1 /** @file 2 The EFI Legacy BIOS Protocol is used to abstract legacy Option ROM usage 3 under EFI and Legacy OS boot. This file also includes all the related 4 COMPATIBILIY16 structures and defintions. 5 6 Note: The names for EFI_IA32_REGISTER_SET elements were picked to follow 7 well known naming conventions. 8 9 Thunk is the code that switches from 32-bit protected environment into the 16-bit real-mode 10 environment. Reverse thunk is the code that does the opposite. 11 12 Copyright (c) 2007 - 2015, Intel Corporation. All rights reserved.<BR> 13 This program and the accompanying materials are licensed and made available under 14 the terms and conditions of the BSD License that accompanies this distribution. 15 The full text of the license may be found at 16 http://opensource.org/licenses/bsd-license.php. 17 18 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, 19 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. 20 21 @par Revision Reference: 22 This protocol is defined in Framework for EFI Compatibility Support Module spec 23 Version 0.98. 24 25 **/ 26 27 #ifndef _EFI_LEGACY_BIOS_H_ 28 #define _EFI_LEGACY_BIOS_H_ 29 30 /// 31 /// 32 /// 33 #pragma pack(1) 34 35 typedef UINT8 SERIAL_MODE; 36 typedef UINT8 PARALLEL_MODE; 37 38 #define EFI_COMPATIBILITY16_TABLE_SIGNATURE SIGNATURE_32 ('I', 'F', 'E', '$') 39 40 /// 41 /// There is a table located within the traditional BIOS in either the 0xF000:xxxx or 0xE000:xxxx 42 /// physical address range. It is located on a 16-byte boundary and provides the physical address of the 43 /// entry point for the Compatibility16 functions. These functions provide the platform-specific 44 /// information that is required by the generic EfiCompatibility code. The functions are invoked via 45 /// thunking by using EFI_LEGACY_BIOS_PROTOCOL.FarCall86() with the 32-bit physical 46 /// entry point. 47 /// 48 typedef struct { 49 /// 50 /// The string "$EFI" denotes the start of the EfiCompatibility table. Byte 0 is "I," byte 51 /// 1 is "F," byte 2 is "E," and byte 3 is "$" and is normally accessed as a DWORD or UINT32. 52 /// 53 UINT32 Signature; 54 55 /// 56 /// The value required such that byte checksum of TableLength equals zero. 57 /// 58 UINT8 TableChecksum; 59 60 /// 61 /// The length of this table. 62 /// 63 UINT8 TableLength; 64 65 /// 66 /// The major EFI revision for which this table was generated. 67 /// 68 UINT8 EfiMajorRevision; 69 70 /// 71 /// The minor EFI revision for which this table was generated. 72 /// 73 UINT8 EfiMinorRevision; 74 75 /// 76 /// The major revision of this table. 77 /// 78 UINT8 TableMajorRevision; 79 80 /// 81 /// The minor revision of this table. 82 /// 83 UINT8 TableMinorRevision; 84 85 /// 86 /// Reserved for future usage. 87 /// 88 UINT16 Reserved; 89 90 /// 91 /// The segment of the entry point within the traditional BIOS for Compatibility16 functions. 92 /// 93 UINT16 Compatibility16CallSegment; 94 95 /// 96 /// The offset of the entry point within the traditional BIOS for Compatibility16 functions. 97 /// 98 UINT16 Compatibility16CallOffset; 99 100 /// 101 /// The segment of the entry point within the traditional BIOS for EfiCompatibility 102 /// to invoke the PnP installation check. 103 /// 104 UINT16 PnPInstallationCheckSegment; 105 106 /// 107 /// The Offset of the entry point within the traditional BIOS for EfiCompatibility 108 /// to invoke the PnP installation check. 109 /// 110 UINT16 PnPInstallationCheckOffset; 111 112 /// 113 /// EFI system resources table. Type EFI_SYSTEM_TABLE is defined in the IntelPlatform 114 ///Innovation Framework for EFI Driver Execution Environment Core Interface Specification (DXE CIS). 115 /// 116 UINT32 EfiSystemTable; 117 118 /// 119 /// The address of an OEM-provided identifier string. The string is null terminated. 120 /// 121 UINT32 OemIdStringPointer; 122 123 /// 124 /// The 32-bit physical address where ACPI RSD PTR is stored within the traditional 125 /// BIOS. The remained of the ACPI tables are located at their EFI addresses. The size 126 /// reserved is the maximum for ACPI 2.0. The EfiCompatibility will fill in the ACPI 127 /// RSD PTR with either the ACPI 1.0b or 2.0 values. 128 /// 129 UINT32 AcpiRsdPtrPointer; 130 131 /// 132 /// The OEM revision number. Usage is undefined but provided for OEM module usage. 133 /// 134 UINT16 OemRevision; 135 136 /// 137 /// The 32-bit physical address where INT15 E820 data is stored within the traditional 138 /// BIOS. The EfiCompatibility code will fill in the E820Pointer value and copy the 139 /// data to the indicated area. 140 /// 141 UINT32 E820Pointer; 142 143 /// 144 /// The length of the E820 data and is filled in by the EfiCompatibility code. 145 /// 146 UINT32 E820Length; 147 148 /// 149 /// The 32-bit physical address where the $PIR table is stored in the traditional BIOS. 150 /// The EfiCompatibility code will fill in the IrqRoutingTablePointer value and 151 /// copy the data to the indicated area. 152 /// 153 UINT32 IrqRoutingTablePointer; 154 155 /// 156 /// The length of the $PIR table and is filled in by the EfiCompatibility code. 157 /// 158 UINT32 IrqRoutingTableLength; 159 160 /// 161 /// The 32-bit physical address where the MP table is stored in the traditional BIOS. 162 /// The EfiCompatibility code will fill in the MpTablePtr value and copy the data 163 /// to the indicated area. 164 /// 165 UINT32 MpTablePtr; 166 167 /// 168 /// The length of the MP table and is filled in by the EfiCompatibility code. 169 /// 170 UINT32 MpTableLength; 171 172 /// 173 /// The segment of the OEM-specific INT table/code. 174 /// 175 UINT16 OemIntSegment; 176 177 /// 178 /// The offset of the OEM-specific INT table/code. 179 /// 180 UINT16 OemIntOffset; 181 182 /// 183 /// The segment of the OEM-specific 32-bit table/code. 184 /// 185 UINT16 Oem32Segment; 186 187 /// 188 /// The offset of the OEM-specific 32-bit table/code. 189 /// 190 UINT16 Oem32Offset; 191 192 /// 193 /// The segment of the OEM-specific 16-bit table/code. 194 /// 195 UINT16 Oem16Segment; 196 197 /// 198 /// The offset of the OEM-specific 16-bit table/code. 199 /// 200 UINT16 Oem16Offset; 201 202 /// 203 /// The segment of the TPM binary passed to 16-bit CSM. 204 /// 205 UINT16 TpmSegment; 206 207 /// 208 /// The offset of the TPM binary passed to 16-bit CSM. 209 /// 210 UINT16 TpmOffset; 211 212 /// 213 /// A pointer to a string identifying the independent BIOS vendor. 214 /// 215 UINT32 IbvPointer; 216 217 /// 218 /// This field is NULL for all systems not supporting PCI Express. This field is the base 219 /// value of the start of the PCI Express memory-mapped configuration registers and 220 /// must be filled in prior to EfiCompatibility code issuing the Compatibility16 function 221 /// Compatibility16InitializeYourself(). 222 /// Compatibility16InitializeYourself() is defined in Compatability16 223 /// Functions. 224 /// 225 UINT32 PciExpressBase; 226 227 /// 228 /// Maximum PCI bus number assigned. 229 /// 230 UINT8 LastPciBus; 231 232 /// 233 /// Start Address of Upper Memory Area (UMA) to be set as Read/Write. If 234 /// UmaAddress is a valid address in the shadow RAM, it also indicates that the region 235 /// from 0xC0000 to (UmaAddress - 1) can be used for Option ROM. 236 /// 237 UINT32 UmaAddress; 238 239 /// 240 /// Upper Memory Area size in bytes to be set as Read/Write. If zero, no UMA region 241 /// will be set as Read/Write (i.e. all Shadow RAM is set as Read-Only). 242 /// 243 UINT32 UmaSize; 244 245 /// 246 /// Start Address of high memory that can be used for permanent allocation. If zero, 247 /// high memory is not available for permanent allocation. 248 /// 249 UINT32 HiPermanentMemoryAddress; 250 251 /// 252 /// Size of high memory that can be used for permanent allocation in bytes. If zero, 253 /// high memory is not available for permanent allocation. 254 /// 255 UINT32 HiPermanentMemorySize; 256 } EFI_COMPATIBILITY16_TABLE; 257 258 /// 259 /// Functions provided by the CSM binary which communicate between the EfiCompatibility 260 /// and Compatability16 code. 261 /// 262 /// Inconsistent with the specification here: 263 /// The member's name started with "Compatibility16" [defined in Intel Framework 264 /// Compatibility Support Module Specification / 0.97 version] 265 /// has been changed to "Legacy16" since keeping backward compatible. 266 /// 267 typedef enum { 268 /// 269 /// Causes the Compatibility16 code to do any internal initialization required. 270 /// Input: 271 /// AX = Compatibility16InitializeYourself 272 /// ES:BX = Pointer to EFI_TO_COMPATIBILITY16_INIT_TABLE 273 /// Return: 274 /// AX = Return Status codes 275 /// 276 Legacy16InitializeYourself = 0x0000, 277 278 /// 279 /// Causes the Compatibility16 BIOS to perform any drive number translations to match the boot sequence. 280 /// Input: 281 /// AX = Compatibility16UpdateBbs 282 /// ES:BX = Pointer to EFI_TO_COMPATIBILITY16_BOOT_TABLE 283 /// Return: 284 /// AX = Returned status codes 285 /// 286 Legacy16UpdateBbs = 0x0001, 287 288 /// 289 /// Allows the Compatibility16 code to perform any final actions before booting. The Compatibility16 290 /// code is read/write. 291 /// Input: 292 /// AX = Compatibility16PrepareToBoot 293 /// ES:BX = Pointer to EFI_TO_COMPATIBILITY16_BOOT_TABLE structure 294 /// Return: 295 /// AX = Returned status codes 296 /// 297 Legacy16PrepareToBoot = 0x0002, 298 299 /// 300 /// Causes the Compatibility16 BIOS to boot. The Compatibility16 code is Read/Only. 301 /// Input: 302 /// AX = Compatibility16Boot 303 /// Output: 304 /// AX = Returned status codes 305 /// 306 Legacy16Boot = 0x0003, 307 308 /// 309 /// Allows the Compatibility16 code to get the last device from which a boot was attempted. This is 310 /// stored in CMOS and is the priority number of the last attempted boot device. 311 /// Input: 312 /// AX = Compatibility16RetrieveLastBootDevice 313 /// Output: 314 /// AX = Returned status codes 315 /// BX = Priority number of the boot device. 316 /// 317 Legacy16RetrieveLastBootDevice = 0x0004, 318 319 /// 320 /// Allows the Compatibility16 code rehook INT13, INT18, and/or INT19 after dispatching a legacy OpROM. 321 /// Input: 322 /// AX = Compatibility16DispatchOprom 323 /// ES:BX = Pointer to EFI_DISPATCH_OPROM_TABLE 324 /// Output: 325 /// AX = Returned status codes 326 /// BX = Number of non-BBS-compliant devices found. Equals 0 if BBS compliant. 327 /// 328 Legacy16DispatchOprom = 0x0005, 329 330 /// 331 /// Finds a free area in the 0xFxxxx or 0xExxxx region of the specified length and returns the address 332 /// of that region. 333 /// Input: 334 /// AX = Compatibility16GetTableAddress 335 /// BX = Allocation region 336 /// 00 = Allocate from either 0xE0000 or 0xF0000 64 KB blocks. 337 /// Bit 0 = 1 Allocate from 0xF0000 64 KB block 338 /// Bit 1 = 1 Allocate from 0xE0000 64 KB block 339 /// CX = Requested length in bytes. 340 /// DX = Required address alignment. Bit mapped. First non-zero bit from the right is the alignment. 341 /// Output: 342 /// AX = Returned status codes 343 /// DS:BX = Address of the region 344 /// 345 Legacy16GetTableAddress = 0x0006, 346 347 /// 348 /// Enables the EfiCompatibility module to do any nonstandard processing of keyboard LEDs or state. 349 /// Input: 350 /// AX = Compatibility16SetKeyboardLeds 351 /// CL = LED status. 352 /// Bit 0 Scroll Lock 0 = Off 353 /// Bit 1 NumLock 354 /// Bit 2 Caps Lock 355 /// Output: 356 /// AX = Returned status codes 357 /// 358 Legacy16SetKeyboardLeds = 0x0007, 359 360 /// 361 /// Enables the EfiCompatibility module to install an interrupt handler for PCI mass media devices that 362 /// do not have an OpROM associated with them. An example is SATA. 363 /// Input: 364 /// AX = Compatibility16InstallPciHandler 365 /// ES:BX = Pointer to EFI_LEGACY_INSTALL_PCI_HANDLER structure 366 /// Output: 367 /// AX = Returned status codes 368 /// 369 Legacy16InstallPciHandler = 0x0008 370 } EFI_COMPATIBILITY_FUNCTIONS; 371 372 373 /// 374 /// EFI_DISPATCH_OPROM_TABLE 375 /// 376 typedef struct { 377 UINT16 PnPInstallationCheckSegment; ///< A pointer to the PnpInstallationCheck data structure. 378 UINT16 PnPInstallationCheckOffset; ///< A pointer to the PnpInstallationCheck data structure. 379 UINT16 OpromSegment; ///< The segment where the OpROM was placed. Offset is assumed to be 3. 380 UINT8 PciBus; ///< The PCI bus. 381 UINT8 PciDeviceFunction; ///< The PCI device * 0x08 | PCI function. 382 UINT8 NumberBbsEntries; ///< The number of valid BBS table entries upon entry and exit. The IBV code may 383 ///< increase this number, if BBS-compliant devices also hook INTs in order to force the 384 ///< OpROM BIOS Setup to be executed. 385 UINT32 BbsTablePointer; ///< A pointer to the BBS table. 386 UINT16 RuntimeSegment; ///< The segment where the OpROM can be relocated to. If this value is 0x0000, this 387 ///< means that the relocation of this run time code is not supported. 388 ///< Inconsistent with specification here: 389 ///< The member's name "OpromDestinationSegment" [defined in Intel Framework Compatibility Support Module Specification / 0.97 version] 390 ///< has been changed to "RuntimeSegment" since keeping backward compatible. 391 392 } EFI_DISPATCH_OPROM_TABLE; 393 394 /// 395 /// EFI_TO_COMPATIBILITY16_INIT_TABLE 396 /// 397 typedef struct { 398 /// 399 /// Starting address of memory under 1 MB. The ending address is assumed to be 640 KB or 0x9FFFF. 400 /// 401 UINT32 BiosLessThan1MB; 402 403 /// 404 /// The starting address of the high memory block. 405 /// 406 UINT32 HiPmmMemory; 407 408 /// 409 /// The length of high memory block. 410 /// 411 UINT32 HiPmmMemorySizeInBytes; 412 413 /// 414 /// The segment of the reverse thunk call code. 415 /// 416 UINT16 ReverseThunkCallSegment; 417 418 /// 419 /// The offset of the reverse thunk call code. 420 /// 421 UINT16 ReverseThunkCallOffset; 422 423 /// 424 /// The number of E820 entries copied to the Compatibility16 BIOS. 425 /// 426 UINT32 NumberE820Entries; 427 428 /// 429 /// The amount of usable memory above 1 MB, e.g., E820 type 1 memory. 430 /// 431 UINT32 OsMemoryAbove1Mb; 432 433 /// 434 /// The start of thunk code in main memory. Memory cannot be used by BIOS or PMM. 435 /// 436 UINT32 ThunkStart; 437 438 /// 439 /// The size of the thunk code. 440 /// 441 UINT32 ThunkSizeInBytes; 442 443 /// 444 /// Starting address of memory under 1 MB. 445 /// 446 UINT32 LowPmmMemory; 447 448 /// 449 /// The length of low Memory block. 450 /// 451 UINT32 LowPmmMemorySizeInBytes; 452 } EFI_TO_COMPATIBILITY16_INIT_TABLE; 453 454 /// 455 /// DEVICE_PRODUCER_SERIAL. 456 /// 457 typedef struct { 458 UINT16 Address; ///< I/O address assigned to the serial port. 459 UINT8 Irq; ///< IRQ assigned to the serial port. 460 SERIAL_MODE Mode; ///< Mode of serial port. Values are defined below. 461 } DEVICE_PRODUCER_SERIAL; 462 463 /// 464 /// DEVICE_PRODUCER_SERIAL's modes. 465 ///@{ 466 #define DEVICE_SERIAL_MODE_NORMAL 0x00 467 #define DEVICE_SERIAL_MODE_IRDA 0x01 468 #define DEVICE_SERIAL_MODE_ASK_IR 0x02 469 #define DEVICE_SERIAL_MODE_DUPLEX_HALF 0x00 470 #define DEVICE_SERIAL_MODE_DUPLEX_FULL 0x10 471 ///@) 472 473 /// 474 /// DEVICE_PRODUCER_PARALLEL. 475 /// 476 typedef struct { 477 UINT16 Address; ///< I/O address assigned to the parallel port. 478 UINT8 Irq; ///< IRQ assigned to the parallel port. 479 UINT8 Dma; ///< DMA assigned to the parallel port. 480 PARALLEL_MODE Mode; ///< Mode of the parallel port. Values are defined below. 481 } DEVICE_PRODUCER_PARALLEL; 482 483 /// 484 /// DEVICE_PRODUCER_PARALLEL's modes. 485 ///@{ 486 #define DEVICE_PARALLEL_MODE_MODE_OUTPUT_ONLY 0x00 487 #define DEVICE_PARALLEL_MODE_MODE_BIDIRECTIONAL 0x01 488 #define DEVICE_PARALLEL_MODE_MODE_EPP 0x02 489 #define DEVICE_PARALLEL_MODE_MODE_ECP 0x03 490 ///@} 491 492 /// 493 /// DEVICE_PRODUCER_FLOPPY 494 /// 495 typedef struct { 496 UINT16 Address; ///< I/O address assigned to the floppy. 497 UINT8 Irq; ///< IRQ assigned to the floppy. 498 UINT8 Dma; ///< DMA assigned to the floppy. 499 UINT8 NumberOfFloppy; ///< Number of floppies in the system. 500 } DEVICE_PRODUCER_FLOPPY; 501 502 /// 503 /// LEGACY_DEVICE_FLAGS 504 /// 505 typedef struct { 506 UINT32 A20Kybd : 1; ///< A20 controller by keyboard controller. 507 UINT32 A20Port90 : 1; ///< A20 controlled by port 0x92. 508 UINT32 Reserved : 30; ///< Reserved for future usage. 509 } LEGACY_DEVICE_FLAGS; 510 511 /// 512 /// DEVICE_PRODUCER_DATA_HEADER 513 /// 514 typedef struct { 515 DEVICE_PRODUCER_SERIAL Serial[4]; ///< Data for serial port x. Type DEVICE_PRODUCER_SERIAL is defined below. 516 DEVICE_PRODUCER_PARALLEL Parallel[3]; ///< Data for parallel port x. Type DEVICE_PRODUCER_PARALLEL is defined below. 517 DEVICE_PRODUCER_FLOPPY Floppy; ///< Data for floppy. Type DEVICE_PRODUCER_FLOPPY is defined below. 518 UINT8 MousePresent; ///< Flag to indicate if mouse is present. 519 LEGACY_DEVICE_FLAGS Flags; ///< Miscellaneous Boolean state information passed to CSM. 520 } DEVICE_PRODUCER_DATA_HEADER; 521 522 /// 523 /// ATAPI_IDENTIFY 524 /// 525 typedef struct { 526 UINT16 Raw[256]; ///< Raw data from the IDE IdentifyDrive command. 527 } ATAPI_IDENTIFY; 528 529 /// 530 /// HDD_INFO 531 /// 532 typedef struct { 533 /// 534 /// Status of IDE device. Values are defined below. There is one HDD_INFO structure 535 /// per IDE controller. The IdentifyDrive is per drive. Index 0 is master and index 536 /// 1 is slave. 537 /// 538 UINT16 Status; 539 540 /// 541 /// PCI bus of IDE controller. 542 /// 543 UINT32 Bus; 544 545 /// 546 /// PCI device of IDE controller. 547 /// 548 UINT32 Device; 549 550 /// 551 /// PCI function of IDE controller. 552 /// 553 UINT32 Function; 554 555 /// 556 /// Command ports base address. 557 /// 558 UINT16 CommandBaseAddress; 559 560 /// 561 /// Control ports base address. 562 /// 563 UINT16 ControlBaseAddress; 564 565 /// 566 /// Bus master address. 567 /// 568 UINT16 BusMasterAddress; 569 570 UINT8 HddIrq; 571 572 /// 573 /// Data that identifies the drive data; one per possible attached drive. 574 /// 575 ATAPI_IDENTIFY IdentifyDrive[2]; 576 } HDD_INFO; 577 578 /// 579 /// HDD_INFO status bits 580 /// 581 #define HDD_PRIMARY 0x01 582 #define HDD_SECONDARY 0x02 583 #define HDD_MASTER_ATAPI_CDROM 0x04 584 #define HDD_SLAVE_ATAPI_CDROM 0x08 585 #define HDD_MASTER_IDE 0x20 586 #define HDD_SLAVE_IDE 0x40 587 #define HDD_MASTER_ATAPI_ZIPDISK 0x10 588 #define HDD_SLAVE_ATAPI_ZIPDISK 0x80 589 590 /// 591 /// BBS_STATUS_FLAGS;\. 592 /// 593 typedef struct { 594 UINT16 OldPosition : 4; ///< Prior priority. 595 UINT16 Reserved1 : 4; ///< Reserved for future use. 596 UINT16 Enabled : 1; ///< If 0, ignore this entry. 597 UINT16 Failed : 1; ///< 0 = Not known if boot failure occurred. 598 ///< 1 = Boot attempted failed. 599 600 /// 601 /// State of media present. 602 /// 00 = No bootable media is present in the device. 603 /// 01 = Unknown if a bootable media present. 604 /// 10 = Media is present and appears bootable. 605 /// 11 = Reserved. 606 /// 607 UINT16 MediaPresent : 2; 608 UINT16 Reserved2 : 4; ///< Reserved for future use. 609 } BBS_STATUS_FLAGS; 610 611 /// 612 /// BBS_TABLE, device type values & boot priority values. 613 /// 614 typedef struct { 615 /// 616 /// The boot priority for this boot device. Values are defined below. 617 /// 618 UINT16 BootPriority; 619 620 /// 621 /// The PCI bus for this boot device. 622 /// 623 UINT32 Bus; 624 625 /// 626 /// The PCI device for this boot device. 627 /// 628 UINT32 Device; 629 630 /// 631 /// The PCI function for the boot device. 632 /// 633 UINT32 Function; 634 635 /// 636 /// The PCI class for this boot device. 637 /// 638 UINT8 Class; 639 640 /// 641 /// The PCI Subclass for this boot device. 642 /// 643 UINT8 SubClass; 644 645 /// 646 /// Segment:offset address of an ASCIIZ description string describing the manufacturer. 647 /// 648 UINT16 MfgStringOffset; 649 650 /// 651 /// Segment:offset address of an ASCIIZ description string describing the manufacturer. 652 /// 653 UINT16 MfgStringSegment; 654 655 /// 656 /// BBS device type. BBS device types are defined below. 657 /// 658 UINT16 DeviceType; 659 660 /// 661 /// Status of this boot device. Type BBS_STATUS_FLAGS is defined below. 662 /// 663 BBS_STATUS_FLAGS StatusFlags; 664 665 /// 666 /// Segment:Offset address of boot loader for IPL devices or install INT13 handler for 667 /// BCV devices. 668 /// 669 UINT16 BootHandlerOffset; 670 671 /// 672 /// Segment:Offset address of boot loader for IPL devices or install INT13 handler for 673 /// BCV devices. 674 /// 675 UINT16 BootHandlerSegment; 676 677 /// 678 /// Segment:offset address of an ASCIIZ description string describing this device. 679 /// 680 UINT16 DescStringOffset; 681 682 /// 683 /// Segment:offset address of an ASCIIZ description string describing this device. 684 /// 685 UINT16 DescStringSegment; 686 687 /// 688 /// Reserved. 689 /// 690 UINT32 InitPerReserved; 691 692 /// 693 /// The use of these fields is IBV dependent. They can be used to flag that an OpROM 694 /// has hooked the specified IRQ. The OpROM may be BBS compliant as some SCSI 695 /// BBS-compliant OpROMs also hook IRQ vectors in order to run their BIOS Setup 696 /// 697 UINT32 AdditionalIrq13Handler; 698 699 /// 700 /// The use of these fields is IBV dependent. They can be used to flag that an OpROM 701 /// has hooked the specified IRQ. The OpROM may be BBS compliant as some SCSI 702 /// BBS-compliant OpROMs also hook IRQ vectors in order to run their BIOS Setup 703 /// 704 UINT32 AdditionalIrq18Handler; 705 706 /// 707 /// The use of these fields is IBV dependent. They can be used to flag that an OpROM 708 /// has hooked the specified IRQ. The OpROM may be BBS compliant as some SCSI 709 /// BBS-compliant OpROMs also hook IRQ vectors in order to run their BIOS Setup 710 /// 711 UINT32 AdditionalIrq19Handler; 712 713 /// 714 /// The use of these fields is IBV dependent. They can be used to flag that an OpROM 715 /// has hooked the specified IRQ. The OpROM may be BBS compliant as some SCSI 716 /// BBS-compliant OpROMs also hook IRQ vectors in order to run their BIOS Setup 717 /// 718 UINT32 AdditionalIrq40Handler; 719 UINT8 AssignedDriveNumber; 720 UINT32 AdditionalIrq41Handler; 721 UINT32 AdditionalIrq46Handler; 722 UINT32 IBV1; 723 UINT32 IBV2; 724 } BBS_TABLE; 725 726 /// 727 /// BBS device type values 728 ///@{ 729 #define BBS_FLOPPY 0x01 730 #define BBS_HARDDISK 0x02 731 #define BBS_CDROM 0x03 732 #define BBS_PCMCIA 0x04 733 #define BBS_USB 0x05 734 #define BBS_EMBED_NETWORK 0x06 735 #define BBS_BEV_DEVICE 0x80 736 #define BBS_UNKNOWN 0xff 737 ///@} 738 739 /// 740 /// BBS boot priority values 741 ///@{ 742 #define BBS_DO_NOT_BOOT_FROM 0xFFFC 743 #define BBS_LOWEST_PRIORITY 0xFFFD 744 #define BBS_UNPRIORITIZED_ENTRY 0xFFFE 745 #define BBS_IGNORE_ENTRY 0xFFFF 746 ///@} 747 748 /// 749 /// SMM_ATTRIBUTES 750 /// 751 typedef struct { 752 /// 753 /// Access mechanism used to generate the soft SMI. Defined types are below. The other 754 /// values are reserved for future usage. 755 /// 756 UINT16 Type : 3; 757 758 /// 759 /// The size of "port" in bits. Defined values are below. 760 /// 761 UINT16 PortGranularity : 3; 762 763 /// 764 /// The size of data in bits. Defined values are below. 765 /// 766 UINT16 DataGranularity : 3; 767 768 /// 769 /// Reserved for future use. 770 /// 771 UINT16 Reserved : 7; 772 } SMM_ATTRIBUTES; 773 774 /// 775 /// SMM_ATTRIBUTES type values. 776 ///@{ 777 #define STANDARD_IO 0x00 778 #define STANDARD_MEMORY 0x01 779 ///@} 780 781 /// 782 /// SMM_ATTRIBUTES port size constants. 783 ///@{ 784 #define PORT_SIZE_8 0x00 785 #define PORT_SIZE_16 0x01 786 #define PORT_SIZE_32 0x02 787 #define PORT_SIZE_64 0x03 788 ///@} 789 790 /// 791 /// SMM_ATTRIBUTES data size constants. 792 ///@{ 793 #define DATA_SIZE_8 0x00 794 #define DATA_SIZE_16 0x01 795 #define DATA_SIZE_32 0x02 796 #define DATA_SIZE_64 0x03 797 ///@} 798 799 /// 800 /// SMM_FUNCTION & relating constants. 801 /// 802 typedef struct { 803 UINT16 Function : 15; 804 UINT16 Owner : 1; 805 } SMM_FUNCTION; 806 807 /// 808 /// SMM_FUNCTION Function constants. 809 ///@{ 810 #define INT15_D042 0x0000 811 #define GET_USB_BOOT_INFO 0x0001 812 #define DMI_PNP_50_57 0x0002 813 ///@} 814 815 /// 816 /// SMM_FUNCTION Owner constants. 817 ///@{ 818 #define STANDARD_OWNER 0x0 819 #define OEM_OWNER 0x1 820 ///@} 821 822 /// 823 /// This structure assumes both port and data sizes are 1. SmmAttribute must be 824 /// properly to reflect that assumption. 825 /// 826 typedef struct { 827 /// 828 /// Describes the access mechanism, SmmPort, and SmmData sizes. Type 829 /// SMM_ATTRIBUTES is defined below. 830 /// 831 SMM_ATTRIBUTES SmmAttributes; 832 833 /// 834 /// Function Soft SMI is to perform. Type SMM_FUNCTION is defined below. 835 /// 836 SMM_FUNCTION SmmFunction; 837 838 /// 839 /// SmmPort size depends upon SmmAttributes and ranges from2 bytes to 16 bytes. 840 /// 841 UINT8 SmmPort; 842 843 /// 844 /// SmmData size depends upon SmmAttributes and ranges from2 bytes to 16 bytes. 845 /// 846 UINT8 SmmData; 847 } SMM_ENTRY; 848 849 /// 850 /// SMM_TABLE 851 /// 852 typedef struct { 853 UINT16 NumSmmEntries; ///< Number of entries represented by SmmEntry. 854 SMM_ENTRY SmmEntry; ///< One entry per function. Type SMM_ENTRY is defined below. 855 } SMM_TABLE; 856 857 /// 858 /// UDC_ATTRIBUTES 859 /// 860 typedef struct { 861 /// 862 /// This bit set indicates that the ServiceAreaData is valid. 863 /// 864 UINT8 DirectoryServiceValidity : 1; 865 866 /// 867 /// This bit set indicates to use the Reserve Area Boot Code Address (RACBA) only if 868 /// DirectoryServiceValidity is 0. 869 /// 870 UINT8 RabcaUsedFlag : 1; 871 872 /// 873 /// This bit set indicates to execute hard disk diagnostics. 874 /// 875 UINT8 ExecuteHddDiagnosticsFlag : 1; 876 877 /// 878 /// Reserved for future use. Set to 0. 879 /// 880 UINT8 Reserved : 5; 881 } UDC_ATTRIBUTES; 882 883 /// 884 /// UD_TABLE 885 /// 886 typedef struct { 887 /// 888 /// This field contains the bit-mapped attributes of the PARTIES information. Type 889 /// UDC_ATTRIBUTES is defined below. 890 /// 891 UDC_ATTRIBUTES Attributes; 892 893 /// 894 /// This field contains the zero-based device on which the selected 895 /// ServiceDataArea is present. It is 0 for master and 1 for the slave device. 896 /// 897 UINT8 DeviceNumber; 898 899 /// 900 /// This field contains the zero-based index into the BbsTable for the parent device. 901 /// This index allows the user to reference the parent device information such as PCI 902 /// bus, device function. 903 /// 904 UINT8 BbsTableEntryNumberForParentDevice; 905 906 /// 907 /// This field contains the zero-based index into the BbsTable for the boot entry. 908 /// 909 UINT8 BbsTableEntryNumberForBoot; 910 911 /// 912 /// This field contains the zero-based index into the BbsTable for the HDD diagnostics entry. 913 /// 914 UINT8 BbsTableEntryNumberForHddDiag; 915 916 /// 917 /// The raw Beer data. 918 /// 919 UINT8 BeerData[128]; 920 921 /// 922 /// The raw data of selected service area. 923 /// 924 UINT8 ServiceAreaData[64]; 925 } UD_TABLE; 926 927 #define EFI_TO_LEGACY_MAJOR_VERSION 0x02 928 #define EFI_TO_LEGACY_MINOR_VERSION 0x00 929 #define MAX_IDE_CONTROLLER 8 930 931 /// 932 /// EFI_TO_COMPATIBILITY16_BOOT_TABLE 933 /// 934 typedef struct { 935 UINT16 MajorVersion; ///< The EfiCompatibility major version number. 936 UINT16 MinorVersion; ///< The EfiCompatibility minor version number. 937 UINT32 AcpiTable; ///< The location of the RSDT ACPI table. < 4G range. 938 UINT32 SmbiosTable; ///< The location of the SMBIOS table in EFI memory. < 4G range. 939 UINT32 SmbiosTableLength; 940 // 941 // Legacy SIO state 942 // 943 DEVICE_PRODUCER_DATA_HEADER SioData; ///< Standard traditional device information. 944 UINT16 DevicePathType; ///< The default boot type. 945 UINT16 PciIrqMask; ///< Mask of which IRQs have been assigned to PCI. 946 UINT32 NumberE820Entries; ///< Number of E820 entries. The number can change from the 947 ///< Compatibility16InitializeYourself() function. 948 // 949 // Controller & Drive Identify[2] per controller information 950 // 951 HDD_INFO HddInfo[MAX_IDE_CONTROLLER]; ///< Hard disk drive information, including raw Identify Drive data. 952 UINT32 NumberBbsEntries; ///< Number of entries in the BBS table 953 UINT32 BbsTable; ///< A pointer to the BBS table. Type BBS_TABLE is defined below. 954 UINT32 SmmTable; ///< A pointer to the SMM table. Type SMM_TABLE is defined below. 955 UINT32 OsMemoryAbove1Mb; ///< The amount of usable memory above 1 MB, i.e. E820 type 1 memory. This value can 956 ///< differ from the value in EFI_TO_COMPATIBILITY16_INIT_TABLE as more 957 ///< memory may have been discovered. 958 UINT32 UnconventionalDeviceTable; ///< Information to boot off an unconventional device like a PARTIES partition. Type 959 ///< UD_TABLE is defined below. 960 } EFI_TO_COMPATIBILITY16_BOOT_TABLE; 961 962 /// 963 /// EFI_LEGACY_INSTALL_PCI_HANDLER 964 /// 965 typedef struct { 966 UINT8 PciBus; ///< The PCI bus of the device. 967 UINT8 PciDeviceFun; ///< The PCI device in bits 7:3 and function in bits 2:0. 968 UINT8 PciSegment; ///< The PCI segment of the device. 969 UINT8 PciClass; ///< The PCI class code of the device. 970 UINT8 PciSubclass; ///< The PCI subclass code of the device. 971 UINT8 PciInterface; ///< The PCI interface code of the device. 972 // 973 // Primary section 974 // 975 UINT8 PrimaryIrq; ///< The primary device IRQ. 976 UINT8 PrimaryReserved; ///< Reserved. 977 UINT16 PrimaryControl; ///< The primary device control I/O base. 978 UINT16 PrimaryBase; ///< The primary device I/O base. 979 UINT16 PrimaryBusMaster; ///< The primary device bus master I/O base. 980 // 981 // Secondary Section 982 // 983 UINT8 SecondaryIrq; ///< The secondary device IRQ. 984 UINT8 SecondaryReserved; ///< Reserved. 985 UINT16 SecondaryControl; ///< The secondary device control I/O base. 986 UINT16 SecondaryBase; ///< The secondary device I/O base. 987 UINT16 SecondaryBusMaster; ///< The secondary device bus master I/O base. 988 } EFI_LEGACY_INSTALL_PCI_HANDLER; 989 990 // 991 // Restore default pack value 992 // 993 #pragma pack() 994 995 #define EFI_LEGACY_BIOS_PROTOCOL_GUID \ 996 { \ 997 0xdb9a1e3d, 0x45cb, 0x4abb, {0x85, 0x3b, 0xe5, 0x38, 0x7f, 0xdb, 0x2e, 0x2d } \ 998 } 999 1000 typedef struct _EFI_LEGACY_BIOS_PROTOCOL EFI_LEGACY_BIOS_PROTOCOL; 1001 1002 /// 1003 /// Flags returned by CheckPciRom(). 1004 /// 1005 #define NO_ROM 0x00 1006 #define ROM_FOUND 0x01 1007 #define VALID_LEGACY_ROM 0x02 1008 #define ROM_WITH_CONFIG 0x04 ///< Not defined in the Framework CSM Specification. 1009 1010 /// 1011 /// The following macros do not appear in the Framework CSM Specification and 1012 /// are kept for backward compatibility only. They convert 32-bit address (_Adr) 1013 /// to Segment:Offset 16-bit form. 1014 /// 1015 ///@{ 1016 #define EFI_SEGMENT(_Adr) (UINT16) ((UINT16) (((UINTN) (_Adr)) >> 4) & 0xf000) 1017 #define EFI_OFFSET(_Adr) (UINT16) (((UINT16) ((UINTN) (_Adr))) & 0xffff) 1018 ///@} 1019 1020 #define CARRY_FLAG 0x01 1021 1022 /// 1023 /// EFI_EFLAGS_REG 1024 /// 1025 typedef struct { 1026 UINT32 CF:1; 1027 UINT32 Reserved1:1; 1028 UINT32 PF:1; 1029 UINT32 Reserved2:1; 1030 UINT32 AF:1; 1031 UINT32 Reserved3:1; 1032 UINT32 ZF:1; 1033 UINT32 SF:1; 1034 UINT32 TF:1; 1035 UINT32 IF:1; 1036 UINT32 DF:1; 1037 UINT32 OF:1; 1038 UINT32 IOPL:2; 1039 UINT32 NT:1; 1040 UINT32 Reserved4:2; 1041 UINT32 VM:1; 1042 UINT32 Reserved5:14; 1043 } EFI_EFLAGS_REG; 1044 1045 /// 1046 /// EFI_DWORD_REGS 1047 /// 1048 typedef struct { 1049 UINT32 EAX; 1050 UINT32 EBX; 1051 UINT32 ECX; 1052 UINT32 EDX; 1053 UINT32 ESI; 1054 UINT32 EDI; 1055 EFI_EFLAGS_REG EFlags; 1056 UINT16 ES; 1057 UINT16 CS; 1058 UINT16 SS; 1059 UINT16 DS; 1060 UINT16 FS; 1061 UINT16 GS; 1062 UINT32 EBP; 1063 UINT32 ESP; 1064 } EFI_DWORD_REGS; 1065 1066 /// 1067 /// EFI_FLAGS_REG 1068 /// 1069 typedef struct { 1070 UINT16 CF:1; 1071 UINT16 Reserved1:1; 1072 UINT16 PF:1; 1073 UINT16 Reserved2:1; 1074 UINT16 AF:1; 1075 UINT16 Reserved3:1; 1076 UINT16 ZF:1; 1077 UINT16 SF:1; 1078 UINT16 TF:1; 1079 UINT16 IF:1; 1080 UINT16 DF:1; 1081 UINT16 OF:1; 1082 UINT16 IOPL:2; 1083 UINT16 NT:1; 1084 UINT16 Reserved4:1; 1085 } EFI_FLAGS_REG; 1086 1087 /// 1088 /// EFI_WORD_REGS 1089 /// 1090 typedef struct { 1091 UINT16 AX; 1092 UINT16 ReservedAX; 1093 UINT16 BX; 1094 UINT16 ReservedBX; 1095 UINT16 CX; 1096 UINT16 ReservedCX; 1097 UINT16 DX; 1098 UINT16 ReservedDX; 1099 UINT16 SI; 1100 UINT16 ReservedSI; 1101 UINT16 DI; 1102 UINT16 ReservedDI; 1103 EFI_FLAGS_REG Flags; 1104 UINT16 ReservedFlags; 1105 UINT16 ES; 1106 UINT16 CS; 1107 UINT16 SS; 1108 UINT16 DS; 1109 UINT16 FS; 1110 UINT16 GS; 1111 UINT16 BP; 1112 UINT16 ReservedBP; 1113 UINT16 SP; 1114 UINT16 ReservedSP; 1115 } EFI_WORD_REGS; 1116 1117 /// 1118 /// EFI_BYTE_REGS 1119 /// 1120 typedef struct { 1121 UINT8 AL, AH; 1122 UINT16 ReservedAX; 1123 UINT8 BL, BH; 1124 UINT16 ReservedBX; 1125 UINT8 CL, CH; 1126 UINT16 ReservedCX; 1127 UINT8 DL, DH; 1128 UINT16 ReservedDX; 1129 } EFI_BYTE_REGS; 1130 1131 /// 1132 /// EFI_IA32_REGISTER_SET 1133 /// 1134 typedef union { 1135 EFI_DWORD_REGS E; 1136 EFI_WORD_REGS X; 1137 EFI_BYTE_REGS H; 1138 } EFI_IA32_REGISTER_SET; 1139 1140 /** 1141 Thunk to 16-bit real mode and execute a software interrupt with a vector 1142 of BiosInt. Regs will contain the 16-bit register context on entry and 1143 exit. 1144 1145 @param[in] This The protocol instance pointer. 1146 @param[in] BiosInt The processor interrupt vector to invoke. 1147 @param[in,out] Reg Register contexted passed into (and returned) from thunk to 1148 16-bit mode. 1149 1150 @retval TRUE Thunk completed with no BIOS errors in the target code. See Regs for status. 1151 @retval FALSE There was a BIOS error in the target code. 1152 **/ 1153 typedef 1154 BOOLEAN 1155 (EFIAPI *EFI_LEGACY_BIOS_INT86)( 1156 IN EFI_LEGACY_BIOS_PROTOCOL *This, 1157 IN UINT8 BiosInt, 1158 IN OUT EFI_IA32_REGISTER_SET *Regs 1159 ); 1160 1161 /** 1162 Thunk to 16-bit real mode and call Segment:Offset. Regs will contain the 1163 16-bit register context on entry and exit. Arguments can be passed on 1164 the Stack argument 1165 1166 @param[in] This The protocol instance pointer. 1167 @param[in] Segment The segemnt of 16-bit mode call. 1168 @param[in] Offset The offset of 16-bit mdoe call. 1169 @param[in] Reg Register contexted passed into (and returned) from thunk to 1170 16-bit mode. 1171 @param[in] Stack The caller allocated stack used to pass arguments. 1172 @param[in] StackSize The size of Stack in bytes. 1173 1174 @retval FALSE Thunk completed with no BIOS errors in the target code. See Regs for status. @retval TRUE There was a BIOS error in the target code. 1175 **/ 1176 typedef 1177 BOOLEAN 1178 (EFIAPI *EFI_LEGACY_BIOS_FARCALL86)( 1179 IN EFI_LEGACY_BIOS_PROTOCOL *This, 1180 IN UINT16 Segment, 1181 IN UINT16 Offset, 1182 IN EFI_IA32_REGISTER_SET *Regs, 1183 IN VOID *Stack, 1184 IN UINTN StackSize 1185 ); 1186 1187 /** 1188 Test to see if a legacy PCI ROM exists for this device. Optionally return 1189 the Legacy ROM instance for this PCI device. 1190 1191 @param[in] This The protocol instance pointer. 1192 @param[in] PciHandle The PCI PC-AT OPROM from this devices ROM BAR will be loaded 1193 @param[out] RomImage Return the legacy PCI ROM for this device. 1194 @param[out] RomSize The size of ROM Image. 1195 @param[out] Flags Indicates if ROM found and if PC-AT. Multiple bits can be set as follows: 1196 - 00 = No ROM. 1197 - 01 = ROM Found. 1198 - 02 = ROM is a valid legacy ROM. 1199 1200 @retval EFI_SUCCESS The Legacy Option ROM availible for this device 1201 @retval EFI_UNSUPPORTED The Legacy Option ROM is not supported. 1202 1203 **/ 1204 typedef 1205 EFI_STATUS 1206 (EFIAPI *EFI_LEGACY_BIOS_CHECK_ROM)( 1207 IN EFI_LEGACY_BIOS_PROTOCOL *This, 1208 IN EFI_HANDLE PciHandle, 1209 OUT VOID **RomImage, OPTIONAL 1210 OUT UINTN *RomSize, OPTIONAL 1211 OUT UINTN *Flags 1212 ); 1213 1214 /** 1215 Load a legacy PC-AT OPROM on the PciHandle device. Return information 1216 about how many disks were added by the OPROM and the shadow address and 1217 size. DiskStart & DiskEnd are INT 13h drive letters. Thus 0x80 is C: 1218 1219 @param[in] This The protocol instance pointer. 1220 @param[in] PciHandle The PCI PC-AT OPROM from this devices ROM BAR will be loaded. 1221 This value is NULL if RomImage is non-NULL. This is the normal 1222 case. 1223 @param[in] RomImage A PCI PC-AT ROM image. This argument is non-NULL if there is 1224 no hardware associated with the ROM and thus no PciHandle, 1225 otherwise is must be NULL. 1226 Example is PXE base code. 1227 @param[out] Flags The type of ROM discovered. Multiple bits can be set, as follows: 1228 - 00 = No ROM. 1229 - 01 = ROM found. 1230 - 02 = ROM is a valid legacy ROM. 1231 @param[out] DiskStart The disk number of first device hooked by the ROM. If DiskStart 1232 is the same as DiskEnd no disked were hooked. 1233 @param[out] DiskEnd disk number of the last device hooked by the ROM. 1234 @param[out] RomShadowAddress Shadow address of PC-AT ROM. 1235 @param[out] RomShadowSize Size of RomShadowAddress in bytes. 1236 1237 @retval EFI_SUCCESS Thunk completed, see Regs for status. 1238 @retval EFI_INVALID_PARAMETER PciHandle not found 1239 1240 **/ 1241 typedef 1242 EFI_STATUS 1243 (EFIAPI *EFI_LEGACY_BIOS_INSTALL_ROM)( 1244 IN EFI_LEGACY_BIOS_PROTOCOL *This, 1245 IN EFI_HANDLE PciHandle, 1246 IN VOID **RomImage, 1247 OUT UINTN *Flags, 1248 OUT UINT8 *DiskStart, OPTIONAL 1249 OUT UINT8 *DiskEnd, OPTIONAL 1250 OUT VOID **RomShadowAddress, OPTIONAL 1251 OUT UINT32 *ShadowedRomSize OPTIONAL 1252 ); 1253 1254 /** 1255 This function attempts to traditionally boot the specified BootOption. If the EFI context has 1256 been compromised, this function will not return. This procedure is not used for loading an EFI-aware 1257 OS off a traditional device. The following actions occur: 1258 - Get EFI SMBIOS data structures, convert them to a traditional format, and copy to 1259 Compatibility16. 1260 - Get a pointer to ACPI data structures and copy the Compatibility16 RSD PTR to F0000 block. 1261 - Find the traditional SMI handler from a firmware volume and register the traditional SMI 1262 handler with the EFI SMI handler. 1263 - Build onboard IDE information and pass this information to the Compatibility16 code. 1264 - Make sure all PCI Interrupt Line registers are programmed to match 8259. 1265 - Reconfigure SIO devices from EFI mode (polled) into traditional mode (interrupt driven). 1266 - Shadow all PCI ROMs. 1267 - Set up BDA and EBDA standard areas before the legacy boot. 1268 - Construct the Compatibility16 boot memory map and pass it to the Compatibility16 code. 1269 - Invoke the Compatibility16 table function Compatibility16PrepareToBoot(). This 1270 invocation causes a thunk into the Compatibility16 code, which sets all appropriate internal 1271 data structures. The boot device list is a parameter. 1272 - Invoke the Compatibility16 Table function Compatibility16Boot(). This invocation 1273 causes a thunk into the Compatibility16 code, which does an INT19. 1274 - If the Compatibility16Boot() function returns, then the boot failed in a graceful 1275 manner--meaning that the EFI code is still valid. An ungraceful boot failure causes a reset because the state 1276 of EFI code is unknown. 1277 1278 @param[in] This The protocol instance pointer. 1279 @param[in] BootOption The EFI Device Path from BootXXXX variable. 1280 @param[in] LoadOptionSize The size of LoadOption in size. 1281 @param[in] LoadOption LThe oadOption from BootXXXX variable. 1282 1283 @retval EFI_DEVICE_ERROR Failed to boot from any boot device and memory is uncorrupted. Note: This function normally does not returns. It will either boot the OS or reset the system if memory has been "corrupted" by loading a boot sector and passing control to it. 1284 **/ 1285 typedef 1286 EFI_STATUS 1287 (EFIAPI *EFI_LEGACY_BIOS_BOOT)( 1288 IN EFI_LEGACY_BIOS_PROTOCOL *This, 1289 IN BBS_BBS_DEVICE_PATH *BootOption, 1290 IN UINT32 LoadOptionsSize, 1291 IN VOID *LoadOptions 1292 ); 1293 1294 /** 1295 This function takes the Leds input parameter and sets/resets the BDA accordingly. 1296 Leds is also passed to Compatibility16 code, in case any special processing is required. 1297 This function is normally called from EFI Setup drivers that handle user-selectable 1298 keyboard options such as boot with NUM LOCK on/off. This function does not 1299 touch the keyboard or keyboard LEDs but only the BDA. 1300 1301 @param[in] This The protocol instance pointer. 1302 @param[in] Leds The status of current Scroll, Num & Cap lock LEDS: 1303 - Bit 0 is Scroll Lock 0 = Not locked. 1304 - Bit 1 is Num Lock. 1305 - Bit 2 is Caps Lock. 1306 1307 @retval EFI_SUCCESS The BDA was updated successfully. 1308 1309 **/ 1310 typedef 1311 EFI_STATUS 1312 (EFIAPI *EFI_LEGACY_BIOS_UPDATE_KEYBOARD_LED_STATUS)( 1313 IN EFI_LEGACY_BIOS_PROTOCOL *This, 1314 IN UINT8 Leds 1315 ); 1316 1317 /** 1318 Retrieve legacy BBS info and assign boot priority. 1319 1320 @param[in] This The protocol instance pointer. 1321 @param[out] HddCount The number of HDD_INFO structures. 1322 @param[out] HddInfo Onboard IDE controller information. 1323 @param[out] BbsCount The number of BBS_TABLE structures. 1324 @param[in,out] BbsTable Points to List of BBS_TABLE. 1325 1326 @retval EFI_SUCCESS Tables were returned. 1327 1328 **/ 1329 typedef 1330 EFI_STATUS 1331 (EFIAPI *EFI_LEGACY_BIOS_GET_BBS_INFO)( 1332 IN EFI_LEGACY_BIOS_PROTOCOL *This, 1333 OUT UINT16 *HddCount, 1334 OUT HDD_INFO **HddInfo, 1335 OUT UINT16 *BbsCount, 1336 IN OUT BBS_TABLE **BbsTable 1337 ); 1338 1339 /** 1340 Assign drive number to legacy HDD drives prior to booting an EFI 1341 aware OS so the OS can access drives without an EFI driver. 1342 1343 @param[in] This The protocol instance pointer. 1344 @param[out] BbsCount The number of BBS_TABLE structures 1345 @param[out] BbsTable List of BBS entries 1346 1347 @retval EFI_SUCCESS Drive numbers assigned. 1348 1349 **/ 1350 typedef 1351 EFI_STATUS 1352 (EFIAPI *EFI_LEGACY_BIOS_PREPARE_TO_BOOT_EFI)( 1353 IN EFI_LEGACY_BIOS_PROTOCOL *This, 1354 OUT UINT16 *BbsCount, 1355 OUT BBS_TABLE **BbsTable 1356 ); 1357 1358 /** 1359 To boot from an unconventional device like parties and/or execute 1360 HDD diagnostics. 1361 1362 @param[in] This The protocol instance pointer. 1363 @param[in] Attributes How to interpret the other input parameters. 1364 @param[in] BbsEntry The 0-based index into the BbsTable for the parent 1365 device. 1366 @param[in] BeerData A pointer to the 128 bytes of ram BEER data. 1367 @param[in] ServiceAreaData A pointer to the 64 bytes of raw Service Area data. The 1368 caller must provide a pointer to the specific Service 1369 Area and not the start all Service Areas. 1370 1371 @retval EFI_INVALID_PARAMETER If error. Does NOT return if no error. 1372 1373 **/ 1374 typedef 1375 EFI_STATUS 1376 (EFIAPI *EFI_LEGACY_BIOS_BOOT_UNCONVENTIONAL_DEVICE)( 1377 IN EFI_LEGACY_BIOS_PROTOCOL *This, 1378 IN UDC_ATTRIBUTES Attributes, 1379 IN UINTN BbsEntry, 1380 IN VOID *BeerData, 1381 IN VOID *ServiceAreaData 1382 ); 1383 1384 /** 1385 Shadow all legacy16 OPROMs that haven't been shadowed. 1386 Warning: Use this with caution. This routine disconnects all EFI 1387 drivers. If used externally, then the caller must re-connect EFI 1388 drivers. 1389 1390 @param[in] This The protocol instance pointer. 1391 1392 @retval EFI_SUCCESS OPROMs were shadowed. 1393 1394 **/ 1395 typedef 1396 EFI_STATUS 1397 (EFIAPI *EFI_LEGACY_BIOS_SHADOW_ALL_LEGACY_OPROMS)( 1398 IN EFI_LEGACY_BIOS_PROTOCOL *This 1399 ); 1400 1401 /** 1402 Get a region from the LegacyBios for S3 usage. 1403 1404 @param[in] This The protocol instance pointer. 1405 @param[in] LegacyMemorySize The size of required region. 1406 @param[in] Region The region to use. 1407 00 = Either 0xE0000 or 0xF0000 block. 1408 - Bit0 = 1 0xF0000 block. 1409 - Bit1 = 1 0xE0000 block. 1410 @param[in] Alignment Address alignment. Bit mapped. The first non-zero 1411 bit from right is alignment. 1412 @param[out] LegacyMemoryAddress The Region Assigned 1413 1414 @retval EFI_SUCCESS The Region was assigned. 1415 @retval EFI_ACCESS_DENIED The function was previously invoked. 1416 @retval Other The Region was not assigned. 1417 1418 **/ 1419 typedef 1420 EFI_STATUS 1421 (EFIAPI *EFI_LEGACY_BIOS_GET_LEGACY_REGION)( 1422 IN EFI_LEGACY_BIOS_PROTOCOL *This, 1423 IN UINTN LegacyMemorySize, 1424 IN UINTN Region, 1425 IN UINTN Alignment, 1426 OUT VOID **LegacyMemoryAddress 1427 ); 1428 1429 /** 1430 Get a region from the LegacyBios for Tiano usage. Can only be invoked once. 1431 1432 @param[in] This The protocol instance pointer. 1433 @param[in] LegacyMemorySize The size of data to copy. 1434 @param[in] LegacyMemoryAddress The Legacy Region destination address. 1435 Note: must be in region assigned by 1436 LegacyBiosGetLegacyRegion. 1437 @param[in] LegacyMemorySourceAddress The source of the data to copy. 1438 1439 @retval EFI_SUCCESS The Region assigned. 1440 @retval EFI_ACCESS_DENIED Destination was outside an assigned region. 1441 1442 **/ 1443 typedef 1444 EFI_STATUS 1445 (EFIAPI *EFI_LEGACY_BIOS_COPY_LEGACY_REGION)( 1446 IN EFI_LEGACY_BIOS_PROTOCOL *This, 1447 IN UINTN LegacyMemorySize, 1448 IN VOID *LegacyMemoryAddress, 1449 IN VOID *LegacyMemorySourceAddress 1450 ); 1451 1452 /// 1453 /// Abstracts the traditional BIOS from the rest of EFI. The LegacyBoot() 1454 /// member function allows the BDS to support booting a traditional OS. 1455 /// EFI thunks drivers that make EFI bindings for BIOS INT services use 1456 /// all the other member functions. 1457 /// 1458 struct _EFI_LEGACY_BIOS_PROTOCOL { 1459 /// 1460 /// Performs traditional software INT. See the Int86() function description. 1461 /// 1462 EFI_LEGACY_BIOS_INT86 Int86; 1463 1464 /// 1465 /// Performs a far call into Compatibility16 or traditional OpROM code. 1466 /// 1467 EFI_LEGACY_BIOS_FARCALL86 FarCall86; 1468 1469 /// 1470 /// Checks if a traditional OpROM exists for this device. 1471 /// 1472 EFI_LEGACY_BIOS_CHECK_ROM CheckPciRom; 1473 1474 /// 1475 /// Loads a traditional OpROM in traditional OpROM address space. 1476 /// 1477 EFI_LEGACY_BIOS_INSTALL_ROM InstallPciRom; 1478 1479 /// 1480 /// Boots a traditional OS. 1481 /// 1482 EFI_LEGACY_BIOS_BOOT LegacyBoot; 1483 1484 /// 1485 /// Updates BDA to reflect the current EFI keyboard LED status. 1486 /// 1487 EFI_LEGACY_BIOS_UPDATE_KEYBOARD_LED_STATUS UpdateKeyboardLedStatus; 1488 1489 /// 1490 /// Allows an external agent, such as BIOS Setup, to get the BBS data. 1491 /// 1492 EFI_LEGACY_BIOS_GET_BBS_INFO GetBbsInfo; 1493 1494 /// 1495 /// Causes all legacy OpROMs to be shadowed. 1496 /// 1497 EFI_LEGACY_BIOS_SHADOW_ALL_LEGACY_OPROMS ShadowAllLegacyOproms; 1498 1499 /// 1500 /// Performs all actions prior to boot. Used when booting an EFI-aware OS 1501 /// rather than a legacy OS. 1502 /// 1503 EFI_LEGACY_BIOS_PREPARE_TO_BOOT_EFI PrepareToBootEfi; 1504 1505 /// 1506 /// Allows EFI to reserve an area in the 0xE0000 or 0xF0000 block. 1507 /// 1508 EFI_LEGACY_BIOS_GET_LEGACY_REGION GetLegacyRegion; 1509 1510 /// 1511 /// Allows EFI to copy data to the area specified by GetLegacyRegion. 1512 /// 1513 EFI_LEGACY_BIOS_COPY_LEGACY_REGION CopyLegacyRegion; 1514 1515 /// 1516 /// Allows the user to boot off an unconventional device such as a PARTIES partition. 1517 /// 1518 EFI_LEGACY_BIOS_BOOT_UNCONVENTIONAL_DEVICE BootUnconventionalDevice; 1519 }; 1520 1521 extern EFI_GUID gEfiLegacyBiosProtocolGuid; 1522 1523 #endif 1524