /* It is easier to print strings little-endian, so we assemble it in reverse
    424    * and fix at the end. */
    425   BIGNUM *copy = NULL;
    426   CBB cbb;
    427   if (!CBB_init(&cbb, 16) ||
    428       !CBB_add_u8(&cbb, 0 /* trailing NUL */)) {
    429     goto cbb_err;
    430   }
    431 
    432   if (BN_is_zero(a)) {
    433     if (!CBB_add_u8(&cbb, '0')) {
    434       goto cbb_err;
    435     }
    436   } else {
    437     copy = BN_dup(a);
    438     if (copy == NULL) {
    439       goto err;
    440     }
    441 
    442     while (!BN_is_zero(copy)) {
    443       BN_ULONG word = BN_div_word(copy, BN_DEC_CONV);
    444       if (word == (BN_ULONG)-1) {
    445         goto err;
    446       }
    447 
    448       const int add_leading_zeros = !BN_is_zero(copy);
    449       for (int i = 0; i < BN_DEC_NUM && (add_leading_zeros || word != 0); i++) {
    450         if (!CBB_add_u8(&cbb, '0' + word % 10)) {
    451           goto cbb_err;
    452         }
    453         word /= 10;
    454       }
    455       assert(word == 0);
    456     }
    457   }
    458 
    459   if (BN_is_negative(a) &&
    460       !CBB_add_u8(&cbb, '-')) {
    461     goto cbb_err;
    462   }
    463 
    464   uint8_t *data;
    465   size_t len;
    466   if (!CBB_finish(&cbb, &data, &len)) {
    467     goto cbb_err;
    468   }
    469 
    470   /* Reverse the buffer. */
    471   for (size_t i = 0; i < len/2; i++) {
    472     uint8_t tmp = data[i];
    473     data[i] = data[len - 1 - i];
    474     data[len - 1 - i] = tmp;
    475   }
    476 
    477   BN_free(copy);
    478   return (char *)data;
    479 
    480 cbb_err:
    481   OPENSSL_PUT_ERROR(BN, ERR_R_MALLOC_FAILURE);
    482 err:
    483   BN_free(copy);
    484   CBB_cleanup(&cbb);
    485   return NULL;
    486 }
    487 
    488 int BN_dec2bn(BIGNUM **outp, const char *in) {
    489   return bn_x2bn(outp, in, decode_dec, isdigit);
    490 }
    491 
    492 int BN_asc2bn(BIGNUM **outp, const char *in) {
    493   const char *const orig_in = in;
    494   if (*in == '-') {
    495     in++;
    496   }
    497 
    498   if (in[0] == '0' && (in[1] == 'X' || in[1] == 'x')) {
    499     if (!BN_hex2bn(outp, in+2)) {
    500       return 0;
    501     }
    502   } else {
    503     if (!BN_dec2bn(outp, in)) {
    504       return 0;
    505     }
    506   }
    507 
    508   if (*orig_in == '-' && !BN_is_zero(*outp)) {
    509     (*outp)->neg = 1;
    510   }
    511 
    512   return 1;
    513 }
    514 
    515 int BN_print(BIO *bp, const BIGNUM *a) {
    516   int i, j, v, z = 0;
    517   int ret = 0;
    518 
    519   if (a->neg && BIO_write(bp, "-", 1) != 1) {
    520     goto end;
    521   }
    522 
    523   if (BN_is_zero(a) && BIO_write(bp, "0", 1) != 1) {
    524     goto end;
    525   }
    526 
    527   for (i = a->top - 1; i >= 0; i--) {
    528     for (j = BN_BITS2 - 4; j >= 0; j -= 4) {
    529       /* strip leading zeros */
    530       v = ((int)(a->d[i] >> (long)j)) & 0x0f;
    531       if (z || v != 0) {
    532         if (BIO_write(bp, &hextable[v], 1) != 1) {
    533           goto end;
    534         }
    535         z = 1;
    536       }
    537     }
    538   }
    539   ret = 1;
    540 
    541 end:
    542   return ret;
    543 }
    544 
    545 int BN_print_fp(FILE *fp, const BIGNUM *a) {
    546   BIO *b;
    547   int ret;
    548 
    549   b = BIO_new(BIO_s_file());
    550   if (b == NULL) {
    551     return 0;
    552   }
    553   BIO_set_fp(b, fp, BIO_NOCLOSE);
    554   ret = BN_print(b, a);
    555   BIO_free(b);
    556 
    557   return ret;
    558 }
    559 
    560 BN_ULONG BN_get_word(const BIGNUM *bn) {
    561   switch (bn->top) {
    562     case 0:
    563       return 0;
    564     case 1:
    565       return bn->d[0];
    566     default:
    567       return BN_MASK2;
    568   }
    569 }
    570 
    571 int BN_get_u64(const BIGNUM *bn, uint64_t *out) {
    572   switch (bn->top) {
    573     case 0:
    574       *out = 0;
    575       return 1;
    576     case 1:
    577       *out = bn->d[0];
    578       return 1;
    579 #if defined(OPENSSL_32_BIT)
    580     case 2:
    581       *out = (uint64_t) bn->d[0] | (((uint64_t) bn->d[1]) << 32);
    582       return 1;
    583 #endif
    584     default:
    585       return 0;
    586   }
    587 }
    588 
    589 size_t BN_bn2mpi(const BIGNUM *in, uint8_t *out) {
    590   const size_t bits = BN_num_bits(in);
    591   const size_t bytes = (bits + 7) / 8;
    592   /* If the number of bits is a multiple of 8, i.e. if the MSB is set,
    593    * prefix with a zero byte. */
    594   int extend = 0;
    595   if (bytes != 0 && (bits & 0x07) == 0) {
    596     extend = 1;
    597   }
    598 
    599   const size_t len = bytes + extend;
    600   if (len < bytes ||
    601       4 + len < len ||
    602       (len & 0xffffffff) != len) {
    603     /* If we cannot represent the number then we emit zero as the interface
    604      * doesn't allow an error to be signalled. */
    605     if (out) {
    606       OPENSSL_memset(out, 0, 4);
    607     }
    608     return 4;
    609   }
    610 
    611   if (out == NULL) {
    612     return 4 + len;
    613   }
    614 
    615   out[0] = len >> 24;
    616   out[1] = len >> 16;
    617   out[2] = len >> 8;
    618   out[3] = len;
    619   if (extend) {
    620     out[4] = 0;
    621   }
    622   BN_bn2bin(in, out + 4 + extend);
    623   if (in->neg && len > 0) {
    624     out[4] |= 0x80;
    625   }
    626   return len + 4;
    627 }
    628 
    629 BIGNUM *BN_mpi2bn(const uint8_t *in, size_t len, BIGNUM *out) {
    630   if (len < 4) {
    631     OPENSSL_PUT_ERROR(BN, BN_R_BAD_ENCODING);
    632     return NULL;
    633   }
    634   const size_t in_len = ((size_t)in[0] << 24) |
    635                         ((size_t)in[1] << 16) |
    636                         ((size_t)in[2] << 8) |
    637                         ((size_t)in[3]);
    638   if (in_len != len - 4) {
    639     OPENSSL_PUT_ERROR(BN, BN_R_BAD_ENCODING);
    640     return NULL;
    641   }
    642 
    643   int out_is_alloced = 0;
    644   if (out == NULL) {
    645     out = BN_new();
    646     if (out == NULL) {
    647       OPENSSL_PUT_ERROR(BN, ERR_R_MALLOC_FAILURE);
    648       return NULL;
    649     }
    650     out_is_alloced = 1;
    651   }
    652 
    653   if (in_len == 0) {
    654     BN_zero(out);
    655     return out;
    656   }
    657 
    658   in += 4;
    659   if (BN_bin2bn(in, in_len, out) == NULL) {
    660     if (out_is_alloced) {
    661       BN_free(out);
    662     }
    663     return NULL;
    664   }
    665   out->neg = ((*in) & 0x80) != 0;
    666   if (out->neg) {
    667     BN_clear_bit(out, BN_num_bits(out) - 1);
    668   }
    669   return out;
    670 }
    671