Home | History | Annotate | Download | only in Library
      1 /** @file
      2   This library is only intended to be used by UEFI network stack modules.
      3   It provides basic functions for the UEFI network stack.
      4 
      5 Copyright (c) 2005 - 2012, Intel Corporation. All rights reserved.<BR>
      6 This program and the accompanying materials
      7 are licensed and made available under the terms and conditions of the BSD License
      8 which accompanies this distribution.  The full text of the license may be found at<BR>
      9 http://opensource.org/licenses/bsd-license.php
     10 
     11 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
     12 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
     13 
     14 **/
     15 
     16 #ifndef _NET_LIB_H_
     17 #define _NET_LIB_H_
     18 
     19 #include <Protocol/Ip6.h>
     20 
     21 #include <Library/BaseLib.h>
     22 #include <Library/BaseMemoryLib.h>
     23 
     24 typedef UINT32          IP4_ADDR;
     25 typedef UINT32          TCP_SEQNO;
     26 typedef UINT16          TCP_PORTNO;
     27 
     28 
     29 #define  NET_ETHER_ADDR_LEN    6
     30 #define  NET_IFTYPE_ETHERNET   0x01
     31 
     32 #define  NET_VLAN_TAG_LEN      4
     33 #define  ETHER_TYPE_VLAN       0x8100
     34 
     35 #define  EFI_IP_PROTO_UDP      0x11
     36 #define  EFI_IP_PROTO_TCP      0x06
     37 #define  EFI_IP_PROTO_ICMP     0x01
     38 #define  IP4_PROTO_IGMP        0x02
     39 #define  IP6_ICMP              58
     40 
     41 //
     42 // The address classification
     43 //
     44 #define  IP4_ADDR_CLASSA       1
     45 #define  IP4_ADDR_CLASSB       2
     46 #define  IP4_ADDR_CLASSC       3
     47 #define  IP4_ADDR_CLASSD       4
     48 #define  IP4_ADDR_CLASSE       5
     49 
     50 #define  IP4_MASK_NUM          33
     51 #define  IP6_PREFIX_NUM        129
     52 
     53 #define  IP6_HOP_BY_HOP        0
     54 #define  IP6_DESTINATION       60
     55 #define  IP6_ROUTING           43
     56 #define  IP6_FRAGMENT          44
     57 #define  IP6_AH                51
     58 #define  IP6_ESP               50
     59 #define  IP6_NO_NEXT_HEADER    59
     60 
     61 #define  IP_VERSION_4          4
     62 #define  IP_VERSION_6          6
     63 
     64 #define  IP6_PREFIX_LENGTH     64
     65 
     66 #pragma pack(1)
     67 
     68 //
     69 // Ethernet head definition
     70 //
     71 typedef struct {
     72   UINT8                 DstMac [NET_ETHER_ADDR_LEN];
     73   UINT8                 SrcMac [NET_ETHER_ADDR_LEN];
     74   UINT16                EtherType;
     75 } ETHER_HEAD;
     76 
     77 //
     78 // 802.1Q VLAN Tag Control Information
     79 //
     80 typedef union {
     81   struct {
     82     UINT16              Vid      : 12;  // Unique VLAN identifier (0 to 4094)
     83     UINT16              Cfi      : 1;   // Canonical Format Indicator
     84     UINT16              Priority : 3;   // 802.1Q priority level (0 to 7)
     85   } Bits;
     86   UINT16                Uint16;
     87 } VLAN_TCI;
     88 
     89 #define VLAN_TCI_CFI_CANONICAL_MAC      0
     90 #define VLAN_TCI_CFI_NON_CANONICAL_MAC  1
     91 
     92 //
     93 // The EFI_IP4_HEADER is hard to use because the source and
     94 // destination address are defined as EFI_IPv4_ADDRESS, which
     95 // is a structure. Two structures can't be compared or masked
     96 // directly. This is why there is an internal representation.
     97 //
     98 typedef struct {
     99   UINT8                 HeadLen : 4;
    100   UINT8                 Ver     : 4;
    101   UINT8                 Tos;
    102   UINT16                TotalLen;
    103   UINT16                Id;
    104   UINT16                Fragment;
    105   UINT8                 Ttl;
    106   UINT8                 Protocol;
    107   UINT16                Checksum;
    108   IP4_ADDR              Src;
    109   IP4_ADDR              Dst;
    110 } IP4_HEAD;
    111 
    112 
    113 //
    114 // ICMP head definition. Each ICMP message is categorized as either an error
    115 // message or query message. Two message types have their own head format.
    116 //
    117 typedef struct {
    118   UINT8                 Type;
    119   UINT8                 Code;
    120   UINT16                Checksum;
    121 } IP4_ICMP_HEAD;
    122 
    123 typedef struct {
    124   IP4_ICMP_HEAD         Head;
    125   UINT32                Fourth; // 4th filed of the head, it depends on Type.
    126   IP4_HEAD              IpHead;
    127 } IP4_ICMP_ERROR_HEAD;
    128 
    129 typedef struct {
    130   IP4_ICMP_HEAD         Head;
    131   UINT16                Id;
    132   UINT16                Seq;
    133 } IP4_ICMP_QUERY_HEAD;
    134 
    135 typedef struct {
    136   UINT8                 Type;
    137   UINT8                 Code;
    138   UINT16                Checksum;
    139 } IP6_ICMP_HEAD;
    140 
    141 typedef struct {
    142   IP6_ICMP_HEAD         Head;
    143   UINT32                Fourth;
    144   EFI_IP6_HEADER        IpHead;
    145 } IP6_ICMP_ERROR_HEAD;
    146 
    147 typedef struct {
    148   IP6_ICMP_HEAD         Head;
    149   UINT32                Fourth;
    150 } IP6_ICMP_INFORMATION_HEAD;
    151 
    152 //
    153 // UDP header definition
    154 //
    155 typedef struct {
    156   UINT16                SrcPort;
    157   UINT16                DstPort;
    158   UINT16                Length;
    159   UINT16                Checksum;
    160 } EFI_UDP_HEADER;
    161 
    162 //
    163 // TCP header definition
    164 //
    165 typedef struct {
    166   TCP_PORTNO            SrcPort;
    167   TCP_PORTNO            DstPort;
    168   TCP_SEQNO             Seq;
    169   TCP_SEQNO             Ack;
    170   UINT8                 Res     : 4;
    171   UINT8                 HeadLen : 4;
    172   UINT8                 Flag;
    173   UINT16                Wnd;
    174   UINT16                Checksum;
    175   UINT16                Urg;
    176 } TCP_HEAD;
    177 
    178 #pragma pack()
    179 
    180 #define NET_MAC_EQUAL(pMac1, pMac2, Len)     \
    181     (CompareMem ((pMac1), (pMac2), Len) == 0)
    182 
    183 #define NET_MAC_IS_MULTICAST(Mac, BMac, Len) \
    184     (((*((UINT8 *) Mac) & 0x01) == 0x01) && (!NET_MAC_EQUAL (Mac, BMac, Len)))
    185 
    186 #define NTOHL(x)  SwapBytes32 (x)
    187 
    188 #define HTONL(x)  NTOHL(x)
    189 
    190 #define NTOHS(x)  SwapBytes16 (x)
    191 
    192 #define HTONS(x)   NTOHS(x)
    193 #define NTOHLL(x)  SwapBytes64 (x)
    194 #define HTONLL(x)  NTOHLL(x)
    195 #define NTOHLLL(x) Ip6Swap128 (x)
    196 #define HTONLLL(x) NTOHLLL(x)
    197 
    198 //
    199 // Test the IP's attribute, All the IPs are in host byte order.
    200 //
    201 #define IP4_IS_MULTICAST(Ip)              (((Ip) & 0xF0000000) == 0xE0000000)
    202 #define IP4_IS_LOCAL_BROADCAST(Ip)        ((Ip) == 0xFFFFFFFF)
    203 #define IP4_NET_EQUAL(Ip1, Ip2, NetMask)  (((Ip1) & (NetMask)) == ((Ip2) & (NetMask)))
    204 #define IP4_IS_VALID_NETMASK(Ip)          (NetGetMaskLength (Ip) != IP4_MASK_NUM)
    205 
    206 #define IP6_IS_MULTICAST(Ip6)             (((Ip6)->Addr[0]) == 0xFF)
    207 
    208 //
    209 // Convert the EFI_IP4_ADDRESS to plain UINT32 IP4 address.
    210 //
    211 #define EFI_IP4(EfiIpAddr)       (*(IP4_ADDR *) ((EfiIpAddr).Addr))
    212 #define EFI_NTOHL(EfiIp)         (NTOHL (EFI_IP4 ((EfiIp))))
    213 #define EFI_IP4_EQUAL(Ip1, Ip2)  (CompareMem ((Ip1), (Ip2), sizeof (EFI_IPv4_ADDRESS)) == 0)
    214 
    215 #define EFI_IP6_EQUAL(Ip1, Ip2)  (CompareMem ((Ip1), (Ip2), sizeof (EFI_IPv6_ADDRESS)) == 0)
    216 
    217 #define IP4_COPY_ADDRESS(Dest, Src) (CopyMem ((Dest), (Src), sizeof (EFI_IPv4_ADDRESS)))
    218 #define IP6_COPY_ADDRESS(Dest, Src) (CopyMem ((Dest), (Src), sizeof (EFI_IPv6_ADDRESS)))
    219 #define IP6_COPY_LINK_ADDRESS(Mac1, Mac2) (CopyMem ((Mac1), (Mac2), sizeof (EFI_MAC_ADDRESS)))
    220 
    221 //
    222 // The debug level definition. This value is also used as the
    223 // syslog's servity level. Don't change it.
    224 //
    225 #define NETDEBUG_LEVEL_TRACE   5
    226 #define NETDEBUG_LEVEL_WARNING 4
    227 #define NETDEBUG_LEVEL_ERROR   3
    228 
    229 //
    230 // Network debug message is sent out as syslog packet.
    231 //
    232 #define NET_SYSLOG_FACILITY    16                 // Syslog local facility local use
    233 #define NET_SYSLOG_PACKET_LEN  512
    234 #define NET_SYSLOG_TX_TIMEOUT  (500 * 1000 * 10)  // 500ms
    235 #define NET_DEBUG_MSG_LEN      470                // 512 - (ether+ip4+udp4 head length)
    236 
    237 //
    238 // The debug output expects the ASCII format string, Use %a to print ASCII
    239 // string, and %s to print UNICODE string. PrintArg must be enclosed in ().
    240 // For example: NET_DEBUG_TRACE ("Tcp", ("State transit to %a\n", Name));
    241 //
    242 #define NET_DEBUG_TRACE(Module, PrintArg) \
    243   NetDebugOutput ( \
    244     NETDEBUG_LEVEL_TRACE, \
    245     Module, \
    246     __FILE__, \
    247     __LINE__, \
    248     NetDebugASPrint PrintArg \
    249     )
    250 
    251 #define NET_DEBUG_WARNING(Module, PrintArg) \
    252   NetDebugOutput ( \
    253     NETDEBUG_LEVEL_WARNING, \
    254     Module, \
    255     __FILE__, \
    256     __LINE__, \
    257     NetDebugASPrint PrintArg \
    258     )
    259 
    260 #define NET_DEBUG_ERROR(Module, PrintArg) \
    261   NetDebugOutput ( \
    262     NETDEBUG_LEVEL_ERROR, \
    263     Module, \
    264     __FILE__, \
    265     __LINE__, \
    266     NetDebugASPrint PrintArg \
    267     )
    268 
    269 /**
    270   Allocate a buffer, then format the message to it. This is a
    271   help function for the NET_DEBUG_XXX macros. The PrintArg of
    272   these macros treats the variable length print parameters as a
    273   single parameter, and pass it to the NetDebugASPrint. For
    274   example, NET_DEBUG_TRACE ("Tcp", ("State transit to %a\n", Name))
    275   if extracted to:
    276 
    277          NetDebugOutput (
    278            NETDEBUG_LEVEL_TRACE,
    279            "Tcp",
    280            __FILE__,
    281            __LINE__,
    282            NetDebugASPrint ("State transit to %a\n", Name)
    283          )
    284 
    285   @param Format  The ASCII format string.
    286   @param ...     The variable length parameter whose format is determined
    287                  by the Format string.
    288 
    289   @return        The buffer containing the formatted message,
    290                  or NULL if memory allocation failed.
    291 
    292 **/
    293 CHAR8 *
    294 EFIAPI
    295 NetDebugASPrint (
    296   IN CHAR8                  *Format,
    297   ...
    298   );
    299 
    300 /**
    301   Builds an UDP4 syslog packet and send it using SNP.
    302 
    303   This function will locate a instance of SNP then send the message through it.
    304   Because it isn't open the SNP BY_DRIVER, apply caution when using it.
    305 
    306   @param Level    The servity level of the message.
    307   @param Module   The Moudle that generates the log.
    308   @param File     The file that contains the log.
    309   @param Line     The exact line that contains the log.
    310   @param Message  The user message to log.
    311 
    312   @retval EFI_INVALID_PARAMETER Any input parameter is invalid.
    313   @retval EFI_OUT_OF_RESOURCES  Failed to allocate memory for the packet
    314   @retval EFI_SUCCESS           The log is discard because that it is more verbose
    315                                 than the mNetDebugLevelMax. Or, it has been sent out.
    316 **/
    317 EFI_STATUS
    318 EFIAPI
    319 NetDebugOutput (
    320   IN UINT32                    Level,
    321   IN UINT8                     *Module,
    322   IN UINT8                     *File,
    323   IN UINT32                    Line,
    324   IN UINT8                     *Message
    325   );
    326 
    327 
    328 /**
    329   Return the length of the mask.
    330 
    331   Return the length of the mask. Valid values are 0 to 32.
    332   If the mask is invalid, return the invalid length 33, which is IP4_MASK_NUM.
    333   NetMask is in the host byte order.
    334 
    335   @param[in]  NetMask              The netmask to get the length from.
    336 
    337   @return The length of the netmask, or IP4_MASK_NUM (33) if the mask is invalid.
    338 
    339 **/
    340 INTN
    341 EFIAPI
    342 NetGetMaskLength (
    343   IN IP4_ADDR               NetMask
    344   );
    345 
    346 /**
    347   Return the class of the IP address, such as class A, B, C.
    348   Addr is in host byte order.
    349 
    350   The address of class A  starts with 0.
    351   If the address belong to class A, return IP4_ADDR_CLASSA.
    352   The address of class B  starts with 10.
    353   If the address belong to class B, return IP4_ADDR_CLASSB.
    354   The address of class C  starts with 110.
    355   If the address belong to class C, return IP4_ADDR_CLASSC.
    356   The address of class D  starts with 1110.
    357   If the address belong to class D, return IP4_ADDR_CLASSD.
    358   The address of class E  starts with 1111.
    359   If the address belong to class E, return IP4_ADDR_CLASSE.
    360 
    361 
    362   @param[in]   Addr                  The address to get the class from.
    363 
    364   @return IP address class, such as IP4_ADDR_CLASSA.
    365 
    366 **/
    367 INTN
    368 EFIAPI
    369 NetGetIpClass (
    370   IN IP4_ADDR               Addr
    371   );
    372 
    373 /**
    374   Check whether the IP is a valid unicast address according to
    375   the netmask. If NetMask is zero, use the IP address's class to get the default mask.
    376 
    377   If Ip is 0, IP is not a valid unicast address.
    378   Class D address is used for multicasting and class E address is reserved for future. If Ip
    379   belongs to class D or class E, Ip is not a valid unicast address.
    380   If all bits of the host address of Ip are 0 or 1, Ip is not a valid unicast address.
    381 
    382   @param[in]  Ip                    The IP to check against.
    383   @param[in]  NetMask               The mask of the IP.
    384 
    385   @return TRUE if Ip is a valid unicast address on the network, otherwise FALSE.
    386 
    387 **/
    388 BOOLEAN
    389 EFIAPI
    390 NetIp4IsUnicast (
    391   IN IP4_ADDR               Ip,
    392   IN IP4_ADDR               NetMask
    393   );
    394 
    395 /**
    396   Check whether the incoming IPv6 address is a valid unicast address.
    397 
    398   If the address is a multicast address has binary 0xFF at the start, it is not
    399   a valid unicast address. If the address is unspecified ::, it is not a valid
    400   unicast address to be assigned to any node. If the address is loopback address
    401   ::1, it is also not a valid unicast address to be assigned to any physical
    402   interface.
    403 
    404   @param[in]  Ip6                   The IPv6 address to check against.
    405 
    406   @return TRUE if Ip6 is a valid unicast address on the network, otherwise FALSE.
    407 
    408 **/
    409 BOOLEAN
    410 EFIAPI
    411 NetIp6IsValidUnicast (
    412   IN EFI_IPv6_ADDRESS       *Ip6
    413   );
    414 
    415 
    416 /**
    417   Check whether the incoming Ipv6 address is the unspecified address or not.
    418 
    419   @param[in] Ip6   - Ip6 address, in network order.
    420 
    421   @retval TRUE     - Yes, incoming Ipv6 address is the unspecified address.
    422   @retval FALSE    - The incoming Ipv6 address is not the unspecified address
    423 
    424 **/
    425 BOOLEAN
    426 EFIAPI
    427 NetIp6IsUnspecifiedAddr (
    428   IN EFI_IPv6_ADDRESS       *Ip6
    429   );
    430 
    431 /**
    432   Check whether the incoming Ipv6 address is a link-local address.
    433 
    434   @param[in] Ip6   - Ip6 address, in network order.
    435 
    436   @retval TRUE  - The incoming Ipv6 address is a link-local address.
    437   @retval FALSE - The incoming Ipv6 address is not a link-local address.
    438 
    439 **/
    440 BOOLEAN
    441 EFIAPI
    442 NetIp6IsLinkLocalAddr (
    443   IN EFI_IPv6_ADDRESS *Ip6
    444   );
    445 
    446 /**
    447   Check whether the Ipv6 address1 and address2 are on the connected network.
    448 
    449   @param[in] Ip1          - Ip6 address1, in network order.
    450   @param[in] Ip2          - Ip6 address2, in network order.
    451   @param[in] PrefixLength - The prefix length of the checking net.
    452 
    453   @retval TRUE            - Yes, the Ipv6 address1 and address2 are connected.
    454   @retval FALSE           - No the Ipv6 address1 and address2 are not connected.
    455 
    456 **/
    457 BOOLEAN
    458 EFIAPI
    459 NetIp6IsNetEqual (
    460   EFI_IPv6_ADDRESS *Ip1,
    461   EFI_IPv6_ADDRESS *Ip2,
    462   UINT8            PrefixLength
    463   );
    464 
    465 /**
    466   Switches the endianess of an IPv6 address.
    467 
    468   This function swaps the bytes in a 128-bit IPv6 address to switch the value
    469   from little endian to big endian or vice versa. The byte swapped value is
    470   returned.
    471 
    472   @param  Ip6 Points to an IPv6 address.
    473 
    474   @return The byte swapped IPv6 address.
    475 
    476 **/
    477 EFI_IPv6_ADDRESS *
    478 EFIAPI
    479 Ip6Swap128 (
    480   EFI_IPv6_ADDRESS *Ip6
    481   );
    482 
    483 extern IP4_ADDR gIp4AllMasks[IP4_MASK_NUM];
    484 
    485 
    486 extern EFI_IPv4_ADDRESS  mZeroIp4Addr;
    487 
    488 #define NET_IS_DIGIT(Ch)            (('0' <= (Ch)) && ((Ch) <= '9'))
    489 #define NET_ROUNDUP(size, unit)     (((size) + (unit) - 1) & (~((unit) - 1)))
    490 #define NET_IS_LOWER_CASE_CHAR(Ch)  (('a' <= (Ch)) && ((Ch) <= 'z'))
    491 #define NET_IS_UPPER_CASE_CHAR(Ch)  (('A' <= (Ch)) && ((Ch) <= 'Z'))
    492 
    493 #define TICKS_PER_MS            10000U
    494 #define TICKS_PER_SECOND        10000000U
    495 
    496 #define NET_RANDOM(Seed)        ((UINT32) ((UINT32) (Seed) * 1103515245UL + 12345) % 4294967295UL)
    497 
    498 /**
    499   Extract a UINT32 from a byte stream.
    500 
    501   This function copies a UINT32 from a byte stream, and then converts it from Network
    502   byte order to host byte order. Use this function to avoid alignment error.
    503 
    504   @param[in]  Buf                 The buffer to extract the UINT32.
    505 
    506   @return The UINT32 extracted.
    507 
    508 **/
    509 UINT32
    510 EFIAPI
    511 NetGetUint32 (
    512   IN UINT8                  *Buf
    513   );
    514 
    515 /**
    516   Puts a UINT32 into the byte stream in network byte order.
    517 
    518   Converts a UINT32 from host byte order to network byte order, then copies it to the
    519   byte stream.
    520 
    521   @param[in, out]  Buf          The buffer in which to put the UINT32.
    522   @param[in]       Data         The data to be converted and put into the byte stream.
    523 
    524 **/
    525 VOID
    526 EFIAPI
    527 NetPutUint32 (
    528   IN OUT UINT8                 *Buf,
    529   IN     UINT32                Data
    530   );
    531 
    532 /**
    533   Initialize a random seed using current time and monotonic count.
    534 
    535   Get current time and monotonic count first. Then initialize a random seed
    536   based on some basic mathematics operation on the hour, day, minute, second,
    537   nanosecond and year of the current time and the monotonic count value.
    538 
    539   @return The random seed initialized with current time.
    540 
    541 **/
    542 UINT32
    543 EFIAPI
    544 NetRandomInitSeed (
    545   VOID
    546   );
    547 
    548 
    549 #define NET_LIST_USER_STRUCT(Entry, Type, Field)        \
    550           BASE_CR(Entry, Type, Field)
    551 
    552 #define NET_LIST_USER_STRUCT_S(Entry, Type, Field, Sig)  \
    553           CR(Entry, Type, Field, Sig)
    554 
    555 //
    556 // Iterate through the double linked list. It is NOT delete safe
    557 //
    558 #define NET_LIST_FOR_EACH(Entry, ListHead) \
    559   for(Entry = (ListHead)->ForwardLink; Entry != (ListHead); Entry = Entry->ForwardLink)
    560 
    561 //
    562 // Iterate through the double linked list. This is delete-safe.
    563 // Don't touch NextEntry. Also, don't use this macro if list
    564 // entries other than the Entry may be deleted when processing
    565 // the current Entry.
    566 //
    567 #define NET_LIST_FOR_EACH_SAFE(Entry, NextEntry, ListHead) \
    568   for(Entry = (ListHead)->ForwardLink, NextEntry = Entry->ForwardLink; \
    569       Entry != (ListHead); \
    570       Entry = NextEntry, NextEntry = Entry->ForwardLink \
    571      )
    572 
    573 //
    574 // Make sure the list isn't empty before getting the first/last record.
    575 //
    576 #define NET_LIST_HEAD(ListHead, Type, Field)  \
    577           NET_LIST_USER_STRUCT((ListHead)->ForwardLink, Type, Field)
    578 
    579 #define NET_LIST_TAIL(ListHead, Type, Field)  \
    580           NET_LIST_USER_STRUCT((ListHead)->BackLink, Type, Field)
    581 
    582 
    583 /**
    584   Remove the first node entry on the list, and return the removed node entry.
    585 
    586   Removes the first node entry from a doubly linked list. It is up to the caller of
    587   this function to release the memory used by the first node, if that is required. On
    588   exit, the removed node is returned.
    589 
    590   If Head is NULL, then ASSERT().
    591   If Head was not initialized, then ASSERT().
    592   If PcdMaximumLinkedListLength is not zero, and the number of nodes in the
    593   linked list including the head node is greater than or equal to PcdMaximumLinkedListLength,
    594   then ASSERT().
    595 
    596   @param[in, out]  Head                  The list header.
    597 
    598   @return The first node entry that is removed from the list, NULL if the list is empty.
    599 
    600 **/
    601 LIST_ENTRY *
    602 EFIAPI
    603 NetListRemoveHead (
    604   IN OUT LIST_ENTRY            *Head
    605   );
    606 
    607 /**
    608   Remove the last node entry on the list and return the removed node entry.
    609 
    610   Removes the last node entry from a doubly linked list. It is up to the caller of
    611   this function to release the memory used by the first node, if that is required. On
    612   exit, the removed node is returned.
    613 
    614   If Head is NULL, then ASSERT().
    615   If Head was not initialized, then ASSERT().
    616   If PcdMaximumLinkedListLength is not zero, and the number of nodes in the
    617   linked list including the head node is greater than or equal to PcdMaximumLinkedListLength,
    618   then ASSERT().
    619 
    620   @param[in, out]  Head                  The list head.
    621 
    622   @return The last node entry that is removed from the list, NULL if the list is empty.
    623 
    624 **/
    625 LIST_ENTRY *
    626 EFIAPI
    627 NetListRemoveTail (
    628   IN OUT LIST_ENTRY            *Head
    629   );
    630 
    631 /**
    632   Insert a new node entry after a designated node entry of a doubly linked list.
    633 
    634   Inserts a new node entry designated by NewEntry after the node entry designated by PrevEntry
    635   of the doubly linked list.
    636 
    637   @param[in, out]  PrevEntry             The entry after which to insert.
    638   @param[in, out]  NewEntry              The new entry to insert.
    639 
    640 **/
    641 VOID
    642 EFIAPI
    643 NetListInsertAfter (
    644   IN OUT LIST_ENTRY         *PrevEntry,
    645   IN OUT LIST_ENTRY         *NewEntry
    646   );
    647 
    648 /**
    649   Insert a new node entry before a designated node entry of a doubly linked list.
    650 
    651   Inserts a new node entry designated by NewEntry before the node entry designated by PostEntry
    652   of the doubly linked list.
    653 
    654   @param[in, out]  PostEntry             The entry to insert before.
    655   @param[in, out]  NewEntry              The new entry to insert.
    656 
    657 **/
    658 VOID
    659 EFIAPI
    660 NetListInsertBefore (
    661   IN OUT LIST_ENTRY     *PostEntry,
    662   IN OUT LIST_ENTRY     *NewEntry
    663   );
    664 
    665 /**
    666   Callback function which provided by user to remove one node in NetDestroyLinkList process.
    667 
    668   @param[in]    Entry           The entry to be removed.
    669   @param[in]    Context         Pointer to the callback context corresponds to the Context in NetDestroyLinkList.
    670 
    671   @retval EFI_SUCCESS           The entry has been removed successfully.
    672   @retval Others                Fail to remove the entry.
    673 
    674 **/
    675 typedef
    676 EFI_STATUS
    677 (EFIAPI *NET_DESTROY_LINK_LIST_CALLBACK) (
    678   IN LIST_ENTRY         *Entry,
    679   IN VOID               *Context   OPTIONAL
    680   );
    681 
    682 /**
    683   Safe destroy nodes in a linked list, and return the length of the list after all possible operations finished.
    684 
    685   Destroy network children list by list traversals is not safe due to graph dependencies between nodes.
    686   This function performs a safe traversal to destroy these nodes by checking to see if the node being destroyed
    687   has been removed from the list or not.
    688   If it has been removed, then restart the traversal from the head.
    689   If it hasn't been removed, then continue with the next node directly.
    690   This function will end the iterate and return the CallBack's last return value if error happens,
    691   or retrun EFI_SUCCESS if 2 complete passes are made with no changes in the number of children in the list.
    692 
    693   @param[in]    List             The head of the list.
    694   @param[in]    CallBack         Pointer to the callback function to destroy one node in the list.
    695   @param[in]    Context          Pointer to the callback function's context: corresponds to the
    696                                  parameter Context in NET_DESTROY_LINK_LIST_CALLBACK.
    697   @param[out]   ListLength       The length of the link list if the function returns successfully.
    698 
    699   @retval EFI_SUCCESS            Two complete passes are made with no changes in the number of children.
    700   @retval EFI_INVALID_PARAMETER  The input parameter is invalid.
    701   @retval Others                 Return the CallBack's last return value.
    702 
    703 **/
    704 EFI_STATUS
    705 EFIAPI
    706 NetDestroyLinkList (
    707   IN   LIST_ENTRY                       *List,
    708   IN   NET_DESTROY_LINK_LIST_CALLBACK   CallBack,
    709   IN   VOID                             *Context,    OPTIONAL
    710   OUT  UINTN                            *ListLength  OPTIONAL
    711   );
    712 
    713 /**
    714   This function checks the input Handle to see if it's one of these handles in ChildHandleBuffer.
    715 
    716   @param[in]  Handle             Handle to be checked.
    717   @param[in]  NumberOfChildren   Number of Handles in ChildHandleBuffer.
    718   @param[in]  ChildHandleBuffer  An array of child handles to be freed. May be NULL
    719                                  if NumberOfChildren is 0.
    720 
    721   @retval TURE                   Found the input Handle in ChildHandleBuffer.
    722   @retval FALSE                  Can't find the input Handle in ChildHandleBuffer.
    723 
    724 **/
    725 BOOLEAN
    726 EFIAPI
    727 NetIsInHandleBuffer (
    728   IN  EFI_HANDLE          Handle,
    729   IN  UINTN               NumberOfChildren,
    730   IN  EFI_HANDLE          *ChildHandleBuffer OPTIONAL
    731   );
    732 
    733 //
    734 // Object container: EFI network stack spec defines various kinds of
    735 // tokens. The drivers can share code to manage those objects.
    736 //
    737 typedef struct {
    738   LIST_ENTRY                Link;
    739   VOID                      *Key;
    740   VOID                      *Value;
    741 } NET_MAP_ITEM;
    742 
    743 typedef struct {
    744   LIST_ENTRY                Used;
    745   LIST_ENTRY                Recycled;
    746   UINTN                     Count;
    747 } NET_MAP;
    748 
    749 #define NET_MAP_INCREAMENT  64
    750 
    751 /**
    752   Initialize the netmap. Netmap is a reposity to keep the <Key, Value> pairs.
    753 
    754   Initialize the forward and backward links of two head nodes donated by Map->Used
    755   and Map->Recycled of two doubly linked lists.
    756   Initializes the count of the <Key, Value> pairs in the netmap to zero.
    757 
    758   If Map is NULL, then ASSERT().
    759   If the address of Map->Used is NULL, then ASSERT().
    760   If the address of Map->Recycled is NULl, then ASSERT().
    761 
    762   @param[in, out]  Map                   The netmap to initialize.
    763 
    764 **/
    765 VOID
    766 EFIAPI
    767 NetMapInit (
    768   IN OUT NET_MAP                *Map
    769   );
    770 
    771 /**
    772   To clean up the netmap, that is, release allocated memories.
    773 
    774   Removes all nodes of the Used doubly linked list and frees memory of all related netmap items.
    775   Removes all nodes of the Recycled doubly linked list and free memory of all related netmap items.
    776   The number of the <Key, Value> pairs in the netmap is set to zero.
    777 
    778   If Map is NULL, then ASSERT().
    779 
    780   @param[in, out]  Map                   The netmap to clean up.
    781 
    782 **/
    783 VOID
    784 EFIAPI
    785 NetMapClean (
    786   IN OUT NET_MAP            *Map
    787   );
    788 
    789 /**
    790   Test whether the netmap is empty and return true if it is.
    791 
    792   If the number of the <Key, Value> pairs in the netmap is zero, return TRUE.
    793 
    794   If Map is NULL, then ASSERT().
    795 
    796 
    797   @param[in]  Map                   The net map to test.
    798 
    799   @return TRUE if the netmap is empty, otherwise FALSE.
    800 
    801 **/
    802 BOOLEAN
    803 EFIAPI
    804 NetMapIsEmpty (
    805   IN NET_MAP                *Map
    806   );
    807 
    808 /**
    809   Return the number of the <Key, Value> pairs in the netmap.
    810 
    811   @param[in]  Map                   The netmap to get the entry number.
    812 
    813   @return The entry number in the netmap.
    814 
    815 **/
    816 UINTN
    817 EFIAPI
    818 NetMapGetCount (
    819   IN NET_MAP                *Map
    820   );
    821 
    822 /**
    823   Allocate an item to save the <Key, Value> pair to the head of the netmap.
    824 
    825   Allocate an item to save the <Key, Value> pair and add corresponding node entry
    826   to the beginning of the Used doubly linked list. The number of the <Key, Value>
    827   pairs in the netmap increase by 1.
    828 
    829   If Map is NULL, then ASSERT().
    830 
    831   @param[in, out]  Map                   The netmap to insert into.
    832   @param[in]       Key                   The user's key.
    833   @param[in]       Value                 The user's value for the key.
    834 
    835   @retval EFI_OUT_OF_RESOURCES  Failed to allocate the memory for the item.
    836   @retval EFI_SUCCESS           The item is inserted to the head.
    837 
    838 **/
    839 EFI_STATUS
    840 EFIAPI
    841 NetMapInsertHead (
    842   IN OUT NET_MAP            *Map,
    843   IN VOID                   *Key,
    844   IN VOID                   *Value    OPTIONAL
    845   );
    846 
    847 /**
    848   Allocate an item to save the <Key, Value> pair to the tail of the netmap.
    849 
    850   Allocate an item to save the <Key, Value> pair and add corresponding node entry
    851   to the tail of the Used doubly linked list. The number of the <Key, Value>
    852   pairs in the netmap increase by 1.
    853 
    854   If Map is NULL, then ASSERT().
    855 
    856   @param[in, out]  Map                   The netmap to insert into.
    857   @param[in]       Key                   The user's key.
    858   @param[in]       Value                 The user's value for the key.
    859 
    860   @retval EFI_OUT_OF_RESOURCES  Failed to allocate the memory for the item.
    861   @retval EFI_SUCCESS           The item is inserted to the tail.
    862 
    863 **/
    864 EFI_STATUS
    865 EFIAPI
    866 NetMapInsertTail (
    867   IN OUT NET_MAP            *Map,
    868   IN VOID                   *Key,
    869   IN VOID                   *Value    OPTIONAL
    870   );
    871 
    872 /**
    873   Finds the key in the netmap and returns the point to the item containing the Key.
    874 
    875   Iterate the Used doubly linked list of the netmap to get every item. Compare the key of every
    876   item with the key to search. It returns the point to the item contains the Key if found.
    877 
    878   If Map is NULL, then ASSERT().
    879 
    880   @param[in]  Map                   The netmap to search within.
    881   @param[in]  Key                   The key to search.
    882 
    883   @return The point to the item contains the Key, or NULL if Key isn't in the map.
    884 
    885 **/
    886 NET_MAP_ITEM *
    887 EFIAPI
    888 NetMapFindKey (
    889   IN  NET_MAP               *Map,
    890   IN  VOID                  *Key
    891   );
    892 
    893 /**
    894   Remove the node entry of the item from the netmap and return the key of the removed item.
    895 
    896   Remove the node entry of the item from the Used doubly linked list of the netmap.
    897   The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node
    898   entry of the item to the Recycled doubly linked list of the netmap. If Value is not NULL,
    899   Value will point to the value of the item. It returns the key of the removed item.
    900 
    901   If Map is NULL, then ASSERT().
    902   If Item is NULL, then ASSERT().
    903   if item in not in the netmap, then ASSERT().
    904 
    905   @param[in, out]  Map                   The netmap to remove the item from.
    906   @param[in, out]  Item                  The item to remove.
    907   @param[out]      Value                 The variable to receive the value if not NULL.
    908 
    909   @return                                The key of the removed item.
    910 
    911 **/
    912 VOID *
    913 EFIAPI
    914 NetMapRemoveItem (
    915   IN  OUT NET_MAP             *Map,
    916   IN  OUT NET_MAP_ITEM        *Item,
    917   OUT VOID                    **Value           OPTIONAL
    918   );
    919 
    920 /**
    921   Remove the first node entry on the netmap and return the key of the removed item.
    922 
    923   Remove the first node entry from the Used doubly linked list of the netmap.
    924   The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node
    925   entry to the Recycled doubly linked list of the netmap. If parameter Value is not NULL,
    926   parameter Value will point to the value of the item. It returns the key of the removed item.
    927 
    928   If Map is NULL, then ASSERT().
    929   If the Used doubly linked list is empty, then ASSERT().
    930 
    931   @param[in, out]  Map                   The netmap to remove the head from.
    932   @param[out]      Value                 The variable to receive the value if not NULL.
    933 
    934   @return                                The key of the item removed.
    935 
    936 **/
    937 VOID *
    938 EFIAPI
    939 NetMapRemoveHead (
    940   IN OUT NET_MAP            *Map,
    941   OUT VOID                  **Value         OPTIONAL
    942   );
    943 
    944 /**
    945   Remove the last node entry on the netmap and return the key of the removed item.
    946 
    947   Remove the last node entry from the Used doubly linked list of the netmap.
    948   The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node
    949   entry to the Recycled doubly linked list of the netmap. If parameter Value is not NULL,
    950   parameter Value will point to the value of the item. It returns the key of the removed item.
    951 
    952   If Map is NULL, then ASSERT().
    953   If the Used doubly linked list is empty, then ASSERT().
    954 
    955   @param[in, out]  Map                   The netmap to remove the tail from.
    956   @param[out]      Value                 The variable to receive the value if not NULL.
    957 
    958   @return                                The key of the item removed.
    959 
    960 **/
    961 VOID *
    962 EFIAPI
    963 NetMapRemoveTail (
    964   IN OUT NET_MAP            *Map,
    965   OUT VOID                  **Value       OPTIONAL
    966   );
    967 
    968 typedef
    969 EFI_STATUS
    970 (EFIAPI *NET_MAP_CALLBACK) (
    971   IN NET_MAP                *Map,
    972   IN NET_MAP_ITEM           *Item,
    973   IN VOID                   *Arg
    974   );
    975 
    976 /**
    977   Iterate through the netmap and call CallBack for each item.
    978 
    979   It will contiue the traverse if CallBack returns EFI_SUCCESS, otherwise, break
    980   from the loop. It returns the CallBack's last return value. This function is
    981   delete safe for the current item.
    982 
    983   If Map is NULL, then ASSERT().
    984   If CallBack is NULL, then ASSERT().
    985 
    986   @param[in]  Map                   The Map to iterate through.
    987   @param[in]  CallBack              The callback function to call for each item.
    988   @param[in]  Arg                   The opaque parameter to the callback.
    989 
    990   @retval EFI_SUCCESS            There is no item in the netmap, or CallBack for each item
    991                                  returns EFI_SUCCESS.
    992   @retval Others                 It returns the CallBack's last return value.
    993 
    994 **/
    995 EFI_STATUS
    996 EFIAPI
    997 NetMapIterate (
    998   IN NET_MAP                *Map,
    999   IN NET_MAP_CALLBACK       CallBack,
   1000   IN VOID                   *Arg      OPTIONAL
   1001   );
   1002 
   1003 
   1004 //
   1005 // Helper functions to implement driver binding and service binding protocols.
   1006 //
   1007 /**
   1008   Create a child of the service that is identified by ServiceBindingGuid.
   1009 
   1010   Get the ServiceBinding Protocol first, then use it to create a child.
   1011 
   1012   If ServiceBindingGuid is NULL, then ASSERT().
   1013   If ChildHandle is NULL, then ASSERT().
   1014 
   1015   @param[in]       Controller            The controller which has the service installed.
   1016   @param[in]       Image                 The image handle used to open service.
   1017   @param[in]       ServiceBindingGuid    The service's Guid.
   1018   @param[in, out]  ChildHandle           The handle to receive the created child.
   1019 
   1020   @retval EFI_SUCCESS           The child was successfully created.
   1021   @retval Others                Failed to create the child.
   1022 
   1023 **/
   1024 EFI_STATUS
   1025 EFIAPI
   1026 NetLibCreateServiceChild (
   1027   IN  EFI_HANDLE            Controller,
   1028   IN  EFI_HANDLE            Image,
   1029   IN  EFI_GUID              *ServiceBindingGuid,
   1030   IN  OUT EFI_HANDLE        *ChildHandle
   1031   );
   1032 
   1033 /**
   1034   Destroy a child of the service that is identified by ServiceBindingGuid.
   1035 
   1036   Get the ServiceBinding Protocol first, then use it to destroy a child.
   1037 
   1038   If ServiceBindingGuid is NULL, then ASSERT().
   1039 
   1040   @param[in]   Controller            The controller which has the service installed.
   1041   @param[in]   Image                 The image handle used to open service.
   1042   @param[in]   ServiceBindingGuid    The service's Guid.
   1043   @param[in]   ChildHandle           The child to destroy.
   1044 
   1045   @retval EFI_SUCCESS           The child was destroyed.
   1046   @retval Others                Failed to destroy the child.
   1047 
   1048 **/
   1049 EFI_STATUS
   1050 EFIAPI
   1051 NetLibDestroyServiceChild (
   1052   IN  EFI_HANDLE            Controller,
   1053   IN  EFI_HANDLE            Image,
   1054   IN  EFI_GUID              *ServiceBindingGuid,
   1055   IN  EFI_HANDLE            ChildHandle
   1056   );
   1057 
   1058 /**
   1059   Get handle with Simple Network Protocol installed on it.
   1060 
   1061   There should be MNP Service Binding Protocol installed on the input ServiceHandle.
   1062   If Simple Network Protocol is already installed on the ServiceHandle, the
   1063   ServiceHandle will be returned. If SNP is not installed on the ServiceHandle,
   1064   try to find its parent handle with SNP installed.
   1065 
   1066   @param[in]   ServiceHandle    The handle where network service binding protocols are
   1067                                 installed on.
   1068   @param[out]  Snp              The pointer to store the address of the SNP instance.
   1069                                 This is an optional parameter that may be NULL.
   1070 
   1071   @return The SNP handle, or NULL if not found.
   1072 
   1073 **/
   1074 EFI_HANDLE
   1075 EFIAPI
   1076 NetLibGetSnpHandle (
   1077   IN   EFI_HANDLE                  ServiceHandle,
   1078   OUT  EFI_SIMPLE_NETWORK_PROTOCOL **Snp  OPTIONAL
   1079   );
   1080 
   1081 /**
   1082   Retrieve VLAN ID of a VLAN device handle.
   1083 
   1084   Search VLAN device path node in Device Path of specified ServiceHandle and
   1085   return its VLAN ID. If no VLAN device path node found, then this ServiceHandle
   1086   is not a VLAN device handle, and 0 will be returned.
   1087 
   1088   @param[in]   ServiceHandle    The handle where network service binding protocols are
   1089                                 installed on.
   1090 
   1091   @return VLAN ID of the device handle, or 0 if not a VLAN device.
   1092 
   1093 **/
   1094 UINT16
   1095 EFIAPI
   1096 NetLibGetVlanId (
   1097   IN EFI_HANDLE             ServiceHandle
   1098   );
   1099 
   1100 /**
   1101   Find VLAN device handle with specified VLAN ID.
   1102 
   1103   The VLAN child device handle is created by VLAN Config Protocol on ControllerHandle.
   1104   This function will append VLAN device path node to the parent device path,
   1105   and then use LocateDevicePath() to find the correct VLAN device handle.
   1106 
   1107   @param[in]   ControllerHandle The handle where network service binding protocols are
   1108                                 installed on.
   1109   @param[in]   VlanId           The configured VLAN ID for the VLAN device.
   1110 
   1111   @return The VLAN device handle, or NULL if not found.
   1112 
   1113 **/
   1114 EFI_HANDLE
   1115 EFIAPI
   1116 NetLibGetVlanHandle (
   1117   IN EFI_HANDLE             ControllerHandle,
   1118   IN UINT16                 VlanId
   1119   );
   1120 
   1121 /**
   1122   Get MAC address associated with the network service handle.
   1123 
   1124   There should be MNP Service Binding Protocol installed on the input ServiceHandle.
   1125   If SNP is installed on the ServiceHandle or its parent handle, MAC address will
   1126   be retrieved from SNP. If no SNP found, try to get SNP mode data use MNP.
   1127 
   1128   @param[in]   ServiceHandle    The handle where network service binding protocols are
   1129                                 installed on.
   1130   @param[out]  MacAddress       The pointer to store the returned MAC address.
   1131   @param[out]  AddressSize      The length of returned MAC address.
   1132 
   1133   @retval EFI_SUCCESS           MAC address was returned successfully.
   1134   @retval Others                Failed to get SNP mode data.
   1135 
   1136 **/
   1137 EFI_STATUS
   1138 EFIAPI
   1139 NetLibGetMacAddress (
   1140   IN  EFI_HANDLE            ServiceHandle,
   1141   OUT EFI_MAC_ADDRESS       *MacAddress,
   1142   OUT UINTN                 *AddressSize
   1143   );
   1144 
   1145 /**
   1146   Convert MAC address of the NIC associated with specified Service Binding Handle
   1147   to a unicode string. Callers are responsible for freeing the string storage.
   1148 
   1149   Locate simple network protocol associated with the Service Binding Handle and
   1150   get the mac address from SNP. Then convert the mac address into a unicode
   1151   string. It takes 2 unicode characters to represent a 1 byte binary buffer.
   1152   Plus one unicode character for the null-terminator.
   1153 
   1154   @param[in]   ServiceHandle         The handle where network service binding protocol is
   1155                                      installed.
   1156   @param[in]   ImageHandle           The image handle used to act as the agent handle to
   1157                                      get the simple network protocol. This parameter is
   1158                                      optional and may be NULL.
   1159   @param[out]  MacString             The pointer to store the address of the string
   1160                                      representation of  the mac address.
   1161 
   1162   @retval EFI_SUCCESS           Converted the mac address a unicode string successfully.
   1163   @retval EFI_OUT_OF_RESOURCES  There are not enough memory resources.
   1164   @retval Others                Failed to open the simple network protocol.
   1165 
   1166 **/
   1167 EFI_STATUS
   1168 EFIAPI
   1169 NetLibGetMacString (
   1170   IN  EFI_HANDLE            ServiceHandle,
   1171   IN  EFI_HANDLE            ImageHandle, OPTIONAL
   1172   OUT CHAR16                **MacString
   1173   );
   1174 
   1175 /**
   1176   Detect media status for specified network device.
   1177 
   1178   The underlying UNDI driver may or may not support reporting media status from
   1179   GET_STATUS command (PXE_STATFLAGS_GET_STATUS_NO_MEDIA_SUPPORTED). This routine
   1180   will try to invoke Snp->GetStatus() to get the media status. If media is already
   1181   present, it returns directly. If media is not present, it will stop SNP and then
   1182   restart SNP to get the latest media status. This provides an opportunity to get
   1183   the correct media status for old UNDI driver, which doesn't support reporting
   1184   media status from GET_STATUS command.
   1185   Note: there are two limitations for the current algorithm:
   1186   1) For UNDI with this capability, when the cable is not attached, there will
   1187      be an redundant Stop/Start() process.
   1188   2) for UNDI without this capability, in case that network cable is attached when
   1189      Snp->Initialize() is invoked while network cable is unattached later,
   1190      NetLibDetectMedia() will report MediaPresent as TRUE, causing upper layer
   1191      apps to wait for timeout time.
   1192 
   1193   @param[in]   ServiceHandle    The handle where network service binding protocols are
   1194                                 installed.
   1195   @param[out]  MediaPresent     The pointer to store the media status.
   1196 
   1197   @retval EFI_SUCCESS           Media detection success.
   1198   @retval EFI_INVALID_PARAMETER ServiceHandle is not a valid network device handle.
   1199   @retval EFI_UNSUPPORTED       The network device does not support media detection.
   1200   @retval EFI_DEVICE_ERROR      SNP is in an unknown state.
   1201 
   1202 **/
   1203 EFI_STATUS
   1204 EFIAPI
   1205 NetLibDetectMedia (
   1206   IN  EFI_HANDLE            ServiceHandle,
   1207   OUT BOOLEAN               *MediaPresent
   1208   );
   1209 
   1210 /**
   1211   Create an IPv4 device path node.
   1212 
   1213   The header type of IPv4 device path node is MESSAGING_DEVICE_PATH.
   1214   The header subtype of IPv4 device path node is MSG_IPv4_DP.
   1215   The length of the IPv4 device path node in bytes is 19.
   1216   Get other information from parameters to make up the whole IPv4 device path node.
   1217 
   1218   @param[in, out]  Node                  The pointer to the IPv4 device path node.
   1219   @param[in]       Controller            The controller handle.
   1220   @param[in]       LocalIp               The local IPv4 address.
   1221   @param[in]       LocalPort             The local port.
   1222   @param[in]       RemoteIp              The remote IPv4 address.
   1223   @param[in]       RemotePort            The remote port.
   1224   @param[in]       Protocol              The protocol type in the IP header.
   1225   @param[in]       UseDefaultAddress     Whether this instance is using default address or not.
   1226 
   1227 **/
   1228 VOID
   1229 EFIAPI
   1230 NetLibCreateIPv4DPathNode (
   1231   IN OUT IPv4_DEVICE_PATH  *Node,
   1232   IN EFI_HANDLE            Controller,
   1233   IN IP4_ADDR              LocalIp,
   1234   IN UINT16                LocalPort,
   1235   IN IP4_ADDR              RemoteIp,
   1236   IN UINT16                RemotePort,
   1237   IN UINT16                Protocol,
   1238   IN BOOLEAN               UseDefaultAddress
   1239   );
   1240 
   1241 /**
   1242   Create an IPv6 device path node.
   1243 
   1244   The header type of IPv6 device path node is MESSAGING_DEVICE_PATH.
   1245   The header subtype of IPv6 device path node is MSG_IPv6_DP.
   1246   The length of the IPv6 device path node in bytes is 43.
   1247   Get other information from parameters to make up the whole IPv6 device path node.
   1248 
   1249   @param[in, out]  Node                  The pointer to the IPv6 device path node.
   1250   @param[in]       Controller            The controller handle.
   1251   @param[in]       LocalIp               The local IPv6 address.
   1252   @param[in]       LocalPort             The local port.
   1253   @param[in]       RemoteIp              The remote IPv6 address.
   1254   @param[in]       RemotePort            The remote port.
   1255   @param[in]       Protocol              The protocol type in the IP header.
   1256 
   1257 **/
   1258 VOID
   1259 EFIAPI
   1260 NetLibCreateIPv6DPathNode (
   1261   IN OUT IPv6_DEVICE_PATH  *Node,
   1262   IN EFI_HANDLE            Controller,
   1263   IN EFI_IPv6_ADDRESS      *LocalIp,
   1264   IN UINT16                LocalPort,
   1265   IN EFI_IPv6_ADDRESS      *RemoteIp,
   1266   IN UINT16                RemotePort,
   1267   IN UINT16                Protocol
   1268   );
   1269 
   1270 
   1271 /**
   1272   Find the UNDI/SNP handle from controller and protocol GUID.
   1273 
   1274   For example, IP will open an MNP child to transmit/receive
   1275   packets. When MNP is stopped, IP should also be stopped. IP
   1276   needs to find its own private data that is related the IP's
   1277   service binding instance that is installed on the UNDI/SNP handle.
   1278   The controller is then either an MNP or an ARP child handle. Note that
   1279   IP opens these handles using BY_DRIVER. Use that infomation to get the
   1280   UNDI/SNP handle.
   1281 
   1282   @param[in]  Controller            The protocol handle to check.
   1283   @param[in]  ProtocolGuid          The protocol that is related with the handle.
   1284 
   1285   @return The UNDI/SNP handle or NULL for errors.
   1286 
   1287 **/
   1288 EFI_HANDLE
   1289 EFIAPI
   1290 NetLibGetNicHandle (
   1291   IN EFI_HANDLE             Controller,
   1292   IN EFI_GUID               *ProtocolGuid
   1293   );
   1294 
   1295 /**
   1296   This is the default unload handle for all the network drivers.
   1297 
   1298   Disconnect the driver specified by ImageHandle from all the devices in the handle database.
   1299   Uninstall all the protocols installed in the driver entry point.
   1300 
   1301   @param[in]  ImageHandle       The drivers' driver image.
   1302 
   1303   @retval EFI_SUCCESS           The image is unloaded.
   1304   @retval Others                Failed to unload the image.
   1305 
   1306 **/
   1307 EFI_STATUS
   1308 EFIAPI
   1309 NetLibDefaultUnload (
   1310   IN EFI_HANDLE             ImageHandle
   1311   );
   1312 
   1313 /**
   1314   Convert one Null-terminated ASCII string (decimal dotted) to EFI_IPv4_ADDRESS.
   1315 
   1316   @param[in]      String         The pointer to the Ascii string.
   1317   @param[out]     Ip4Address     The pointer to the converted IPv4 address.
   1318 
   1319   @retval EFI_SUCCESS            Converted to an IPv4 address successfully.
   1320   @retval EFI_INVALID_PARAMETER  The string is malformated, or Ip4Address is NULL.
   1321 
   1322 **/
   1323 EFI_STATUS
   1324 EFIAPI
   1325 NetLibAsciiStrToIp4 (
   1326   IN CONST CHAR8                 *String,
   1327   OUT      EFI_IPv4_ADDRESS      *Ip4Address
   1328   );
   1329 
   1330 /**
   1331   Convert one Null-terminated ASCII string to EFI_IPv6_ADDRESS. The format of the
   1332   string is defined in RFC 4291 - Text Pepresentation of Addresses.
   1333 
   1334   @param[in]      String         The pointer to the Ascii string.
   1335   @param[out]     Ip6Address     The pointer to the converted IPv6 address.
   1336 
   1337   @retval EFI_SUCCESS            Converted to an IPv6 address successfully.
   1338   @retval EFI_INVALID_PARAMETER  The string is malformated, or Ip6Address is NULL.
   1339 
   1340 **/
   1341 EFI_STATUS
   1342 EFIAPI
   1343 NetLibAsciiStrToIp6 (
   1344   IN CONST CHAR8                 *String,
   1345   OUT      EFI_IPv6_ADDRESS      *Ip6Address
   1346   );
   1347 
   1348 /**
   1349   Convert one Null-terminated Unicode string (decimal dotted) to EFI_IPv4_ADDRESS.
   1350 
   1351   @param[in]      String         The pointer to the Ascii string.
   1352   @param[out]     Ip4Address     The pointer to the converted IPv4 address.
   1353 
   1354   @retval EFI_SUCCESS            Converted to an IPv4 address successfully.
   1355   @retval EFI_INVALID_PARAMETER  The string is mal-formated or Ip4Address is NULL.
   1356   @retval EFI_OUT_OF_RESOURCES   Failed to perform the operation due to lack of resources.
   1357 
   1358 **/
   1359 EFI_STATUS
   1360 EFIAPI
   1361 NetLibStrToIp4 (
   1362   IN CONST CHAR16                *String,
   1363   OUT      EFI_IPv4_ADDRESS      *Ip4Address
   1364   );
   1365 
   1366 /**
   1367   Convert one Null-terminated Unicode string to EFI_IPv6_ADDRESS.  The format of
   1368   the string is defined in RFC 4291 - Text Pepresentation of Addresses.
   1369 
   1370   @param[in]      String         The pointer to the Ascii string.
   1371   @param[out]     Ip6Address     The pointer to the converted IPv6 address.
   1372 
   1373   @retval EFI_SUCCESS            Converted to an IPv6 address successfully.
   1374   @retval EFI_INVALID_PARAMETER  The string is malformated or Ip6Address is NULL.
   1375   @retval EFI_OUT_OF_RESOURCES   Failed to perform the operation due to a lack of resources.
   1376 
   1377 **/
   1378 EFI_STATUS
   1379 EFIAPI
   1380 NetLibStrToIp6 (
   1381   IN CONST CHAR16                *String,
   1382   OUT      EFI_IPv6_ADDRESS      *Ip6Address
   1383   );
   1384 
   1385 /**
   1386   Convert one Null-terminated Unicode string to EFI_IPv6_ADDRESS and prefix length.
   1387   The format of the string is defined in RFC 4291 - Text Pepresentation of Addresses
   1388   Prefixes: ipv6-address/prefix-length.
   1389 
   1390   @param[in]      String         The pointer to the Ascii string.
   1391   @param[out]     Ip6Address     The pointer to the converted IPv6 address.
   1392   @param[out]     PrefixLength   The pointer to the converted prefix length.
   1393 
   1394   @retval EFI_SUCCESS            Converted to an  IPv6 address successfully.
   1395   @retval EFI_INVALID_PARAMETER  The string is malformated, or Ip6Address is NULL.
   1396   @retval EFI_OUT_OF_RESOURCES   Failed to perform the operation due to a lack of resources.
   1397 
   1398 **/
   1399 EFI_STATUS
   1400 EFIAPI
   1401 NetLibStrToIp6andPrefix (
   1402   IN CONST CHAR16                *String,
   1403   OUT      EFI_IPv6_ADDRESS      *Ip6Address,
   1404   OUT      UINT8                 *PrefixLength
   1405   );
   1406 
   1407 /**
   1408 
   1409   Convert one EFI_IPv6_ADDRESS to Null-terminated Unicode string.
   1410   The text representation of address is defined in RFC 4291.
   1411 
   1412   @param[in]       Ip6Address     The pointer to the IPv6 address.
   1413   @param[out]      String         The buffer to return the converted string.
   1414   @param[in]       StringSize     The length in bytes of the input String.
   1415 
   1416   @retval EFI_SUCCESS             Convert to string successfully.
   1417   @retval EFI_INVALID_PARAMETER   The input parameter is invalid.
   1418   @retval EFI_BUFFER_TOO_SMALL    The BufferSize is too small for the result. BufferSize has been
   1419                                   updated with the size needed to complete the request.
   1420 **/
   1421 EFI_STATUS
   1422 EFIAPI
   1423 NetLibIp6ToStr (
   1424   IN         EFI_IPv6_ADDRESS      *Ip6Address,
   1425   OUT        CHAR16                *String,
   1426   IN         UINTN                 StringSize
   1427   );
   1428 
   1429 //
   1430 // Various signatures
   1431 //
   1432 #define  NET_BUF_SIGNATURE    SIGNATURE_32 ('n', 'b', 'u', 'f')
   1433 #define  NET_VECTOR_SIGNATURE SIGNATURE_32 ('n', 'v', 'e', 'c')
   1434 #define  NET_QUE_SIGNATURE    SIGNATURE_32 ('n', 'b', 'q', 'u')
   1435 
   1436 
   1437 #define  NET_PROTO_DATA       64   // Opaque buffer for protocols
   1438 #define  NET_BUF_HEAD         1    // Trim or allocate space from head
   1439 #define  NET_BUF_TAIL         0    // Trim or allocate space from tail
   1440 #define  NET_VECTOR_OWN_FIRST 0x01  // We allocated the 1st block in the vector
   1441 
   1442 #define NET_CHECK_SIGNATURE(PData, SIGNATURE) \
   1443   ASSERT (((PData) != NULL) && ((PData)->Signature == (SIGNATURE)))
   1444 
   1445 //
   1446 // Single memory block in the vector.
   1447 //
   1448 typedef struct {
   1449   UINT32              Len;        // The block's length
   1450   UINT8               *Bulk;      // The block's Data
   1451 } NET_BLOCK;
   1452 
   1453 typedef VOID (EFIAPI *NET_VECTOR_EXT_FREE) (VOID *Arg);
   1454 
   1455 //
   1456 //NET_VECTOR contains several blocks to hold all packet's
   1457 //fragments and other house-keeping stuff for sharing. It
   1458 //doesn't specify the where actual packet fragment begins.
   1459 //
   1460 typedef struct {
   1461   UINT32              Signature;
   1462   INTN                RefCnt;  // Reference count to share NET_VECTOR.
   1463   NET_VECTOR_EXT_FREE Free;    // external function to free NET_VECTOR
   1464   VOID                *Arg;    // opeque argument to Free
   1465   UINT32              Flag;    // Flags, NET_VECTOR_OWN_FIRST
   1466   UINT32              Len;     // Total length of the assocated BLOCKs
   1467 
   1468   UINT32              BlockNum;
   1469   NET_BLOCK           Block[1];
   1470 } NET_VECTOR;
   1471 
   1472 //
   1473 //NET_BLOCK_OP operates on the NET_BLOCK. It specifies
   1474 //where the actual fragment begins and ends
   1475 //
   1476 typedef struct {
   1477   UINT8               *BlockHead;   // Block's head, or the smallest valid Head
   1478   UINT8               *BlockTail;   // Block's tail. BlockTail-BlockHead=block length
   1479   UINT8               *Head;        // 1st byte of the data in the block
   1480   UINT8               *Tail;        // Tail of the data in the block, Tail-Head=Size
   1481   UINT32              Size;         // The size of the data
   1482 } NET_BLOCK_OP;
   1483 
   1484 typedef union {
   1485   IP4_HEAD          *Ip4;
   1486   EFI_IP6_HEADER    *Ip6;
   1487 } NET_IP_HEAD;
   1488 
   1489 //
   1490 //NET_BUF is the buffer manage structure used by the
   1491 //network stack. Every network packet may be fragmented. The Vector points to
   1492 //memory blocks used by each fragment, and BlockOp
   1493 //specifies where each fragment begins and ends.
   1494 //
   1495 //It also contains an opaque area for the protocol to store
   1496 //per-packet information. Protocol must be careful not
   1497 //to overwrite the members after that.
   1498 //
   1499 typedef struct {
   1500   UINT32         Signature;
   1501   INTN           RefCnt;
   1502   LIST_ENTRY     List;                       // The List this NET_BUF is on
   1503 
   1504   NET_IP_HEAD    Ip;                         // Network layer header, for fast access
   1505   TCP_HEAD       *Tcp;                       // Transport layer header, for fast access
   1506   EFI_UDP_HEADER *Udp;                       // User Datagram Protocol header
   1507   UINT8          ProtoData [NET_PROTO_DATA]; //Protocol specific data
   1508 
   1509   NET_VECTOR     *Vector;                    // The vector containing the packet
   1510 
   1511   UINT32         BlockOpNum;                 // Total number of BlockOp in the buffer
   1512   UINT32         TotalSize;                  // Total size of the actual packet
   1513   NET_BLOCK_OP   BlockOp[1];                 // Specify the position of actual packet
   1514 } NET_BUF;
   1515 
   1516 //
   1517 //A queue of NET_BUFs. It is a thin extension of
   1518 //NET_BUF functions.
   1519 //
   1520 typedef struct {
   1521   UINT32              Signature;
   1522   INTN                RefCnt;
   1523   LIST_ENTRY          List;       // The List this buffer queue is on
   1524 
   1525   LIST_ENTRY          BufList;    // list of queued buffers
   1526   UINT32              BufSize;    // total length of DATA in the buffers
   1527   UINT32              BufNum;     // total number of buffers on the chain
   1528 } NET_BUF_QUEUE;
   1529 
   1530 //
   1531 // Pseudo header for TCP and UDP checksum
   1532 //
   1533 #pragma pack(1)
   1534 typedef struct {
   1535   IP4_ADDR            SrcIp;
   1536   IP4_ADDR            DstIp;
   1537   UINT8               Reserved;
   1538   UINT8               Protocol;
   1539   UINT16              Len;
   1540 } NET_PSEUDO_HDR;
   1541 
   1542 typedef struct {
   1543   EFI_IPv6_ADDRESS    SrcIp;
   1544   EFI_IPv6_ADDRESS    DstIp;
   1545   UINT32              Len;
   1546   UINT32              Reserved:24;
   1547   UINT32              NextHeader:8;
   1548 } NET_IP6_PSEUDO_HDR;
   1549 #pragma pack()
   1550 
   1551 //
   1552 // The fragment entry table used in network interfaces. This is
   1553 // the same as NET_BLOCK now. Use two different to distinguish
   1554 // the two in case that NET_BLOCK be enhanced later.
   1555 //
   1556 typedef struct {
   1557   UINT32              Len;
   1558   UINT8               *Bulk;
   1559 } NET_FRAGMENT;
   1560 
   1561 #define NET_GET_REF(PData)      ((PData)->RefCnt++)
   1562 #define NET_PUT_REF(PData)      ((PData)->RefCnt--)
   1563 #define NETBUF_FROM_PROTODATA(Info) BASE_CR((Info), NET_BUF, ProtoData)
   1564 
   1565 #define NET_BUF_SHARED(Buf) \
   1566   (((Buf)->RefCnt > 1) || ((Buf)->Vector->RefCnt > 1))
   1567 
   1568 #define NET_VECTOR_SIZE(BlockNum) \
   1569   (sizeof (NET_VECTOR) + ((BlockNum) - 1) * sizeof (NET_BLOCK))
   1570 
   1571 #define NET_BUF_SIZE(BlockOpNum)  \
   1572   (sizeof (NET_BUF) + ((BlockOpNum) - 1) * sizeof (NET_BLOCK_OP))
   1573 
   1574 #define NET_HEADSPACE(BlockOp)  \
   1575   (UINTN)((BlockOp)->Head - (BlockOp)->BlockHead)
   1576 
   1577 #define NET_TAILSPACE(BlockOp)  \
   1578   (UINTN)((BlockOp)->BlockTail - (BlockOp)->Tail)
   1579 
   1580 /**
   1581   Allocate a single block NET_BUF. Upon allocation, all the
   1582   free space is in the tail room.
   1583 
   1584   @param[in]  Len              The length of the block.
   1585 
   1586   @return                      The pointer to the allocated NET_BUF, or NULL if the
   1587                                allocation failed due to resource limitations.
   1588 
   1589 **/
   1590 NET_BUF  *
   1591 EFIAPI
   1592 NetbufAlloc (
   1593   IN UINT32                 Len
   1594   );
   1595 
   1596 /**
   1597   Free the net buffer and its associated NET_VECTOR.
   1598 
   1599   Decrease the reference count of the net buffer by one. Free the associated net
   1600   vector and itself if the reference count of the net buffer is decreased to 0.
   1601   The net vector free operation decreases the reference count of the net
   1602   vector by one, and performs the resource free operation when the reference count
   1603   of the net vector is 0.
   1604 
   1605   @param[in]  Nbuf                  The pointer to the NET_BUF to be freed.
   1606 
   1607 **/
   1608 VOID
   1609 EFIAPI
   1610 NetbufFree (
   1611   IN NET_BUF                *Nbuf
   1612   );
   1613 
   1614 /**
   1615   Get the index of NET_BLOCK_OP that contains the byte at Offset in the net
   1616   buffer.
   1617 
   1618   For example, this function can be used to retrieve the IP header in the packet. It
   1619   also can be used to get the fragment that contains the byte used
   1620   mainly by the library implementation itself.
   1621 
   1622   @param[in]   Nbuf      The pointer to the net buffer.
   1623   @param[in]   Offset    The offset of the byte.
   1624   @param[out]  Index     Index of the NET_BLOCK_OP that contains the byte at
   1625                          Offset.
   1626 
   1627   @return       The pointer to the Offset'th byte of data in the net buffer, or NULL
   1628                 if there is no such data in the net buffer.
   1629 
   1630 **/
   1631 UINT8  *
   1632 EFIAPI
   1633 NetbufGetByte (
   1634   IN  NET_BUF               *Nbuf,
   1635   IN  UINT32                Offset,
   1636   OUT UINT32                *Index  OPTIONAL
   1637   );
   1638 
   1639 /**
   1640   Create a copy of the net buffer that shares the associated net vector.
   1641 
   1642   The reference count of the newly created net buffer is set to 1. The reference
   1643   count of the associated net vector is increased by one.
   1644 
   1645   @param[in]  Nbuf              The pointer to the net buffer to be cloned.
   1646 
   1647   @return                       The pointer to the cloned net buffer, or NULL if the
   1648                                 allocation failed due to resource limitations.
   1649 
   1650 **/
   1651 NET_BUF *
   1652 EFIAPI
   1653 NetbufClone (
   1654   IN NET_BUF                *Nbuf
   1655   );
   1656 
   1657 /**
   1658   Create a duplicated copy of the net buffer with data copied and HeadSpace
   1659   bytes of head space reserved.
   1660 
   1661   The duplicated net buffer will allocate its own memory to hold the data of the
   1662   source net buffer.
   1663 
   1664   @param[in]       Nbuf         The pointer to the net buffer to be duplicated from.
   1665   @param[in, out]  Duplicate    The pointer to the net buffer to duplicate to. If
   1666                                 NULL, a new net buffer is allocated.
   1667   @param[in]      HeadSpace     The length of the head space to reserve.
   1668 
   1669   @return                       The pointer to the duplicated net buffer, or NULL if
   1670                                 the allocation failed due to resource limitations.
   1671 
   1672 **/
   1673 NET_BUF  *
   1674 EFIAPI
   1675 NetbufDuplicate (
   1676   IN NET_BUF                *Nbuf,
   1677   IN OUT NET_BUF            *Duplicate        OPTIONAL,
   1678   IN UINT32                 HeadSpace
   1679   );
   1680 
   1681 /**
   1682   Create a NET_BUF structure which contains Len byte data of Nbuf starting from
   1683   Offset.
   1684 
   1685   A new NET_BUF structure will be created but the associated data in NET_VECTOR
   1686   is shared. This function exists to perform IP packet fragmentation.
   1687 
   1688   @param[in]  Nbuf         The pointer to the net buffer to be extracted.
   1689   @param[in]  Offset       Starting point of the data to be included in the new
   1690                            net buffer.
   1691   @param[in]  Len          The bytes of data to be included in the new net buffer.
   1692   @param[in]  HeadSpace    The bytes of the head space to reserve for the protocol header.
   1693 
   1694   @return                  The pointer to the cloned net buffer, or NULL if the
   1695                            allocation failed due to resource limitations.
   1696 
   1697 **/
   1698 NET_BUF  *
   1699 EFIAPI
   1700 NetbufGetFragment (
   1701   IN NET_BUF                *Nbuf,
   1702   IN UINT32                 Offset,
   1703   IN UINT32                 Len,
   1704   IN UINT32                 HeadSpace
   1705   );
   1706 
   1707 /**
   1708   Reserve some space in the header room of the net buffer.
   1709 
   1710   Upon allocation, all the space is in the tail room of the buffer. Call this
   1711   function to move space to the header room. This function is quite limited
   1712   in that it can only reserve space from the first block of an empty NET_BUF not
   1713   built from the external. However, it should be enough for the network stack.
   1714 
   1715   @param[in, out]  Nbuf     The pointer to the net buffer.
   1716   @param[in]       Len      The length of buffer to be reserved from the header.
   1717 
   1718 **/
   1719 VOID
   1720 EFIAPI
   1721 NetbufReserve (
   1722   IN OUT NET_BUF            *Nbuf,
   1723   IN UINT32                 Len
   1724   );
   1725 
   1726 /**
   1727   Allocate Len bytes of space from the header or tail of the buffer.
   1728 
   1729   @param[in, out]  Nbuf       The pointer to the net buffer.
   1730   @param[in]       Len        The length of the buffer to be allocated.
   1731   @param[in]       FromHead   The flag to indicate whether to reserve the data
   1732                               from head (TRUE) or tail (FALSE).
   1733 
   1734   @return                     The pointer to the first byte of the allocated buffer,
   1735                               or NULL, if there is no sufficient space.
   1736 
   1737 **/
   1738 UINT8*
   1739 EFIAPI
   1740 NetbufAllocSpace (
   1741   IN OUT NET_BUF            *Nbuf,
   1742   IN UINT32                 Len,
   1743   IN BOOLEAN                FromHead
   1744   );
   1745 
   1746 /**
   1747   Trim Len bytes from the header or the tail of the net buffer.
   1748 
   1749   @param[in, out]  Nbuf         The pointer to the net buffer.
   1750   @param[in]       Len          The length of the data to be trimmed.
   1751   @param[in]      FromHead      The flag to indicate whether trim data is from the
   1752                                 head (TRUE) or the tail (FALSE).
   1753 
   1754   @return    The length of the actual trimmed data, which may be less
   1755              than Len if the TotalSize of Nbuf is less than Len.
   1756 
   1757 **/
   1758 UINT32
   1759 EFIAPI
   1760 NetbufTrim (
   1761   IN OUT NET_BUF            *Nbuf,
   1762   IN UINT32                 Len,
   1763   IN BOOLEAN                FromHead
   1764   );
   1765 
   1766 /**
   1767   Copy Len bytes of data from the specific offset of the net buffer to the
   1768   destination memory.
   1769 
   1770   The Len bytes of data may cross several fragments of the net buffer.
   1771 
   1772   @param[in]   Nbuf         The pointer to the net buffer.
   1773   @param[in]   Offset       The sequence number of the first byte to copy.
   1774   @param[in]   Len          The length of the data to copy.
   1775   @param[in]   Dest         The destination of the data to copy to.
   1776 
   1777   @return           The length of the actual copied data, or 0 if the offset
   1778                     specified exceeds the total size of net buffer.
   1779 
   1780 **/
   1781 UINT32
   1782 EFIAPI
   1783 NetbufCopy (
   1784   IN NET_BUF                *Nbuf,
   1785   IN UINT32                 Offset,
   1786   IN UINT32                 Len,
   1787   IN UINT8                  *Dest
   1788   );
   1789 
   1790 /**
   1791   Build a NET_BUF from external blocks.
   1792 
   1793   A new NET_BUF structure will be created from external blocks. An additional block
   1794   of memory will be allocated to hold reserved HeadSpace bytes of header room
   1795   and existing HeadLen bytes of header, but the external blocks are shared by the
   1796   net buffer to avoid data copying.
   1797 
   1798   @param[in]  ExtFragment           The pointer to the data block.
   1799   @param[in]  ExtNum                The number of the data blocks.
   1800   @param[in]  HeadSpace             The head space to be reserved.
   1801   @param[in]  HeadLen               The length of the protocol header. The function
   1802                                     pulls this amount of data into a linear block.
   1803   @param[in]  ExtFree               The pointer to the caller-provided free function.
   1804   @param[in]  Arg                   The argument passed to ExtFree when ExtFree is
   1805                                     called.
   1806 
   1807   @return                  The pointer to the net buffer built from the data blocks,
   1808                            or NULL if the allocation failed due to resource
   1809                            limit.
   1810 
   1811 **/
   1812 NET_BUF  *
   1813 EFIAPI
   1814 NetbufFromExt (
   1815   IN NET_FRAGMENT           *ExtFragment,
   1816   IN UINT32                 ExtNum,
   1817   IN UINT32                 HeadSpace,
   1818   IN UINT32                 HeadLen,
   1819   IN NET_VECTOR_EXT_FREE    ExtFree,
   1820   IN VOID                   *Arg          OPTIONAL
   1821   );
   1822 
   1823 /**
   1824   Build a fragment table to contain the fragments in the net buffer. This is the
   1825   opposite operation of the NetbufFromExt.
   1826 
   1827   @param[in]       Nbuf                  Points to the net buffer.
   1828   @param[in, out]  ExtFragment           The pointer to the data block.
   1829   @param[in, out]  ExtNum                The number of the data blocks.
   1830 
   1831   @retval EFI_BUFFER_TOO_SMALL  The number of non-empty blocks is bigger than
   1832                                 ExtNum.
   1833   @retval EFI_SUCCESS           The fragment table was built successfully.
   1834 
   1835 **/
   1836 EFI_STATUS
   1837 EFIAPI
   1838 NetbufBuildExt (
   1839   IN NET_BUF                *Nbuf,
   1840   IN OUT NET_FRAGMENT       *ExtFragment,
   1841   IN OUT UINT32             *ExtNum
   1842   );
   1843 
   1844 /**
   1845   Build a net buffer from a list of net buffers.
   1846 
   1847   All the fragments will be collected from the list of NEW_BUF, and then a new
   1848   net buffer will be created through NetbufFromExt.
   1849 
   1850   @param[in]   BufList    A List of the net buffer.
   1851   @param[in]   HeadSpace  The head space to be reserved.
   1852   @param[in]   HeaderLen  The length of the protocol header. The function
   1853                           pulls this amount of data into a linear block.
   1854   @param[in]   ExtFree    The pointer to the caller provided free function.
   1855   @param[in]   Arg        The argument passed to ExtFree when ExtFree is called.
   1856 
   1857   @return                 The pointer to the net buffer built from the list of net
   1858                           buffers.
   1859 
   1860 **/
   1861 NET_BUF  *
   1862 EFIAPI
   1863 NetbufFromBufList (
   1864   IN LIST_ENTRY             *BufList,
   1865   IN UINT32                 HeadSpace,
   1866   IN UINT32                 HeaderLen,
   1867   IN NET_VECTOR_EXT_FREE    ExtFree,
   1868   IN VOID                   *Arg              OPTIONAL
   1869   );
   1870 
   1871 /**
   1872   Free a list of net buffers.
   1873 
   1874   @param[in, out]  Head              The pointer to the head of linked net buffers.
   1875 
   1876 **/
   1877 VOID
   1878 EFIAPI
   1879 NetbufFreeList (
   1880   IN OUT LIST_ENTRY         *Head
   1881   );
   1882 
   1883 /**
   1884   Initiate the net buffer queue.
   1885 
   1886   @param[in, out]  NbufQue   The pointer to the net buffer queue to be initialized.
   1887 
   1888 **/
   1889 VOID
   1890 EFIAPI
   1891 NetbufQueInit (
   1892   IN OUT NET_BUF_QUEUE          *NbufQue
   1893   );
   1894 
   1895 /**
   1896   Allocate and initialize a net buffer queue.
   1897 
   1898   @return         The pointer to the allocated net buffer queue, or NULL if the
   1899                   allocation failed due to resource limit.
   1900 
   1901 **/
   1902 NET_BUF_QUEUE  *
   1903 EFIAPI
   1904 NetbufQueAlloc (
   1905   VOID
   1906   );
   1907 
   1908 /**
   1909   Free a net buffer queue.
   1910 
   1911   Decrease the reference count of the net buffer queue by one. The real resource
   1912   free operation isn't performed until the reference count of the net buffer
   1913   queue is decreased to 0.
   1914 
   1915   @param[in]  NbufQue               The pointer to the net buffer queue to be freed.
   1916 
   1917 **/
   1918 VOID
   1919 EFIAPI
   1920 NetbufQueFree (
   1921   IN NET_BUF_QUEUE          *NbufQue
   1922   );
   1923 
   1924 /**
   1925   Remove a net buffer from the head in the specific queue and return it.
   1926 
   1927   @param[in, out]  NbufQue               The pointer to the net buffer queue.
   1928 
   1929   @return           The pointer to the net buffer removed from the specific queue,
   1930                     or NULL if there is no net buffer in the specific queue.
   1931 
   1932 **/
   1933 NET_BUF  *
   1934 EFIAPI
   1935 NetbufQueRemove (
   1936   IN OUT NET_BUF_QUEUE          *NbufQue
   1937   );
   1938 
   1939 /**
   1940   Append a net buffer to the net buffer queue.
   1941 
   1942   @param[in, out]  NbufQue            The pointer to the net buffer queue.
   1943   @param[in, out]  Nbuf               The pointer to the net buffer to be appended.
   1944 
   1945 **/
   1946 VOID
   1947 EFIAPI
   1948 NetbufQueAppend (
   1949   IN OUT NET_BUF_QUEUE          *NbufQue,
   1950   IN OUT NET_BUF                *Nbuf
   1951   );
   1952 
   1953 /**
   1954   Copy Len bytes of data from the net buffer queue at the specific offset to the
   1955   destination memory.
   1956 
   1957   The copying operation is the same as NetbufCopy, but applies to the net buffer
   1958   queue instead of the net buffer.
   1959 
   1960   @param[in]   NbufQue         The pointer to the net buffer queue.
   1961   @param[in]   Offset          The sequence number of the first byte to copy.
   1962   @param[in]   Len             The length of the data to copy.
   1963   @param[out]  Dest            The destination of the data to copy to.
   1964 
   1965   @return       The length of the actual copied data, or 0 if the offset
   1966                 specified exceeds the total size of net buffer queue.
   1967 
   1968 **/
   1969 UINT32
   1970 EFIAPI
   1971 NetbufQueCopy (
   1972   IN NET_BUF_QUEUE          *NbufQue,
   1973   IN UINT32                 Offset,
   1974   IN UINT32                 Len,
   1975   OUT UINT8                 *Dest
   1976   );
   1977 
   1978 /**
   1979   Trim Len bytes of data from the buffer queue and free any net buffer
   1980   that is completely trimmed.
   1981 
   1982   The trimming operation is the same as NetbufTrim but applies to the net buffer
   1983   queue instead of the net buffer.
   1984 
   1985   @param[in, out]  NbufQue               The pointer to the net buffer queue.
   1986   @param[in]       Len                   The length of the data to trim.
   1987 
   1988   @return   The actual length of the data trimmed.
   1989 
   1990 **/
   1991 UINT32
   1992 EFIAPI
   1993 NetbufQueTrim (
   1994   IN OUT NET_BUF_QUEUE      *NbufQue,
   1995   IN UINT32                 Len
   1996   );
   1997 
   1998 
   1999 /**
   2000   Flush the net buffer queue.
   2001 
   2002   @param[in, out]  NbufQue               The pointer to the queue to be flushed.
   2003 
   2004 **/
   2005 VOID
   2006 EFIAPI
   2007 NetbufQueFlush (
   2008   IN OUT NET_BUF_QUEUE          *NbufQue
   2009   );
   2010 
   2011 /**
   2012   Compute the checksum for a bulk of data.
   2013 
   2014   @param[in]   Bulk                  The pointer to the data.
   2015   @param[in]   Len                   The length of the data, in bytes.
   2016 
   2017   @return    The computed checksum.
   2018 
   2019 **/
   2020 UINT16
   2021 EFIAPI
   2022 NetblockChecksum (
   2023   IN UINT8                  *Bulk,
   2024   IN UINT32                 Len
   2025   );
   2026 
   2027 /**
   2028   Add two checksums.
   2029 
   2030   @param[in]   Checksum1             The first checksum to be added.
   2031   @param[in]   Checksum2             The second checksum to be added.
   2032 
   2033   @return         The new checksum.
   2034 
   2035 **/
   2036 UINT16
   2037 EFIAPI
   2038 NetAddChecksum (
   2039   IN UINT16                 Checksum1,
   2040   IN UINT16                 Checksum2
   2041   );
   2042 
   2043 /**
   2044   Compute the checksum for a NET_BUF.
   2045 
   2046   @param[in]   Nbuf                  The pointer to the net buffer.
   2047 
   2048   @return    The computed checksum.
   2049 
   2050 **/
   2051 UINT16
   2052 EFIAPI
   2053 NetbufChecksum (
   2054   IN NET_BUF                *Nbuf
   2055   );
   2056 
   2057 /**
   2058   Compute the checksum for TCP/UDP pseudo header.
   2059 
   2060   Src and Dst are in network byte order, and Len is in host byte order.
   2061 
   2062   @param[in]   Src                   The source address of the packet.
   2063   @param[in]   Dst                   The destination address of the packet.
   2064   @param[in]   Proto                 The protocol type of the packet.
   2065   @param[in]   Len                   The length of the packet.
   2066 
   2067   @return   The computed checksum.
   2068 
   2069 **/
   2070 UINT16
   2071 EFIAPI
   2072 NetPseudoHeadChecksum (
   2073   IN IP4_ADDR               Src,
   2074   IN IP4_ADDR               Dst,
   2075   IN UINT8                  Proto,
   2076   IN UINT16                 Len
   2077   );
   2078 
   2079 /**
   2080   Compute the checksum for the TCP6/UDP6 pseudo header.
   2081 
   2082   Src and Dst are in network byte order, and Len is in host byte order.
   2083 
   2084   @param[in]   Src                   The source address of the packet.
   2085   @param[in]   Dst                   The destination address of the packet.
   2086   @param[in]   NextHeader            The protocol type of the packet.
   2087   @param[in]   Len                   The length of the packet.
   2088 
   2089   @return   The computed checksum.
   2090 
   2091 **/
   2092 UINT16
   2093 EFIAPI
   2094 NetIp6PseudoHeadChecksum (
   2095   IN EFI_IPv6_ADDRESS       *Src,
   2096   IN EFI_IPv6_ADDRESS       *Dst,
   2097   IN UINT8                  NextHeader,
   2098   IN UINT32                 Len
   2099   );
   2100 
   2101 /**
   2102   The function frees the net buffer which allocated by the IP protocol. It releases
   2103   only the net buffer and doesn't call the external free function.
   2104 
   2105   This function should be called after finishing the process of mIpSec->ProcessExt()
   2106   for outbound traffic. The (EFI_IPSEC2_PROTOCOL)->ProcessExt() allocates a new
   2107   buffer for the ESP, so there needs a function to free the old net buffer.
   2108 
   2109   @param[in]  Nbuf       The network buffer to be freed.
   2110 
   2111 **/
   2112 VOID
   2113 NetIpSecNetbufFree (
   2114   NET_BUF   *Nbuf
   2115   );
   2116 
   2117 /**
   2118   This function obtains the system guid from the smbios table.
   2119 
   2120   @param[out]  SystemGuid     The pointer of the returned system guid.
   2121 
   2122   @retval EFI_SUCCESS         Successfully obtained the system guid.
   2123   @retval EFI_NOT_FOUND       Did not find the SMBIOS table.
   2124 
   2125 **/
   2126 EFI_STATUS
   2127 EFIAPI
   2128 NetLibGetSystemGuid (
   2129   OUT EFI_GUID              *SystemGuid
   2130   );
   2131 
   2132 #endif
   2133