1 /* ==================================================================== 2 * Copyright (c) 2010 The OpenSSL Project. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in 13 * the documentation and/or other materials provided with the 14 * distribution. 15 * 16 * 3. All advertising materials mentioning features or use of this 17 * software must display the following acknowledgment: 18 * "This product includes software developed by the OpenSSL Project 19 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" 20 * 21 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to 22 * endorse or promote products derived from this software without 23 * prior written permission. For written permission, please contact 24 * licensing (at) OpenSSL.org. 25 * 26 * 5. Products derived from this software may not be called "OpenSSL" 27 * nor may "OpenSSL" appear in their names without prior written 28 * permission of the OpenSSL Project. 29 * 30 * 6. Redistributions of any form whatsoever must retain the following 31 * acknowledgment: 32 * "This product includes software developed by the OpenSSL Project 33 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" 34 * 35 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY 36 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 37 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 38 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR 39 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 40 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 41 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 42 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 43 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 44 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 45 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED 46 * OF THE POSSIBILITY OF SUCH DAMAGE. 47 * ==================================================================== */ 48 49 #include <openssl/cmac.h> 50 51 #include <assert.h> 52 #include <string.h> 53 54 #include <openssl/aes.h> 55 #include <openssl/cipher.h> 56 #include <openssl/mem.h> 57 58 #include "../internal.h" 59 60 61 struct cmac_ctx_st { 62 EVP_CIPHER_CTX cipher_ctx; 63 /* k1 and k2 are the CMAC subkeys. See 64 * https://tools.ietf.org/html/rfc4493#section-2.3 */ 65 uint8_t k1[AES_BLOCK_SIZE]; 66 uint8_t k2[AES_BLOCK_SIZE]; 67 /* Last (possibly partial) scratch */ 68 uint8_t block[AES_BLOCK_SIZE]; 69 /* block_used contains the number of valid bytes in |block|. */ 70 unsigned block_used; 71 }; 72 73 static void CMAC_CTX_init(CMAC_CTX *ctx) { 74 EVP_CIPHER_CTX_init(&ctx->cipher_ctx); 75 } 76 77 static void CMAC_CTX_cleanup(CMAC_CTX *ctx) { 78 EVP_CIPHER_CTX_cleanup(&ctx->cipher_ctx); 79 OPENSSL_cleanse(ctx->k1, sizeof(ctx->k1)); 80 OPENSSL_cleanse(ctx->k2, sizeof(ctx->k2)); 81 OPENSSL_cleanse(ctx->block, sizeof(ctx->block)); 82 } 83 84 int AES_CMAC(uint8_t out[16], const uint8_t *key, size_t key_len, 85 const uint8_t *in, size_t in_len) { 86 const EVP_CIPHER *cipher; 87 switch (key_len) { 88 case 16: 89 cipher = EVP_aes_128_cbc(); 90 break; 91 case 32: 92 cipher = EVP_aes_256_cbc(); 93 break; 94 default: 95 return 0; 96 } 97 98 size_t scratch_out_len; 99 CMAC_CTX ctx; 100 CMAC_CTX_init(&ctx); 101 102 const int ok = CMAC_Init(&ctx, key, key_len, cipher, NULL /* engine */) && 103 CMAC_Update(&ctx, in, in_len) && 104 CMAC_Final(&ctx, out, &scratch_out_len); 105 106 CMAC_CTX_cleanup(&ctx); 107 return ok; 108 } 109 110 CMAC_CTX *CMAC_CTX_new(void) { 111 CMAC_CTX *ctx = OPENSSL_malloc(sizeof(*ctx)); 112 if (ctx != NULL) { 113 CMAC_CTX_init(ctx); 114 } 115 return ctx; 116 } 117 118 void CMAC_CTX_free(CMAC_CTX *ctx) { 119 if (ctx == NULL) { 120 return; 121 } 122 123 CMAC_CTX_cleanup(ctx); 124 OPENSSL_free(ctx); 125 } 126 127 /* binary_field_mul_x treats the 128 bits at |in| as an element of GF(2) 128 * with a hard-coded reduction polynomial and sets |out| as x times the 129 * input. 130 * 131 * See https://tools.ietf.org/html/rfc4493#section-2.3 */ 132 static void binary_field_mul_x(uint8_t out[16], const uint8_t in[16]) { 133 unsigned i; 134 135 /* Shift |in| to left, including carry. */ 136 for (i = 0; i < 15; i++) { 137 out[i] = (in[i] << 1) | (in[i+1] >> 7); 138 } 139 140 /* If MSB set fixup with R. */ 141 const uint8_t carry = in[0] >> 7; 142 out[i] = (in[i] << 1) ^ ((0 - carry) & 0x87); 143 } 144 145 static const uint8_t kZeroIV[AES_BLOCK_SIZE] = {0}; 146 147 int CMAC_Init(CMAC_CTX *ctx, const void *key, size_t key_len, 148 const EVP_CIPHER *cipher, ENGINE *engine) { 149 uint8_t scratch[AES_BLOCK_SIZE]; 150 151 if (EVP_CIPHER_block_size(cipher) != AES_BLOCK_SIZE || 152 EVP_CIPHER_key_length(cipher) != key_len || 153 !EVP_EncryptInit_ex(&ctx->cipher_ctx, cipher, NULL, key, kZeroIV) || 154 !EVP_Cipher(&ctx->cipher_ctx, scratch, kZeroIV, AES_BLOCK_SIZE) || 155 /* Reset context again ready for first data. */ 156 !EVP_EncryptInit_ex(&ctx->cipher_ctx, NULL, NULL, NULL, kZeroIV)) { 157 return 0; 158 } 159 160 binary_field_mul_x(ctx->k1, scratch); 161 binary_field_mul_x(ctx->k2, ctx->k1); 162 ctx->block_used = 0; 163 164 return 1; 165 } 166 167 int CMAC_Reset(CMAC_CTX *ctx) { 168 ctx->block_used = 0; 169 return EVP_EncryptInit_ex(&ctx->cipher_ctx, NULL, NULL, NULL, kZeroIV); 170 } 171 172 int CMAC_Update(CMAC_CTX *ctx, const uint8_t *in, size_t in_len) { 173 uint8_t scratch[AES_BLOCK_SIZE]; 174 175 if (ctx->block_used > 0) { 176 size_t todo = AES_BLOCK_SIZE - ctx->block_used; 177 if (in_len < todo) { 178 todo = in_len; 179 } 180 181 OPENSSL_memcpy(ctx->block + ctx->block_used, in, todo); 182 in += todo; 183 in_len -= todo; 184 ctx->block_used += todo; 185 186 /* If |in_len| is zero then either |ctx->block_used| is less than 187 * |AES_BLOCK_SIZE|, in which case we can stop here, or |ctx->block_used| 188 * is exactly |AES_BLOCK_SIZE| but there's no more data to process. In the 189 * latter case we don't want to process this block now because it might be 190 * the last block and that block is treated specially. */ 191 if (in_len == 0) { 192 return 1; 193 } 194 195 assert(ctx->block_used == AES_BLOCK_SIZE); 196 197 if (!EVP_Cipher(&ctx->cipher_ctx, scratch, ctx->block, AES_BLOCK_SIZE)) { 198 return 0; 199 } 200 } 201 202 /* Encrypt all but one of the remaining blocks. */ 203 while (in_len > AES_BLOCK_SIZE) { 204 if (!EVP_Cipher(&ctx->cipher_ctx, scratch, in, AES_BLOCK_SIZE)) { 205 return 0; 206 } 207 in += AES_BLOCK_SIZE; 208 in_len -= AES_BLOCK_SIZE; 209 } 210 211 OPENSSL_memcpy(ctx->block, in, in_len); 212 ctx->block_used = in_len; 213 214 return 1; 215 } 216 217 int CMAC_Final(CMAC_CTX *ctx, uint8_t *out, size_t *out_len) { 218 *out_len = AES_BLOCK_SIZE; 219 if (out == NULL) { 220 return 1; 221 } 222 223 const uint8_t *mask = ctx->k1; 224 225 if (ctx->block_used != AES_BLOCK_SIZE) { 226 /* If the last block is incomplete, terminate it with a single 'one' bit 227 * followed by zeros. */ 228 ctx->block[ctx->block_used] = 0x80; 229 OPENSSL_memset(ctx->block + ctx->block_used + 1, 0, 230 AES_BLOCK_SIZE - (ctx->block_used + 1)); 231 232 mask = ctx->k2; 233 } 234 235 unsigned i; 236 for (i = 0; i < AES_BLOCK_SIZE; i++) { 237 out[i] = ctx->block[i] ^ mask[i]; 238 } 239 240 return EVP_Cipher(&ctx->cipher_ctx, out, out, AES_BLOCK_SIZE); 241 } 242