1 /* 2 * Copyright (C) 2014 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #include "reference_processor.h" 18 19 #include "base/time_utils.h" 20 #include "collector/garbage_collector.h" 21 #include "java_vm_ext.h" 22 #include "mirror/class-inl.h" 23 #include "mirror/object-inl.h" 24 #include "mirror/reference-inl.h" 25 #include "reference_processor-inl.h" 26 #include "reflection.h" 27 #include "ScopedLocalRef.h" 28 #include "scoped_thread_state_change-inl.h" 29 #include "task_processor.h" 30 #include "utils.h" 31 #include "well_known_classes.h" 32 33 namespace art { 34 namespace gc { 35 36 static constexpr bool kAsyncReferenceQueueAdd = false; 37 38 ReferenceProcessor::ReferenceProcessor() 39 : collector_(nullptr), 40 preserving_references_(false), 41 condition_("reference processor condition", *Locks::reference_processor_lock_) , 42 soft_reference_queue_(Locks::reference_queue_soft_references_lock_), 43 weak_reference_queue_(Locks::reference_queue_weak_references_lock_), 44 finalizer_reference_queue_(Locks::reference_queue_finalizer_references_lock_), 45 phantom_reference_queue_(Locks::reference_queue_phantom_references_lock_), 46 cleared_references_(Locks::reference_queue_cleared_references_lock_) { 47 } 48 49 void ReferenceProcessor::EnableSlowPath() { 50 mirror::Reference::GetJavaLangRefReference()->SetSlowPath(true); 51 } 52 53 void ReferenceProcessor::DisableSlowPath(Thread* self) { 54 mirror::Reference::GetJavaLangRefReference()->SetSlowPath(false); 55 condition_.Broadcast(self); 56 } 57 58 void ReferenceProcessor::BroadcastForSlowPath(Thread* self) { 59 MutexLock mu(self, *Locks::reference_processor_lock_); 60 condition_.Broadcast(self); 61 } 62 63 ObjPtr<mirror::Object> ReferenceProcessor::GetReferent(Thread* self, 64 ObjPtr<mirror::Reference> reference) { 65 if (!kUseReadBarrier || self->GetWeakRefAccessEnabled()) { 66 // Under read barrier / concurrent copying collector, it's not safe to call GetReferent() when 67 // weak ref access is disabled as the call includes a read barrier which may push a ref onto the 68 // mark stack and interfere with termination of marking. 69 ObjPtr<mirror::Object> const referent = reference->GetReferent(); 70 // If the referent is null then it is already cleared, we can just return null since there is no 71 // scenario where it becomes non-null during the reference processing phase. 72 if (UNLIKELY(!SlowPathEnabled()) || referent == nullptr) { 73 return referent; 74 } 75 } 76 MutexLock mu(self, *Locks::reference_processor_lock_); 77 while ((!kUseReadBarrier && SlowPathEnabled()) || 78 (kUseReadBarrier && !self->GetWeakRefAccessEnabled())) { 79 ObjPtr<mirror::Object> referent = reference->GetReferent<kWithoutReadBarrier>(); 80 // If the referent became cleared, return it. Don't need barrier since thread roots can't get 81 // updated until after we leave the function due to holding the mutator lock. 82 if (referent == nullptr) { 83 return nullptr; 84 } 85 // Try to see if the referent is already marked by using the is_marked_callback. We can return 86 // it to the mutator as long as the GC is not preserving references. 87 if (LIKELY(collector_ != nullptr)) { 88 // If it's null it means not marked, but it could become marked if the referent is reachable 89 // by finalizer referents. So we cannot return in this case and must block. Otherwise, we 90 // can return it to the mutator as long as the GC is not preserving references, in which 91 // case only black nodes can be safely returned. If the GC is preserving references, the 92 // mutator could take a white field from a grey or white node and move it somewhere else 93 // in the heap causing corruption since this field would get swept. 94 // Use the cached referent instead of calling GetReferent since other threads could call 95 // Reference.clear() after we did the null check resulting in a null pointer being 96 // incorrectly passed to IsMarked. b/33569625 97 ObjPtr<mirror::Object> forwarded_ref = collector_->IsMarked(referent.Ptr()); 98 if (forwarded_ref != nullptr) { 99 // Non null means that it is marked. 100 if (!preserving_references_ || 101 (LIKELY(!reference->IsFinalizerReferenceInstance()) && reference->IsUnprocessed())) { 102 return forwarded_ref; 103 } 104 } 105 } 106 // Check and run the empty checkpoint before blocking so the empty checkpoint will work in the 107 // presence of threads blocking for weak ref access. 108 self->CheckEmptyCheckpointFromWeakRefAccess(Locks::reference_processor_lock_); 109 condition_.WaitHoldingLocks(self); 110 } 111 return reference->GetReferent(); 112 } 113 114 void ReferenceProcessor::StartPreservingReferences(Thread* self) { 115 MutexLock mu(self, *Locks::reference_processor_lock_); 116 preserving_references_ = true; 117 } 118 119 void ReferenceProcessor::StopPreservingReferences(Thread* self) { 120 MutexLock mu(self, *Locks::reference_processor_lock_); 121 preserving_references_ = false; 122 // We are done preserving references, some people who are blocked may see a marked referent. 123 condition_.Broadcast(self); 124 } 125 126 // Process reference class instances and schedule finalizations. 127 void ReferenceProcessor::ProcessReferences(bool concurrent, 128 TimingLogger* timings, 129 bool clear_soft_references, 130 collector::GarbageCollector* collector) { 131 TimingLogger::ScopedTiming t(concurrent ? __FUNCTION__ : "(Paused)ProcessReferences", timings); 132 Thread* self = Thread::Current(); 133 { 134 MutexLock mu(self, *Locks::reference_processor_lock_); 135 collector_ = collector; 136 if (!kUseReadBarrier) { 137 CHECK_EQ(SlowPathEnabled(), concurrent) << "Slow path must be enabled iff concurrent"; 138 } else { 139 // Weak ref access is enabled at Zygote compaction by SemiSpace (concurrent == false). 140 CHECK_EQ(!self->GetWeakRefAccessEnabled(), concurrent); 141 } 142 } 143 if (kIsDebugBuild && collector->IsTransactionActive()) { 144 // In transaction mode, we shouldn't enqueue any Reference to the queues. 145 // See DelayReferenceReferent(). 146 DCHECK(soft_reference_queue_.IsEmpty()); 147 DCHECK(weak_reference_queue_.IsEmpty()); 148 DCHECK(finalizer_reference_queue_.IsEmpty()); 149 DCHECK(phantom_reference_queue_.IsEmpty()); 150 } 151 // Unless required to clear soft references with white references, preserve some white referents. 152 if (!clear_soft_references) { 153 TimingLogger::ScopedTiming split(concurrent ? "ForwardSoftReferences" : 154 "(Paused)ForwardSoftReferences", timings); 155 if (concurrent) { 156 StartPreservingReferences(self); 157 } 158 // TODO: Add smarter logic for preserving soft references. The behavior should be a conditional 159 // mark if the SoftReference is supposed to be preserved. 160 soft_reference_queue_.ForwardSoftReferences(collector); 161 collector->ProcessMarkStack(); 162 if (concurrent) { 163 StopPreservingReferences(self); 164 } 165 } 166 // Clear all remaining soft and weak references with white referents. 167 soft_reference_queue_.ClearWhiteReferences(&cleared_references_, collector); 168 weak_reference_queue_.ClearWhiteReferences(&cleared_references_, collector); 169 { 170 TimingLogger::ScopedTiming t2(concurrent ? "EnqueueFinalizerReferences" : 171 "(Paused)EnqueueFinalizerReferences", timings); 172 if (concurrent) { 173 StartPreservingReferences(self); 174 } 175 // Preserve all white objects with finalize methods and schedule them for finalization. 176 finalizer_reference_queue_.EnqueueFinalizerReferences(&cleared_references_, collector); 177 collector->ProcessMarkStack(); 178 if (concurrent) { 179 StopPreservingReferences(self); 180 } 181 } 182 // Clear all finalizer referent reachable soft and weak references with white referents. 183 soft_reference_queue_.ClearWhiteReferences(&cleared_references_, collector); 184 weak_reference_queue_.ClearWhiteReferences(&cleared_references_, collector); 185 // Clear all phantom references with white referents. 186 phantom_reference_queue_.ClearWhiteReferences(&cleared_references_, collector); 187 // At this point all reference queues other than the cleared references should be empty. 188 DCHECK(soft_reference_queue_.IsEmpty()); 189 DCHECK(weak_reference_queue_.IsEmpty()); 190 DCHECK(finalizer_reference_queue_.IsEmpty()); 191 DCHECK(phantom_reference_queue_.IsEmpty()); 192 { 193 MutexLock mu(self, *Locks::reference_processor_lock_); 194 // Need to always do this since the next GC may be concurrent. Doing this for only concurrent 195 // could result in a stale is_marked_callback_ being called before the reference processing 196 // starts since there is a small window of time where slow_path_enabled_ is enabled but the 197 // callback isn't yet set. 198 collector_ = nullptr; 199 if (!kUseReadBarrier && concurrent) { 200 // Done processing, disable the slow path and broadcast to the waiters. 201 DisableSlowPath(self); 202 } 203 } 204 } 205 206 // Process the "referent" field in a java.lang.ref.Reference. If the referent has not yet been 207 // marked, put it on the appropriate list in the heap for later processing. 208 void ReferenceProcessor::DelayReferenceReferent(ObjPtr<mirror::Class> klass, 209 ObjPtr<mirror::Reference> ref, 210 collector::GarbageCollector* collector) { 211 // klass can be the class of the old object if the visitor already updated the class of ref. 212 DCHECK(klass != nullptr); 213 DCHECK(klass->IsTypeOfReferenceClass()); 214 mirror::HeapReference<mirror::Object>* referent = ref->GetReferentReferenceAddr(); 215 // do_atomic_update needs to be true because this happens outside of the reference processing 216 // phase. 217 if (!collector->IsNullOrMarkedHeapReference(referent, /*do_atomic_update*/true)) { 218 if (UNLIKELY(collector->IsTransactionActive())) { 219 // In transaction mode, keep the referent alive and avoid any reference processing to avoid the 220 // issue of rolling back reference processing. do_atomic_update needs to be true because this 221 // happens outside of the reference processing phase. 222 if (!referent->IsNull()) { 223 collector->MarkHeapReference(referent, /*do_atomic_update*/ true); 224 } 225 return; 226 } 227 Thread* self = Thread::Current(); 228 // TODO: Remove these locks, and use atomic stacks for storing references? 229 // We need to check that the references haven't already been enqueued since we can end up 230 // scanning the same reference multiple times due to dirty cards. 231 if (klass->IsSoftReferenceClass()) { 232 soft_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref); 233 } else if (klass->IsWeakReferenceClass()) { 234 weak_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref); 235 } else if (klass->IsFinalizerReferenceClass()) { 236 finalizer_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref); 237 } else if (klass->IsPhantomReferenceClass()) { 238 phantom_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref); 239 } else { 240 LOG(FATAL) << "Invalid reference type " << klass->PrettyClass() << " " << std::hex 241 << klass->GetAccessFlags(); 242 } 243 } 244 } 245 246 void ReferenceProcessor::UpdateRoots(IsMarkedVisitor* visitor) { 247 cleared_references_.UpdateRoots(visitor); 248 } 249 250 class ClearedReferenceTask : public HeapTask { 251 public: 252 explicit ClearedReferenceTask(jobject cleared_references) 253 : HeapTask(NanoTime()), cleared_references_(cleared_references) { 254 } 255 virtual void Run(Thread* thread) { 256 ScopedObjectAccess soa(thread); 257 jvalue args[1]; 258 args[0].l = cleared_references_; 259 InvokeWithJValues(soa, nullptr, WellKnownClasses::java_lang_ref_ReferenceQueue_add, args); 260 soa.Env()->DeleteGlobalRef(cleared_references_); 261 } 262 263 private: 264 const jobject cleared_references_; 265 }; 266 267 void ReferenceProcessor::EnqueueClearedReferences(Thread* self) { 268 Locks::mutator_lock_->AssertNotHeld(self); 269 // When a runtime isn't started there are no reference queues to care about so ignore. 270 if (!cleared_references_.IsEmpty()) { 271 if (LIKELY(Runtime::Current()->IsStarted())) { 272 jobject cleared_references; 273 { 274 ReaderMutexLock mu(self, *Locks::mutator_lock_); 275 cleared_references = self->GetJniEnv()->vm->AddGlobalRef( 276 self, cleared_references_.GetList()); 277 } 278 if (kAsyncReferenceQueueAdd) { 279 // TODO: This can cause RunFinalization to terminate before newly freed objects are 280 // finalized since they may not be enqueued by the time RunFinalization starts. 281 Runtime::Current()->GetHeap()->GetTaskProcessor()->AddTask( 282 self, new ClearedReferenceTask(cleared_references)); 283 } else { 284 ClearedReferenceTask task(cleared_references); 285 task.Run(self); 286 } 287 } 288 cleared_references_.Clear(); 289 } 290 } 291 292 void ReferenceProcessor::ClearReferent(ObjPtr<mirror::Reference> ref) { 293 Thread* self = Thread::Current(); 294 MutexLock mu(self, *Locks::reference_processor_lock_); 295 // Need to wait until reference processing is done since IsMarkedHeapReference does not have a 296 // CAS. If we do not wait, it can result in the GC un-clearing references due to race conditions. 297 // This also handles the race where the referent gets cleared after a null check but before 298 // IsMarkedHeapReference is called. 299 WaitUntilDoneProcessingReferences(self); 300 if (Runtime::Current()->IsActiveTransaction()) { 301 ref->ClearReferent<true>(); 302 } else { 303 ref->ClearReferent<false>(); 304 } 305 } 306 307 void ReferenceProcessor::WaitUntilDoneProcessingReferences(Thread* self) { 308 // Wait until we are done processing reference. 309 while ((!kUseReadBarrier && SlowPathEnabled()) || 310 (kUseReadBarrier && !self->GetWeakRefAccessEnabled())) { 311 // Check and run the empty checkpoint before blocking so the empty checkpoint will work in the 312 // presence of threads blocking for weak ref access. 313 self->CheckEmptyCheckpointFromWeakRefAccess(Locks::reference_processor_lock_); 314 condition_.WaitHoldingLocks(self); 315 } 316 } 317 318 bool ReferenceProcessor::MakeCircularListIfUnenqueued( 319 ObjPtr<mirror::FinalizerReference> reference) { 320 Thread* self = Thread::Current(); 321 MutexLock mu(self, *Locks::reference_processor_lock_); 322 WaitUntilDoneProcessingReferences(self); 323 // At this point, since the sentinel of the reference is live, it is guaranteed to not be 324 // enqueued if we just finished processing references. Otherwise, we may be doing the main GC 325 // phase. Since we are holding the reference processor lock, it guarantees that reference 326 // processing can't begin. The GC could have just enqueued the reference one one of the internal 327 // GC queues, but since we hold the lock finalizer_reference_queue_ lock it also prevents this 328 // race. 329 MutexLock mu2(self, *Locks::reference_queue_finalizer_references_lock_); 330 if (reference->IsUnprocessed()) { 331 CHECK(reference->IsFinalizerReferenceInstance()); 332 reference->SetPendingNext(reference); 333 return true; 334 } 335 return false; 336 } 337 338 } // namespace gc 339 } // namespace art 340