Home | History | Annotate | Download | only in heap
      1 // Copyright 2011 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "src/heap/spaces.h"
      6 
      7 #include <utility>
      8 
      9 #include "src/base/bits.h"
     10 #include "src/base/platform/platform.h"
     11 #include "src/base/platform/semaphore.h"
     12 #include "src/full-codegen/full-codegen.h"
     13 #include "src/heap/array-buffer-tracker.h"
     14 #include "src/heap/slot-set.h"
     15 #include "src/macro-assembler.h"
     16 #include "src/msan.h"
     17 #include "src/snapshot/snapshot.h"
     18 #include "src/v8.h"
     19 
     20 namespace v8 {
     21 namespace internal {
     22 
     23 
     24 // ----------------------------------------------------------------------------
     25 // HeapObjectIterator
     26 
     27 HeapObjectIterator::HeapObjectIterator(PagedSpace* space)
     28     : cur_addr_(nullptr),
     29       cur_end_(nullptr),
     30       space_(space),
     31       page_range_(space->anchor()->next_page(), space->anchor()),
     32       current_page_(page_range_.begin()) {}
     33 
     34 HeapObjectIterator::HeapObjectIterator(Page* page)
     35     : cur_addr_(nullptr),
     36       cur_end_(nullptr),
     37       space_(reinterpret_cast<PagedSpace*>(page->owner())),
     38       page_range_(page),
     39       current_page_(page_range_.begin()) {
     40 #ifdef DEBUG
     41   Space* owner = page->owner();
     42   DCHECK(owner == page->heap()->old_space() ||
     43          owner == page->heap()->map_space() ||
     44          owner == page->heap()->code_space());
     45 #endif  // DEBUG
     46 }
     47 
     48 // We have hit the end of the page and should advance to the next block of
     49 // objects.  This happens at the end of the page.
     50 bool HeapObjectIterator::AdvanceToNextPage() {
     51   DCHECK_EQ(cur_addr_, cur_end_);
     52   if (current_page_ == page_range_.end()) return false;
     53   Page* cur_page = *(current_page_++);
     54   space_->heap()
     55       ->mark_compact_collector()
     56       ->sweeper()
     57       .SweepOrWaitUntilSweepingCompleted(cur_page);
     58   cur_addr_ = cur_page->area_start();
     59   cur_end_ = cur_page->area_end();
     60   DCHECK(cur_page->SweepingDone());
     61   return true;
     62 }
     63 
     64 PauseAllocationObserversScope::PauseAllocationObserversScope(Heap* heap)
     65     : heap_(heap) {
     66   AllSpaces spaces(heap_);
     67   for (Space* space = spaces.next(); space != NULL; space = spaces.next()) {
     68     space->PauseAllocationObservers();
     69   }
     70 }
     71 
     72 PauseAllocationObserversScope::~PauseAllocationObserversScope() {
     73   AllSpaces spaces(heap_);
     74   for (Space* space = spaces.next(); space != NULL; space = spaces.next()) {
     75     space->ResumeAllocationObservers();
     76   }
     77 }
     78 
     79 // -----------------------------------------------------------------------------
     80 // CodeRange
     81 
     82 
     83 CodeRange::CodeRange(Isolate* isolate)
     84     : isolate_(isolate),
     85       code_range_(NULL),
     86       free_list_(0),
     87       allocation_list_(0),
     88       current_allocation_block_index_(0) {}
     89 
     90 
     91 bool CodeRange::SetUp(size_t requested) {
     92   DCHECK(code_range_ == NULL);
     93 
     94   if (requested == 0) {
     95     // When a target requires the code range feature, we put all code objects
     96     // in a kMaximalCodeRangeSize range of virtual address space, so that
     97     // they can call each other with near calls.
     98     if (kRequiresCodeRange) {
     99       requested = kMaximalCodeRangeSize;
    100     } else {
    101       return true;
    102     }
    103   }
    104 
    105   if (requested <= kMinimumCodeRangeSize) {
    106     requested = kMinimumCodeRangeSize;
    107   }
    108 
    109   const size_t reserved_area =
    110       kReservedCodeRangePages * MemoryAllocator::GetCommitPageSize();
    111   if (requested < (kMaximalCodeRangeSize - reserved_area))
    112     requested += reserved_area;
    113 
    114   DCHECK(!kRequiresCodeRange || requested <= kMaximalCodeRangeSize);
    115 
    116   code_range_ = new base::VirtualMemory(
    117       requested, Max(kCodeRangeAreaAlignment,
    118                      static_cast<size_t>(base::OS::AllocateAlignment())));
    119   CHECK(code_range_ != NULL);
    120   if (!code_range_->IsReserved()) {
    121     delete code_range_;
    122     code_range_ = NULL;
    123     return false;
    124   }
    125 
    126   // We are sure that we have mapped a block of requested addresses.
    127   DCHECK(code_range_->size() == requested);
    128   Address base = reinterpret_cast<Address>(code_range_->address());
    129 
    130   // On some platforms, specifically Win64, we need to reserve some pages at
    131   // the beginning of an executable space.
    132   if (reserved_area > 0) {
    133     if (!code_range_->Commit(base, reserved_area, true)) {
    134       delete code_range_;
    135       code_range_ = NULL;
    136       return false;
    137     }
    138     base += reserved_area;
    139   }
    140   Address aligned_base = RoundUp(base, MemoryChunk::kAlignment);
    141   size_t size = code_range_->size() - (aligned_base - base) - reserved_area;
    142   allocation_list_.Add(FreeBlock(aligned_base, size));
    143   current_allocation_block_index_ = 0;
    144 
    145   LOG(isolate_, NewEvent("CodeRange", code_range_->address(), requested));
    146   return true;
    147 }
    148 
    149 
    150 int CodeRange::CompareFreeBlockAddress(const FreeBlock* left,
    151                                        const FreeBlock* right) {
    152   // The entire point of CodeRange is that the difference between two
    153   // addresses in the range can be represented as a signed 32-bit int,
    154   // so the cast is semantically correct.
    155   return static_cast<int>(left->start - right->start);
    156 }
    157 
    158 
    159 bool CodeRange::GetNextAllocationBlock(size_t requested) {
    160   for (current_allocation_block_index_++;
    161        current_allocation_block_index_ < allocation_list_.length();
    162        current_allocation_block_index_++) {
    163     if (requested <= allocation_list_[current_allocation_block_index_].size) {
    164       return true;  // Found a large enough allocation block.
    165     }
    166   }
    167 
    168   // Sort and merge the free blocks on the free list and the allocation list.
    169   free_list_.AddAll(allocation_list_);
    170   allocation_list_.Clear();
    171   free_list_.Sort(&CompareFreeBlockAddress);
    172   for (int i = 0; i < free_list_.length();) {
    173     FreeBlock merged = free_list_[i];
    174     i++;
    175     // Add adjacent free blocks to the current merged block.
    176     while (i < free_list_.length() &&
    177            free_list_[i].start == merged.start + merged.size) {
    178       merged.size += free_list_[i].size;
    179       i++;
    180     }
    181     if (merged.size > 0) {
    182       allocation_list_.Add(merged);
    183     }
    184   }
    185   free_list_.Clear();
    186 
    187   for (current_allocation_block_index_ = 0;
    188        current_allocation_block_index_ < allocation_list_.length();
    189        current_allocation_block_index_++) {
    190     if (requested <= allocation_list_[current_allocation_block_index_].size) {
    191       return true;  // Found a large enough allocation block.
    192     }
    193   }
    194   current_allocation_block_index_ = 0;
    195   // Code range is full or too fragmented.
    196   return false;
    197 }
    198 
    199 
    200 Address CodeRange::AllocateRawMemory(const size_t requested_size,
    201                                      const size_t commit_size,
    202                                      size_t* allocated) {
    203   // request_size includes guards while committed_size does not. Make sure
    204   // callers know about the invariant.
    205   CHECK_LE(commit_size,
    206            requested_size - 2 * MemoryAllocator::CodePageGuardSize());
    207   FreeBlock current;
    208   if (!ReserveBlock(requested_size, &current)) {
    209     *allocated = 0;
    210     return NULL;
    211   }
    212   *allocated = current.size;
    213   DCHECK(*allocated <= current.size);
    214   DCHECK(IsAddressAligned(current.start, MemoryChunk::kAlignment));
    215   if (!isolate_->heap()->memory_allocator()->CommitExecutableMemory(
    216           code_range_, current.start, commit_size, *allocated)) {
    217     *allocated = 0;
    218     ReleaseBlock(&current);
    219     return NULL;
    220   }
    221   return current.start;
    222 }
    223 
    224 
    225 bool CodeRange::CommitRawMemory(Address start, size_t length) {
    226   return isolate_->heap()->memory_allocator()->CommitMemory(start, length,
    227                                                             EXECUTABLE);
    228 }
    229 
    230 
    231 bool CodeRange::UncommitRawMemory(Address start, size_t length) {
    232   return code_range_->Uncommit(start, length);
    233 }
    234 
    235 
    236 void CodeRange::FreeRawMemory(Address address, size_t length) {
    237   DCHECK(IsAddressAligned(address, MemoryChunk::kAlignment));
    238   base::LockGuard<base::Mutex> guard(&code_range_mutex_);
    239   free_list_.Add(FreeBlock(address, length));
    240   code_range_->Uncommit(address, length);
    241 }
    242 
    243 
    244 void CodeRange::TearDown() {
    245   delete code_range_;  // Frees all memory in the virtual memory range.
    246   code_range_ = NULL;
    247   base::LockGuard<base::Mutex> guard(&code_range_mutex_);
    248   free_list_.Free();
    249   allocation_list_.Free();
    250 }
    251 
    252 
    253 bool CodeRange::ReserveBlock(const size_t requested_size, FreeBlock* block) {
    254   base::LockGuard<base::Mutex> guard(&code_range_mutex_);
    255   DCHECK(allocation_list_.length() == 0 ||
    256          current_allocation_block_index_ < allocation_list_.length());
    257   if (allocation_list_.length() == 0 ||
    258       requested_size > allocation_list_[current_allocation_block_index_].size) {
    259     // Find an allocation block large enough.
    260     if (!GetNextAllocationBlock(requested_size)) return false;
    261   }
    262   // Commit the requested memory at the start of the current allocation block.
    263   size_t aligned_requested = RoundUp(requested_size, MemoryChunk::kAlignment);
    264   *block = allocation_list_[current_allocation_block_index_];
    265   // Don't leave a small free block, useless for a large object or chunk.
    266   if (aligned_requested < (block->size - Page::kPageSize)) {
    267     block->size = aligned_requested;
    268   }
    269   DCHECK(IsAddressAligned(block->start, MemoryChunk::kAlignment));
    270   allocation_list_[current_allocation_block_index_].start += block->size;
    271   allocation_list_[current_allocation_block_index_].size -= block->size;
    272   return true;
    273 }
    274 
    275 
    276 void CodeRange::ReleaseBlock(const FreeBlock* block) {
    277   base::LockGuard<base::Mutex> guard(&code_range_mutex_);
    278   free_list_.Add(*block);
    279 }
    280 
    281 
    282 // -----------------------------------------------------------------------------
    283 // MemoryAllocator
    284 //
    285 
    286 MemoryAllocator::MemoryAllocator(Isolate* isolate)
    287     : isolate_(isolate),
    288       code_range_(nullptr),
    289       capacity_(0),
    290       capacity_executable_(0),
    291       size_(0),
    292       size_executable_(0),
    293       lowest_ever_allocated_(reinterpret_cast<void*>(-1)),
    294       highest_ever_allocated_(reinterpret_cast<void*>(0)),
    295       unmapper_(this) {}
    296 
    297 bool MemoryAllocator::SetUp(size_t capacity, size_t capacity_executable,
    298                             size_t code_range_size) {
    299   capacity_ = RoundUp(capacity, Page::kPageSize);
    300   capacity_executable_ = RoundUp(capacity_executable, Page::kPageSize);
    301   DCHECK_GE(capacity_, capacity_executable_);
    302 
    303   size_ = 0;
    304   size_executable_ = 0;
    305 
    306   code_range_ = new CodeRange(isolate_);
    307   if (!code_range_->SetUp(code_range_size)) return false;
    308 
    309   return true;
    310 }
    311 
    312 
    313 void MemoryAllocator::TearDown() {
    314   unmapper()->TearDown();
    315 
    316   // Check that spaces were torn down before MemoryAllocator.
    317   DCHECK_EQ(size_.Value(), 0u);
    318   // TODO(gc) this will be true again when we fix FreeMemory.
    319   // DCHECK(size_executable_ == 0);
    320   capacity_ = 0;
    321   capacity_executable_ = 0;
    322 
    323   if (last_chunk_.IsReserved()) {
    324     last_chunk_.Release();
    325   }
    326 
    327   delete code_range_;
    328   code_range_ = nullptr;
    329 }
    330 
    331 class MemoryAllocator::Unmapper::UnmapFreeMemoryTask : public v8::Task {
    332  public:
    333   explicit UnmapFreeMemoryTask(Unmapper* unmapper) : unmapper_(unmapper) {}
    334 
    335  private:
    336   // v8::Task overrides.
    337   void Run() override {
    338     unmapper_->PerformFreeMemoryOnQueuedChunks();
    339     unmapper_->pending_unmapping_tasks_semaphore_.Signal();
    340   }
    341 
    342   Unmapper* unmapper_;
    343   DISALLOW_COPY_AND_ASSIGN(UnmapFreeMemoryTask);
    344 };
    345 
    346 void MemoryAllocator::Unmapper::FreeQueuedChunks() {
    347   ReconsiderDelayedChunks();
    348   if (FLAG_concurrent_sweeping) {
    349     V8::GetCurrentPlatform()->CallOnBackgroundThread(
    350         new UnmapFreeMemoryTask(this), v8::Platform::kShortRunningTask);
    351     concurrent_unmapping_tasks_active_++;
    352   } else {
    353     PerformFreeMemoryOnQueuedChunks();
    354   }
    355 }
    356 
    357 bool MemoryAllocator::Unmapper::WaitUntilCompleted() {
    358   bool waited = false;
    359   while (concurrent_unmapping_tasks_active_ > 0) {
    360     pending_unmapping_tasks_semaphore_.Wait();
    361     concurrent_unmapping_tasks_active_--;
    362     waited = true;
    363   }
    364   return waited;
    365 }
    366 
    367 void MemoryAllocator::Unmapper::PerformFreeMemoryOnQueuedChunks() {
    368   MemoryChunk* chunk = nullptr;
    369   // Regular chunks.
    370   while ((chunk = GetMemoryChunkSafe<kRegular>()) != nullptr) {
    371     bool pooled = chunk->IsFlagSet(MemoryChunk::POOLED);
    372     allocator_->PerformFreeMemory(chunk);
    373     if (pooled) AddMemoryChunkSafe<kPooled>(chunk);
    374   }
    375   // Non-regular chunks.
    376   while ((chunk = GetMemoryChunkSafe<kNonRegular>()) != nullptr) {
    377     allocator_->PerformFreeMemory(chunk);
    378   }
    379 }
    380 
    381 void MemoryAllocator::Unmapper::TearDown() {
    382   WaitUntilCompleted();
    383   ReconsiderDelayedChunks();
    384   CHECK(delayed_regular_chunks_.empty());
    385   PerformFreeMemoryOnQueuedChunks();
    386 }
    387 
    388 void MemoryAllocator::Unmapper::ReconsiderDelayedChunks() {
    389   std::list<MemoryChunk*> delayed_chunks(std::move(delayed_regular_chunks_));
    390   // Move constructed, so the permanent list should be empty.
    391   DCHECK(delayed_regular_chunks_.empty());
    392   for (auto it = delayed_chunks.begin(); it != delayed_chunks.end(); ++it) {
    393     AddMemoryChunkSafe<kRegular>(*it);
    394   }
    395 }
    396 
    397 bool MemoryAllocator::CanFreeMemoryChunk(MemoryChunk* chunk) {
    398   MarkCompactCollector* mc = isolate_->heap()->mark_compact_collector();
    399   // We cannot free a memory chunk in new space while the sweeper is running
    400   // because the memory chunk can be in the queue of a sweeper task.
    401   // Chunks in old generation are unmapped if they are empty.
    402   DCHECK(chunk->InNewSpace() || chunk->SweepingDone());
    403   return !chunk->InNewSpace() || mc == nullptr || !FLAG_concurrent_sweeping ||
    404          mc->sweeper().IsSweepingCompleted(NEW_SPACE);
    405 }
    406 
    407 bool MemoryAllocator::CommitMemory(Address base, size_t size,
    408                                    Executability executable) {
    409   if (!base::VirtualMemory::CommitRegion(base, size,
    410                                          executable == EXECUTABLE)) {
    411     return false;
    412   }
    413   UpdateAllocatedSpaceLimits(base, base + size);
    414   return true;
    415 }
    416 
    417 
    418 void MemoryAllocator::FreeMemory(base::VirtualMemory* reservation,
    419                                  Executability executable) {
    420   // TODO(gc) make code_range part of memory allocator?
    421   // Code which is part of the code-range does not have its own VirtualMemory.
    422   DCHECK(code_range() == NULL ||
    423          !code_range()->contains(static_cast<Address>(reservation->address())));
    424   DCHECK(executable == NOT_EXECUTABLE || !code_range()->valid() ||
    425          reservation->size() <= Page::kPageSize);
    426 
    427   reservation->Release();
    428 }
    429 
    430 
    431 void MemoryAllocator::FreeMemory(Address base, size_t size,
    432                                  Executability executable) {
    433   // TODO(gc) make code_range part of memory allocator?
    434   if (code_range() != NULL &&
    435       code_range()->contains(static_cast<Address>(base))) {
    436     DCHECK(executable == EXECUTABLE);
    437     code_range()->FreeRawMemory(base, size);
    438   } else {
    439     DCHECK(executable == NOT_EXECUTABLE || !code_range()->valid());
    440     bool result = base::VirtualMemory::ReleaseRegion(base, size);
    441     USE(result);
    442     DCHECK(result);
    443   }
    444 }
    445 
    446 Address MemoryAllocator::ReserveAlignedMemory(size_t size, size_t alignment,
    447                                               base::VirtualMemory* controller) {
    448   base::VirtualMemory reservation(size, alignment);
    449 
    450   if (!reservation.IsReserved()) return NULL;
    451   size_.Increment(reservation.size());
    452   Address base =
    453       RoundUp(static_cast<Address>(reservation.address()), alignment);
    454   controller->TakeControl(&reservation);
    455   return base;
    456 }
    457 
    458 Address MemoryAllocator::AllocateAlignedMemory(
    459     size_t reserve_size, size_t commit_size, size_t alignment,
    460     Executability executable, base::VirtualMemory* controller) {
    461   DCHECK(commit_size <= reserve_size);
    462   base::VirtualMemory reservation;
    463   Address base = ReserveAlignedMemory(reserve_size, alignment, &reservation);
    464   if (base == NULL) return NULL;
    465 
    466   if (executable == EXECUTABLE) {
    467     if (!CommitExecutableMemory(&reservation, base, commit_size,
    468                                 reserve_size)) {
    469       base = NULL;
    470     }
    471   } else {
    472     if (reservation.Commit(base, commit_size, false)) {
    473       UpdateAllocatedSpaceLimits(base, base + commit_size);
    474     } else {
    475       base = NULL;
    476     }
    477   }
    478 
    479   if (base == NULL) {
    480     // Failed to commit the body. Release the mapping and any partially
    481     // commited regions inside it.
    482     reservation.Release();
    483     size_.Decrement(reserve_size);
    484     return NULL;
    485   }
    486 
    487   controller->TakeControl(&reservation);
    488   return base;
    489 }
    490 
    491 void Page::InitializeAsAnchor(Space* space) {
    492   set_owner(space);
    493   set_next_chunk(this);
    494   set_prev_chunk(this);
    495   SetFlags(0, ~0);
    496   SetFlag(ANCHOR);
    497 }
    498 
    499 MemoryChunk* MemoryChunk::Initialize(Heap* heap, Address base, size_t size,
    500                                      Address area_start, Address area_end,
    501                                      Executability executable, Space* owner,
    502                                      base::VirtualMemory* reservation) {
    503   MemoryChunk* chunk = FromAddress(base);
    504 
    505   DCHECK(base == chunk->address());
    506 
    507   chunk->heap_ = heap;
    508   chunk->size_ = size;
    509   chunk->area_start_ = area_start;
    510   chunk->area_end_ = area_end;
    511   chunk->flags_ = Flags(NO_FLAGS);
    512   chunk->set_owner(owner);
    513   chunk->InitializeReservedMemory();
    514   chunk->old_to_new_slots_.SetValue(nullptr);
    515   chunk->old_to_old_slots_ = nullptr;
    516   chunk->typed_old_to_new_slots_.SetValue(nullptr);
    517   chunk->typed_old_to_old_slots_ = nullptr;
    518   chunk->skip_list_ = nullptr;
    519   chunk->progress_bar_ = 0;
    520   chunk->high_water_mark_.SetValue(static_cast<intptr_t>(area_start - base));
    521   chunk->concurrent_sweeping_state().SetValue(kSweepingDone);
    522   chunk->mutex_ = new base::Mutex();
    523   chunk->available_in_free_list_ = 0;
    524   chunk->wasted_memory_ = 0;
    525   chunk->ResetLiveBytes();
    526   chunk->ClearLiveness();
    527   chunk->set_next_chunk(nullptr);
    528   chunk->set_prev_chunk(nullptr);
    529   chunk->local_tracker_ = nullptr;
    530 
    531   DCHECK(OFFSET_OF(MemoryChunk, flags_) == kFlagsOffset);
    532 
    533   if (executable == EXECUTABLE) {
    534     chunk->SetFlag(IS_EXECUTABLE);
    535   }
    536 
    537   if (reservation != nullptr) {
    538     chunk->reservation_.TakeControl(reservation);
    539   }
    540 
    541   return chunk;
    542 }
    543 
    544 
    545 // Commit MemoryChunk area to the requested size.
    546 bool MemoryChunk::CommitArea(size_t requested) {
    547   size_t guard_size =
    548       IsFlagSet(IS_EXECUTABLE) ? MemoryAllocator::CodePageGuardSize() : 0;
    549   size_t header_size = area_start() - address() - guard_size;
    550   size_t commit_size =
    551       RoundUp(header_size + requested, MemoryAllocator::GetCommitPageSize());
    552   size_t committed_size = RoundUp(header_size + (area_end() - area_start()),
    553                                   MemoryAllocator::GetCommitPageSize());
    554 
    555   if (commit_size > committed_size) {
    556     // Commit size should be less or equal than the reserved size.
    557     DCHECK(commit_size <= size() - 2 * guard_size);
    558     // Append the committed area.
    559     Address start = address() + committed_size + guard_size;
    560     size_t length = commit_size - committed_size;
    561     if (reservation_.IsReserved()) {
    562       Executability executable =
    563           IsFlagSet(IS_EXECUTABLE) ? EXECUTABLE : NOT_EXECUTABLE;
    564       if (!heap()->memory_allocator()->CommitMemory(start, length,
    565                                                     executable)) {
    566         return false;
    567       }
    568     } else {
    569       CodeRange* code_range = heap_->memory_allocator()->code_range();
    570       DCHECK(code_range->valid() && IsFlagSet(IS_EXECUTABLE));
    571       if (!code_range->CommitRawMemory(start, length)) return false;
    572     }
    573 
    574     if (Heap::ShouldZapGarbage()) {
    575       heap_->memory_allocator()->ZapBlock(start, length);
    576     }
    577   } else if (commit_size < committed_size) {
    578     DCHECK(commit_size > 0);
    579     // Shrink the committed area.
    580     size_t length = committed_size - commit_size;
    581     Address start = address() + committed_size + guard_size - length;
    582     if (reservation_.IsReserved()) {
    583       if (!reservation_.Uncommit(start, length)) return false;
    584     } else {
    585       CodeRange* code_range = heap_->memory_allocator()->code_range();
    586       DCHECK(code_range->valid() && IsFlagSet(IS_EXECUTABLE));
    587       if (!code_range->UncommitRawMemory(start, length)) return false;
    588     }
    589   }
    590 
    591   area_end_ = area_start_ + requested;
    592   return true;
    593 }
    594 
    595 size_t MemoryChunk::CommittedPhysicalMemory() {
    596   if (!base::VirtualMemory::HasLazyCommits() || owner()->identity() == LO_SPACE)
    597     return size();
    598   return high_water_mark_.Value();
    599 }
    600 
    601 void MemoryChunk::InsertAfter(MemoryChunk* other) {
    602   MemoryChunk* other_next = other->next_chunk();
    603 
    604   set_next_chunk(other_next);
    605   set_prev_chunk(other);
    606   other_next->set_prev_chunk(this);
    607   other->set_next_chunk(this);
    608 }
    609 
    610 
    611 void MemoryChunk::Unlink() {
    612   MemoryChunk* next_element = next_chunk();
    613   MemoryChunk* prev_element = prev_chunk();
    614   next_element->set_prev_chunk(prev_element);
    615   prev_element->set_next_chunk(next_element);
    616   set_prev_chunk(NULL);
    617   set_next_chunk(NULL);
    618 }
    619 
    620 void MemoryAllocator::ShrinkChunk(MemoryChunk* chunk, size_t bytes_to_shrink) {
    621   DCHECK_GE(bytes_to_shrink, static_cast<size_t>(GetCommitPageSize()));
    622   DCHECK_EQ(0u, bytes_to_shrink % GetCommitPageSize());
    623   Address free_start = chunk->area_end_ - bytes_to_shrink;
    624   // Don't adjust the size of the page. The area is just uncomitted but not
    625   // released.
    626   chunk->area_end_ -= bytes_to_shrink;
    627   UncommitBlock(free_start, bytes_to_shrink);
    628   if (chunk->IsFlagSet(MemoryChunk::IS_EXECUTABLE)) {
    629     if (chunk->reservation_.IsReserved())
    630       chunk->reservation_.Guard(chunk->area_end_);
    631     else
    632       base::OS::Guard(chunk->area_end_, GetCommitPageSize());
    633   }
    634 }
    635 
    636 MemoryChunk* MemoryAllocator::AllocateChunk(size_t reserve_area_size,
    637                                             size_t commit_area_size,
    638                                             Executability executable,
    639                                             Space* owner) {
    640   DCHECK_LE(commit_area_size, reserve_area_size);
    641 
    642   size_t chunk_size;
    643   Heap* heap = isolate_->heap();
    644   Address base = nullptr;
    645   base::VirtualMemory reservation;
    646   Address area_start = nullptr;
    647   Address area_end = nullptr;
    648 
    649   //
    650   // MemoryChunk layout:
    651   //
    652   //             Executable
    653   // +----------------------------+<- base aligned with MemoryChunk::kAlignment
    654   // |           Header           |
    655   // +----------------------------+<- base + CodePageGuardStartOffset
    656   // |           Guard            |
    657   // +----------------------------+<- area_start_
    658   // |           Area             |
    659   // +----------------------------+<- area_end_ (area_start + commit_area_size)
    660   // |   Committed but not used   |
    661   // +----------------------------+<- aligned at OS page boundary
    662   // | Reserved but not committed |
    663   // +----------------------------+<- aligned at OS page boundary
    664   // |           Guard            |
    665   // +----------------------------+<- base + chunk_size
    666   //
    667   //           Non-executable
    668   // +----------------------------+<- base aligned with MemoryChunk::kAlignment
    669   // |          Header            |
    670   // +----------------------------+<- area_start_ (base + kObjectStartOffset)
    671   // |           Area             |
    672   // +----------------------------+<- area_end_ (area_start + commit_area_size)
    673   // |  Committed but not used    |
    674   // +----------------------------+<- aligned at OS page boundary
    675   // | Reserved but not committed |
    676   // +----------------------------+<- base + chunk_size
    677   //
    678 
    679   if (executable == EXECUTABLE) {
    680     chunk_size = RoundUp(CodePageAreaStartOffset() + reserve_area_size,
    681                          GetCommitPageSize()) +
    682                  CodePageGuardSize();
    683 
    684     // Check executable memory limit.
    685     if ((size_executable_.Value() + chunk_size) > capacity_executable_) {
    686       LOG(isolate_, StringEvent("MemoryAllocator::AllocateRawMemory",
    687                                 "V8 Executable Allocation capacity exceeded"));
    688       return NULL;
    689     }
    690 
    691     // Size of header (not executable) plus area (executable).
    692     size_t commit_size = RoundUp(CodePageGuardStartOffset() + commit_area_size,
    693                                  GetCommitPageSize());
    694     // Allocate executable memory either from code range or from the
    695     // OS.
    696 #ifdef V8_TARGET_ARCH_MIPS64
    697     // Use code range only for large object space on mips64 to keep address
    698     // range within 256-MB memory region.
    699     if (code_range()->valid() && reserve_area_size > CodePageAreaSize()) {
    700 #else
    701     if (code_range()->valid()) {
    702 #endif
    703       base =
    704           code_range()->AllocateRawMemory(chunk_size, commit_size, &chunk_size);
    705       DCHECK(
    706           IsAligned(reinterpret_cast<intptr_t>(base), MemoryChunk::kAlignment));
    707       if (base == NULL) return NULL;
    708       size_.Increment(chunk_size);
    709       // Update executable memory size.
    710       size_executable_.Increment(chunk_size);
    711     } else {
    712       base = AllocateAlignedMemory(chunk_size, commit_size,
    713                                    MemoryChunk::kAlignment, executable,
    714                                    &reservation);
    715       if (base == NULL) return NULL;
    716       // Update executable memory size.
    717       size_executable_.Increment(reservation.size());
    718     }
    719 
    720     if (Heap::ShouldZapGarbage()) {
    721       ZapBlock(base, CodePageGuardStartOffset());
    722       ZapBlock(base + CodePageAreaStartOffset(), commit_area_size);
    723     }
    724 
    725     area_start = base + CodePageAreaStartOffset();
    726     area_end = area_start + commit_area_size;
    727   } else {
    728     chunk_size = RoundUp(MemoryChunk::kObjectStartOffset + reserve_area_size,
    729                          GetCommitPageSize());
    730     size_t commit_size =
    731         RoundUp(MemoryChunk::kObjectStartOffset + commit_area_size,
    732                 GetCommitPageSize());
    733     base =
    734         AllocateAlignedMemory(chunk_size, commit_size, MemoryChunk::kAlignment,
    735                               executable, &reservation);
    736 
    737     if (base == NULL) return NULL;
    738 
    739     if (Heap::ShouldZapGarbage()) {
    740       ZapBlock(base, Page::kObjectStartOffset + commit_area_size);
    741     }
    742 
    743     area_start = base + Page::kObjectStartOffset;
    744     area_end = area_start + commit_area_size;
    745   }
    746 
    747   // Use chunk_size for statistics and callbacks because we assume that they
    748   // treat reserved but not-yet committed memory regions of chunks as allocated.
    749   isolate_->counters()->memory_allocated()->Increment(
    750       static_cast<int>(chunk_size));
    751 
    752   LOG(isolate_, NewEvent("MemoryChunk", base, chunk_size));
    753 
    754   // We cannot use the last chunk in the address space because we would
    755   // overflow when comparing top and limit if this chunk is used for a
    756   // linear allocation area.
    757   if ((reinterpret_cast<uintptr_t>(base) + chunk_size) == 0u) {
    758     CHECK(!last_chunk_.IsReserved());
    759     last_chunk_.TakeControl(&reservation);
    760     UncommitBlock(reinterpret_cast<Address>(last_chunk_.address()),
    761                   last_chunk_.size());
    762     size_.Decrement(chunk_size);
    763     if (executable == EXECUTABLE) {
    764       size_executable_.Decrement(chunk_size);
    765     }
    766     CHECK(last_chunk_.IsReserved());
    767     return AllocateChunk(reserve_area_size, commit_area_size, executable,
    768                          owner);
    769   }
    770 
    771   return MemoryChunk::Initialize(heap, base, chunk_size, area_start, area_end,
    772                                  executable, owner, &reservation);
    773 }
    774 
    775 
    776 void Page::ResetFreeListStatistics() {
    777   wasted_memory_ = 0;
    778   available_in_free_list_ = 0;
    779 }
    780 
    781 size_t Page::AvailableInFreeList() {
    782   size_t sum = 0;
    783   ForAllFreeListCategories([this, &sum](FreeListCategory* category) {
    784     sum += category->available();
    785   });
    786   return sum;
    787 }
    788 
    789 size_t Page::ShrinkToHighWaterMark() {
    790   // Shrink pages to high water mark. The water mark points either to a filler
    791   // or the area_end.
    792   HeapObject* filler = HeapObject::FromAddress(HighWaterMark());
    793   if (filler->address() == area_end()) return 0;
    794   CHECK(filler->IsFiller());
    795   if (!filler->IsFreeSpace()) return 0;
    796 
    797 #ifdef DEBUG
    798   // Check the the filler is indeed the last filler on the page.
    799   HeapObjectIterator it(this);
    800   HeapObject* filler2 = nullptr;
    801   for (HeapObject* obj = it.Next(); obj != nullptr; obj = it.Next()) {
    802     filler2 = HeapObject::FromAddress(obj->address() + obj->Size());
    803   }
    804   if (filler2 == nullptr || filler2->address() == area_end()) return 0;
    805   DCHECK(filler2->IsFiller());
    806   // The deserializer might leave behind fillers. In this case we need to
    807   // iterate even further.
    808   while ((filler2->address() + filler2->Size()) != area_end()) {
    809     filler2 = HeapObject::FromAddress(filler2->address() + filler2->Size());
    810     DCHECK(filler2->IsFiller());
    811   }
    812   DCHECK_EQ(filler->address(), filler2->address());
    813 #endif  // DEBUG
    814 
    815   size_t unused = RoundDown(
    816       static_cast<size_t>(area_end() - filler->address() - FreeSpace::kSize),
    817       MemoryAllocator::GetCommitPageSize());
    818   if (unused > 0) {
    819     if (FLAG_trace_gc_verbose) {
    820       PrintIsolate(heap()->isolate(), "Shrinking page %p: end %p -> %p\n",
    821                    reinterpret_cast<void*>(this),
    822                    reinterpret_cast<void*>(area_end()),
    823                    reinterpret_cast<void*>(area_end() - unused));
    824     }
    825     heap()->CreateFillerObjectAt(
    826         filler->address(),
    827         static_cast<int>(area_end() - filler->address() - unused),
    828         ClearRecordedSlots::kNo);
    829     heap()->memory_allocator()->ShrinkChunk(this, unused);
    830     CHECK(filler->IsFiller());
    831     CHECK_EQ(filler->address() + filler->Size(), area_end());
    832   }
    833   return unused;
    834 }
    835 
    836 void MemoryAllocator::PartialFreeMemory(MemoryChunk* chunk,
    837                                         Address start_free) {
    838   // We do not allow partial shrink for code.
    839   DCHECK(chunk->executable() == NOT_EXECUTABLE);
    840 
    841   intptr_t size;
    842   base::VirtualMemory* reservation = chunk->reserved_memory();
    843   DCHECK(reservation->IsReserved());
    844   size = static_cast<intptr_t>(reservation->size());
    845 
    846   size_t to_free_size = size - (start_free - chunk->address());
    847 
    848   DCHECK(size_.Value() >= to_free_size);
    849   size_.Decrement(to_free_size);
    850   isolate_->counters()->memory_allocated()->Decrement(
    851       static_cast<int>(to_free_size));
    852   chunk->set_size(size - to_free_size);
    853 
    854   reservation->ReleasePartial(start_free);
    855 }
    856 
    857 void MemoryAllocator::PreFreeMemory(MemoryChunk* chunk) {
    858   DCHECK(!chunk->IsFlagSet(MemoryChunk::PRE_FREED));
    859   LOG(isolate_, DeleteEvent("MemoryChunk", chunk));
    860 
    861   isolate_->heap()->RememberUnmappedPage(reinterpret_cast<Address>(chunk),
    862                                          chunk->IsEvacuationCandidate());
    863 
    864   base::VirtualMemory* reservation = chunk->reserved_memory();
    865   const size_t size =
    866       reservation->IsReserved() ? reservation->size() : chunk->size();
    867   DCHECK_GE(size_.Value(), static_cast<size_t>(size));
    868   size_.Decrement(size);
    869   isolate_->counters()->memory_allocated()->Decrement(static_cast<int>(size));
    870   if (chunk->executable() == EXECUTABLE) {
    871     DCHECK_GE(size_executable_.Value(), size);
    872     size_executable_.Decrement(size);
    873   }
    874 
    875   chunk->SetFlag(MemoryChunk::PRE_FREED);
    876 }
    877 
    878 
    879 void MemoryAllocator::PerformFreeMemory(MemoryChunk* chunk) {
    880   DCHECK(chunk->IsFlagSet(MemoryChunk::PRE_FREED));
    881   chunk->ReleaseAllocatedMemory();
    882 
    883   base::VirtualMemory* reservation = chunk->reserved_memory();
    884   if (chunk->IsFlagSet(MemoryChunk::POOLED)) {
    885     UncommitBlock(reinterpret_cast<Address>(chunk), MemoryChunk::kPageSize);
    886   } else {
    887     if (reservation->IsReserved()) {
    888       FreeMemory(reservation, chunk->executable());
    889     } else {
    890       FreeMemory(chunk->address(), chunk->size(), chunk->executable());
    891     }
    892   }
    893 }
    894 
    895 template <MemoryAllocator::FreeMode mode>
    896 void MemoryAllocator::Free(MemoryChunk* chunk) {
    897   switch (mode) {
    898     case kFull:
    899       PreFreeMemory(chunk);
    900       PerformFreeMemory(chunk);
    901       break;
    902     case kPooledAndQueue:
    903       DCHECK_EQ(chunk->size(), static_cast<size_t>(MemoryChunk::kPageSize));
    904       DCHECK_EQ(chunk->executable(), NOT_EXECUTABLE);
    905       chunk->SetFlag(MemoryChunk::POOLED);
    906     // Fall through to kPreFreeAndQueue.
    907     case kPreFreeAndQueue:
    908       PreFreeMemory(chunk);
    909       // The chunks added to this queue will be freed by a concurrent thread.
    910       unmapper()->AddMemoryChunkSafe(chunk);
    911       break;
    912     default:
    913       UNREACHABLE();
    914   }
    915 }
    916 
    917 template void MemoryAllocator::Free<MemoryAllocator::kFull>(MemoryChunk* chunk);
    918 
    919 template void MemoryAllocator::Free<MemoryAllocator::kPreFreeAndQueue>(
    920     MemoryChunk* chunk);
    921 
    922 template void MemoryAllocator::Free<MemoryAllocator::kPooledAndQueue>(
    923     MemoryChunk* chunk);
    924 
    925 template <MemoryAllocator::AllocationMode alloc_mode, typename SpaceType>
    926 Page* MemoryAllocator::AllocatePage(size_t size, SpaceType* owner,
    927                                     Executability executable) {
    928   MemoryChunk* chunk = nullptr;
    929   if (alloc_mode == kPooled) {
    930     DCHECK_EQ(size, static_cast<size_t>(MemoryChunk::kAllocatableMemory));
    931     DCHECK_EQ(executable, NOT_EXECUTABLE);
    932     chunk = AllocatePagePooled(owner);
    933   }
    934   if (chunk == nullptr) {
    935     chunk = AllocateChunk(size, size, executable, owner);
    936   }
    937   if (chunk == nullptr) return nullptr;
    938   return Page::Initialize(isolate_->heap(), chunk, executable, owner);
    939 }
    940 
    941 template Page*
    942 MemoryAllocator::AllocatePage<MemoryAllocator::kRegular, PagedSpace>(
    943     size_t size, PagedSpace* owner, Executability executable);
    944 template Page*
    945 MemoryAllocator::AllocatePage<MemoryAllocator::kRegular, SemiSpace>(
    946     size_t size, SemiSpace* owner, Executability executable);
    947 template Page*
    948 MemoryAllocator::AllocatePage<MemoryAllocator::kPooled, SemiSpace>(
    949     size_t size, SemiSpace* owner, Executability executable);
    950 
    951 LargePage* MemoryAllocator::AllocateLargePage(size_t size,
    952                                               LargeObjectSpace* owner,
    953                                               Executability executable) {
    954   MemoryChunk* chunk = AllocateChunk(size, size, executable, owner);
    955   if (chunk == nullptr) return nullptr;
    956   return LargePage::Initialize(isolate_->heap(), chunk, executable, owner);
    957 }
    958 
    959 template <typename SpaceType>
    960 MemoryChunk* MemoryAllocator::AllocatePagePooled(SpaceType* owner) {
    961   MemoryChunk* chunk = unmapper()->TryGetPooledMemoryChunkSafe();
    962   if (chunk == nullptr) return nullptr;
    963   const int size = MemoryChunk::kPageSize;
    964   const Address start = reinterpret_cast<Address>(chunk);
    965   const Address area_start = start + MemoryChunk::kObjectStartOffset;
    966   const Address area_end = start + size;
    967   if (!CommitBlock(reinterpret_cast<Address>(chunk), size, NOT_EXECUTABLE)) {
    968     return nullptr;
    969   }
    970   base::VirtualMemory reservation(start, size);
    971   MemoryChunk::Initialize(isolate_->heap(), start, size, area_start, area_end,
    972                           NOT_EXECUTABLE, owner, &reservation);
    973   size_.Increment(size);
    974   return chunk;
    975 }
    976 
    977 bool MemoryAllocator::CommitBlock(Address start, size_t size,
    978                                   Executability executable) {
    979   if (!CommitMemory(start, size, executable)) return false;
    980 
    981   if (Heap::ShouldZapGarbage()) {
    982     ZapBlock(start, size);
    983   }
    984 
    985   isolate_->counters()->memory_allocated()->Increment(static_cast<int>(size));
    986   return true;
    987 }
    988 
    989 
    990 bool MemoryAllocator::UncommitBlock(Address start, size_t size) {
    991   if (!base::VirtualMemory::UncommitRegion(start, size)) return false;
    992   isolate_->counters()->memory_allocated()->Decrement(static_cast<int>(size));
    993   return true;
    994 }
    995 
    996 
    997 void MemoryAllocator::ZapBlock(Address start, size_t size) {
    998   for (size_t s = 0; s + kPointerSize <= size; s += kPointerSize) {
    999     Memory::Address_at(start + s) = kZapValue;
   1000   }
   1001 }
   1002 
   1003 #ifdef DEBUG
   1004 void MemoryAllocator::ReportStatistics() {
   1005   size_t size = Size();
   1006   float pct = static_cast<float>(capacity_ - size) / capacity_;
   1007   PrintF("  capacity: %zu , used: %" V8PRIdPTR ", available: %%%d\n\n",
   1008          capacity_, size, static_cast<int>(pct * 100));
   1009 }
   1010 #endif
   1011 
   1012 size_t MemoryAllocator::CodePageGuardStartOffset() {
   1013   // We are guarding code pages: the first OS page after the header
   1014   // will be protected as non-writable.
   1015   return RoundUp(Page::kObjectStartOffset, GetCommitPageSize());
   1016 }
   1017 
   1018 size_t MemoryAllocator::CodePageGuardSize() {
   1019   return static_cast<int>(GetCommitPageSize());
   1020 }
   1021 
   1022 size_t MemoryAllocator::CodePageAreaStartOffset() {
   1023   // We are guarding code pages: the first OS page after the header
   1024   // will be protected as non-writable.
   1025   return CodePageGuardStartOffset() + CodePageGuardSize();
   1026 }
   1027 
   1028 size_t MemoryAllocator::CodePageAreaEndOffset() {
   1029   // We are guarding code pages: the last OS page will be protected as
   1030   // non-writable.
   1031   return Page::kPageSize - static_cast<int>(GetCommitPageSize());
   1032 }
   1033 
   1034 intptr_t MemoryAllocator::GetCommitPageSize() {
   1035   if (FLAG_v8_os_page_size != 0) {
   1036     DCHECK(base::bits::IsPowerOfTwo32(FLAG_v8_os_page_size));
   1037     return FLAG_v8_os_page_size * KB;
   1038   } else {
   1039     return base::OS::CommitPageSize();
   1040   }
   1041 }
   1042 
   1043 
   1044 bool MemoryAllocator::CommitExecutableMemory(base::VirtualMemory* vm,
   1045                                              Address start, size_t commit_size,
   1046                                              size_t reserved_size) {
   1047   // Commit page header (not executable).
   1048   Address header = start;
   1049   size_t header_size = CodePageGuardStartOffset();
   1050   if (vm->Commit(header, header_size, false)) {
   1051     // Create guard page after the header.
   1052     if (vm->Guard(start + CodePageGuardStartOffset())) {
   1053       // Commit page body (executable).
   1054       Address body = start + CodePageAreaStartOffset();
   1055       size_t body_size = commit_size - CodePageGuardStartOffset();
   1056       if (vm->Commit(body, body_size, true)) {
   1057         // Create guard page before the end.
   1058         if (vm->Guard(start + reserved_size - CodePageGuardSize())) {
   1059           UpdateAllocatedSpaceLimits(start, start + CodePageAreaStartOffset() +
   1060                                                 commit_size -
   1061                                                 CodePageGuardStartOffset());
   1062           return true;
   1063         }
   1064         vm->Uncommit(body, body_size);
   1065       }
   1066     }
   1067     vm->Uncommit(header, header_size);
   1068   }
   1069   return false;
   1070 }
   1071 
   1072 
   1073 // -----------------------------------------------------------------------------
   1074 // MemoryChunk implementation
   1075 
   1076 void MemoryChunk::ReleaseAllocatedMemory() {
   1077   if (skip_list_ != nullptr) {
   1078     delete skip_list_;
   1079     skip_list_ = nullptr;
   1080   }
   1081   if (mutex_ != nullptr) {
   1082     delete mutex_;
   1083     mutex_ = nullptr;
   1084   }
   1085   if (old_to_new_slots_.Value() != nullptr) ReleaseOldToNewSlots();
   1086   if (old_to_old_slots_ != nullptr) ReleaseOldToOldSlots();
   1087   if (typed_old_to_new_slots_.Value() != nullptr) ReleaseTypedOldToNewSlots();
   1088   if (typed_old_to_old_slots_ != nullptr) ReleaseTypedOldToOldSlots();
   1089   if (local_tracker_ != nullptr) ReleaseLocalTracker();
   1090 }
   1091 
   1092 static SlotSet* AllocateSlotSet(size_t size, Address page_start) {
   1093   size_t pages = (size + Page::kPageSize - 1) / Page::kPageSize;
   1094   DCHECK(pages > 0);
   1095   SlotSet* slot_set = new SlotSet[pages];
   1096   for (size_t i = 0; i < pages; i++) {
   1097     slot_set[i].SetPageStart(page_start + i * Page::kPageSize);
   1098   }
   1099   return slot_set;
   1100 }
   1101 
   1102 void MemoryChunk::AllocateOldToNewSlots() {
   1103   DCHECK(nullptr == old_to_new_slots_.Value());
   1104   old_to_new_slots_.SetValue(AllocateSlotSet(size_, address()));
   1105 }
   1106 
   1107 void MemoryChunk::ReleaseOldToNewSlots() {
   1108   SlotSet* old_to_new_slots = old_to_new_slots_.Value();
   1109   delete[] old_to_new_slots;
   1110   old_to_new_slots_.SetValue(nullptr);
   1111 }
   1112 
   1113 void MemoryChunk::AllocateOldToOldSlots() {
   1114   DCHECK(nullptr == old_to_old_slots_);
   1115   old_to_old_slots_ = AllocateSlotSet(size_, address());
   1116 }
   1117 
   1118 void MemoryChunk::ReleaseOldToOldSlots() {
   1119   delete[] old_to_old_slots_;
   1120   old_to_old_slots_ = nullptr;
   1121 }
   1122 
   1123 void MemoryChunk::AllocateTypedOldToNewSlots() {
   1124   DCHECK(nullptr == typed_old_to_new_slots_.Value());
   1125   typed_old_to_new_slots_.SetValue(new TypedSlotSet(address()));
   1126 }
   1127 
   1128 void MemoryChunk::ReleaseTypedOldToNewSlots() {
   1129   TypedSlotSet* typed_old_to_new_slots = typed_old_to_new_slots_.Value();
   1130   delete typed_old_to_new_slots;
   1131   typed_old_to_new_slots_.SetValue(nullptr);
   1132 }
   1133 
   1134 void MemoryChunk::AllocateTypedOldToOldSlots() {
   1135   DCHECK(nullptr == typed_old_to_old_slots_);
   1136   typed_old_to_old_slots_ = new TypedSlotSet(address());
   1137 }
   1138 
   1139 void MemoryChunk::ReleaseTypedOldToOldSlots() {
   1140   delete typed_old_to_old_slots_;
   1141   typed_old_to_old_slots_ = nullptr;
   1142 }
   1143 
   1144 void MemoryChunk::AllocateLocalTracker() {
   1145   DCHECK_NULL(local_tracker_);
   1146   local_tracker_ = new LocalArrayBufferTracker(heap());
   1147 }
   1148 
   1149 void MemoryChunk::ReleaseLocalTracker() {
   1150   DCHECK_NOT_NULL(local_tracker_);
   1151   delete local_tracker_;
   1152   local_tracker_ = nullptr;
   1153 }
   1154 
   1155 void MemoryChunk::ClearLiveness() {
   1156   markbits()->Clear();
   1157   ResetLiveBytes();
   1158 }
   1159 
   1160 // -----------------------------------------------------------------------------
   1161 // PagedSpace implementation
   1162 
   1163 STATIC_ASSERT(static_cast<ObjectSpace>(1 << AllocationSpace::NEW_SPACE) ==
   1164               ObjectSpace::kObjectSpaceNewSpace);
   1165 STATIC_ASSERT(static_cast<ObjectSpace>(1 << AllocationSpace::OLD_SPACE) ==
   1166               ObjectSpace::kObjectSpaceOldSpace);
   1167 STATIC_ASSERT(static_cast<ObjectSpace>(1 << AllocationSpace::CODE_SPACE) ==
   1168               ObjectSpace::kObjectSpaceCodeSpace);
   1169 STATIC_ASSERT(static_cast<ObjectSpace>(1 << AllocationSpace::MAP_SPACE) ==
   1170               ObjectSpace::kObjectSpaceMapSpace);
   1171 
   1172 void Space::AllocationStep(Address soon_object, int size) {
   1173   if (!allocation_observers_paused_) {
   1174     for (int i = 0; i < allocation_observers_->length(); ++i) {
   1175       AllocationObserver* o = (*allocation_observers_)[i];
   1176       o->AllocationStep(size, soon_object, size);
   1177     }
   1178   }
   1179 }
   1180 
   1181 PagedSpace::PagedSpace(Heap* heap, AllocationSpace space,
   1182                        Executability executable)
   1183     : Space(heap, space, executable), anchor_(this), free_list_(this) {
   1184   area_size_ = MemoryAllocator::PageAreaSize(space);
   1185   accounting_stats_.Clear();
   1186 
   1187   allocation_info_.Reset(nullptr, nullptr);
   1188 }
   1189 
   1190 
   1191 bool PagedSpace::SetUp() { return true; }
   1192 
   1193 
   1194 bool PagedSpace::HasBeenSetUp() { return true; }
   1195 
   1196 
   1197 void PagedSpace::TearDown() {
   1198   for (auto it = begin(); it != end();) {
   1199     Page* page = *(it++);  // Will be erased.
   1200     ArrayBufferTracker::FreeAll(page);
   1201     heap()->memory_allocator()->Free<MemoryAllocator::kFull>(page);
   1202   }
   1203   anchor_.set_next_page(&anchor_);
   1204   anchor_.set_prev_page(&anchor_);
   1205   accounting_stats_.Clear();
   1206 }
   1207 
   1208 void PagedSpace::RefillFreeList() {
   1209   // Any PagedSpace might invoke RefillFreeList. We filter all but our old
   1210   // generation spaces out.
   1211   if (identity() != OLD_SPACE && identity() != CODE_SPACE &&
   1212       identity() != MAP_SPACE) {
   1213     return;
   1214   }
   1215   MarkCompactCollector* collector = heap()->mark_compact_collector();
   1216   intptr_t added = 0;
   1217   {
   1218     Page* p = nullptr;
   1219     while ((p = collector->sweeper().GetSweptPageSafe(this)) != nullptr) {
   1220       // Only during compaction pages can actually change ownership. This is
   1221       // safe because there exists no other competing action on the page links
   1222       // during compaction.
   1223       if (is_local() && (p->owner() != this)) {
   1224         base::LockGuard<base::Mutex> guard(
   1225             reinterpret_cast<PagedSpace*>(p->owner())->mutex());
   1226         p->Unlink();
   1227         p->set_owner(this);
   1228         p->InsertAfter(anchor_.prev_page());
   1229       }
   1230       added += RelinkFreeListCategories(p);
   1231       added += p->wasted_memory();
   1232       if (is_local() && (added > kCompactionMemoryWanted)) break;
   1233     }
   1234   }
   1235   accounting_stats_.IncreaseCapacity(added);
   1236 }
   1237 
   1238 void PagedSpace::MergeCompactionSpace(CompactionSpace* other) {
   1239   DCHECK(identity() == other->identity());
   1240   // Unmerged fields:
   1241   //   area_size_
   1242   //   anchor_
   1243 
   1244   other->EmptyAllocationInfo();
   1245 
   1246   // Update and clear accounting statistics.
   1247   accounting_stats_.Merge(other->accounting_stats_);
   1248   other->accounting_stats_.Clear();
   1249 
   1250   // The linear allocation area of {other} should be destroyed now.
   1251   DCHECK(other->top() == nullptr);
   1252   DCHECK(other->limit() == nullptr);
   1253 
   1254   AccountCommitted(other->CommittedMemory());
   1255 
   1256   // Move over pages.
   1257   for (auto it = other->begin(); it != other->end();) {
   1258     Page* p = *(it++);
   1259 
   1260     // Relinking requires the category to be unlinked.
   1261     other->UnlinkFreeListCategories(p);
   1262 
   1263     p->Unlink();
   1264     p->set_owner(this);
   1265     p->InsertAfter(anchor_.prev_page());
   1266     RelinkFreeListCategories(p);
   1267     DCHECK_EQ(p->AvailableInFreeList(), p->available_in_free_list());
   1268   }
   1269 }
   1270 
   1271 
   1272 size_t PagedSpace::CommittedPhysicalMemory() {
   1273   if (!base::VirtualMemory::HasLazyCommits()) return CommittedMemory();
   1274   MemoryChunk::UpdateHighWaterMark(allocation_info_.top());
   1275   size_t size = 0;
   1276   for (Page* page : *this) {
   1277     size += page->CommittedPhysicalMemory();
   1278   }
   1279   return size;
   1280 }
   1281 
   1282 bool PagedSpace::ContainsSlow(Address addr) {
   1283   Page* p = Page::FromAddress(addr);
   1284   for (Page* page : *this) {
   1285     if (page == p) return true;
   1286   }
   1287   return false;
   1288 }
   1289 
   1290 
   1291 Object* PagedSpace::FindObject(Address addr) {
   1292   // Note: this function can only be called on iterable spaces.
   1293   DCHECK(!heap()->mark_compact_collector()->in_use());
   1294 
   1295   if (!Contains(addr)) return Smi::kZero;  // Signaling not found.
   1296 
   1297   Page* p = Page::FromAddress(addr);
   1298   HeapObjectIterator it(p);
   1299   for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) {
   1300     Address cur = obj->address();
   1301     Address next = cur + obj->Size();
   1302     if ((cur <= addr) && (addr < next)) return obj;
   1303   }
   1304 
   1305   UNREACHABLE();
   1306   return Smi::kZero;
   1307 }
   1308 
   1309 void PagedSpace::ShrinkImmortalImmovablePages() {
   1310   DCHECK(!heap()->deserialization_complete());
   1311   MemoryChunk::UpdateHighWaterMark(allocation_info_.top());
   1312   EmptyAllocationInfo();
   1313   ResetFreeList();
   1314 
   1315   for (Page* page : *this) {
   1316     DCHECK(page->IsFlagSet(Page::NEVER_EVACUATE));
   1317     size_t unused = page->ShrinkToHighWaterMark();
   1318     accounting_stats_.DecreaseCapacity(static_cast<intptr_t>(unused));
   1319     AccountUncommitted(unused);
   1320   }
   1321 }
   1322 
   1323 bool PagedSpace::Expand() {
   1324   const int size = AreaSize();
   1325 
   1326   if (!heap()->CanExpandOldGeneration(size)) return false;
   1327 
   1328   Page* p = heap()->memory_allocator()->AllocatePage(size, this, executable());
   1329   if (p == nullptr) return false;
   1330 
   1331   AccountCommitted(p->size());
   1332 
   1333   // Pages created during bootstrapping may contain immortal immovable objects.
   1334   if (!heap()->deserialization_complete()) p->MarkNeverEvacuate();
   1335 
   1336   DCHECK(Capacity() <= heap()->MaxOldGenerationSize());
   1337 
   1338   p->InsertAfter(anchor_.prev_page());
   1339 
   1340   return true;
   1341 }
   1342 
   1343 
   1344 int PagedSpace::CountTotalPages() {
   1345   int count = 0;
   1346   for (Page* page : *this) {
   1347     count++;
   1348     USE(page);
   1349   }
   1350   return count;
   1351 }
   1352 
   1353 
   1354 void PagedSpace::ResetFreeListStatistics() {
   1355   for (Page* page : *this) {
   1356     page->ResetFreeListStatistics();
   1357   }
   1358 }
   1359 
   1360 void PagedSpace::SetAllocationInfo(Address top, Address limit) {
   1361   SetTopAndLimit(top, limit);
   1362   if (top != nullptr && top != limit &&
   1363       heap()->incremental_marking()->black_allocation()) {
   1364     Page* page = Page::FromAllocationAreaAddress(top);
   1365     page->markbits()->SetRange(page->AddressToMarkbitIndex(top),
   1366                                page->AddressToMarkbitIndex(limit));
   1367     page->IncrementLiveBytes(static_cast<int>(limit - top));
   1368   }
   1369 }
   1370 
   1371 void PagedSpace::MarkAllocationInfoBlack() {
   1372   DCHECK(heap()->incremental_marking()->black_allocation());
   1373   Address current_top = top();
   1374   Address current_limit = limit();
   1375   if (current_top != nullptr && current_top != current_limit) {
   1376     Page* page = Page::FromAllocationAreaAddress(current_top);
   1377     page->markbits()->SetRange(page->AddressToMarkbitIndex(current_top),
   1378                                page->AddressToMarkbitIndex(current_limit));
   1379     page->IncrementLiveBytes(static_cast<int>(current_limit - current_top));
   1380   }
   1381 }
   1382 
   1383 // Empty space allocation info, returning unused area to free list.
   1384 void PagedSpace::EmptyAllocationInfo() {
   1385   // Mark the old linear allocation area with a free space map so it can be
   1386   // skipped when scanning the heap.
   1387   Address current_top = top();
   1388   Address current_limit = limit();
   1389   if (current_top == nullptr) {
   1390     DCHECK(current_limit == nullptr);
   1391     return;
   1392   }
   1393 
   1394   if (heap()->incremental_marking()->black_allocation()) {
   1395     Page* page = Page::FromAllocationAreaAddress(current_top);
   1396 
   1397     // Clear the bits in the unused black area.
   1398     if (current_top != current_limit) {
   1399       page->markbits()->ClearRange(page->AddressToMarkbitIndex(current_top),
   1400                                    page->AddressToMarkbitIndex(current_limit));
   1401       page->IncrementLiveBytes(-static_cast<int>(current_limit - current_top));
   1402     }
   1403   }
   1404 
   1405   SetTopAndLimit(NULL, NULL);
   1406   DCHECK_GE(current_limit, current_top);
   1407   Free(current_top, current_limit - current_top);
   1408 }
   1409 
   1410 void PagedSpace::IncreaseCapacity(size_t bytes) {
   1411   accounting_stats_.ExpandSpace(bytes);
   1412 }
   1413 
   1414 void PagedSpace::ReleasePage(Page* page) {
   1415   DCHECK_EQ(page->LiveBytes(), 0);
   1416   DCHECK_EQ(page->owner(), this);
   1417 
   1418   free_list_.EvictFreeListItems(page);
   1419   DCHECK(!free_list_.ContainsPageFreeListItems(page));
   1420 
   1421   if (Page::FromAllocationAreaAddress(allocation_info_.top()) == page) {
   1422     allocation_info_.Reset(nullptr, nullptr);
   1423   }
   1424 
   1425   // If page is still in a list, unlink it from that list.
   1426   if (page->next_chunk() != NULL) {
   1427     DCHECK(page->prev_chunk() != NULL);
   1428     page->Unlink();
   1429   }
   1430 
   1431   AccountUncommitted(page->size());
   1432   accounting_stats_.ShrinkSpace(page->area_size());
   1433   heap()->memory_allocator()->Free<MemoryAllocator::kPreFreeAndQueue>(page);
   1434 }
   1435 
   1436 std::unique_ptr<ObjectIterator> PagedSpace::GetObjectIterator() {
   1437   return std::unique_ptr<ObjectIterator>(new HeapObjectIterator(this));
   1438 }
   1439 
   1440 #ifdef DEBUG
   1441 void PagedSpace::Print() {}
   1442 #endif
   1443 
   1444 #ifdef VERIFY_HEAP
   1445 void PagedSpace::Verify(ObjectVisitor* visitor) {
   1446   bool allocation_pointer_found_in_space =
   1447       (allocation_info_.top() == allocation_info_.limit());
   1448   for (Page* page : *this) {
   1449     CHECK(page->owner() == this);
   1450     if (page == Page::FromAllocationAreaAddress(allocation_info_.top())) {
   1451       allocation_pointer_found_in_space = true;
   1452     }
   1453     CHECK(page->SweepingDone());
   1454     HeapObjectIterator it(page);
   1455     Address end_of_previous_object = page->area_start();
   1456     Address top = page->area_end();
   1457     int black_size = 0;
   1458     for (HeapObject* object = it.Next(); object != NULL; object = it.Next()) {
   1459       CHECK(end_of_previous_object <= object->address());
   1460 
   1461       // The first word should be a map, and we expect all map pointers to
   1462       // be in map space.
   1463       Map* map = object->map();
   1464       CHECK(map->IsMap());
   1465       CHECK(heap()->map_space()->Contains(map));
   1466 
   1467       // Perform space-specific object verification.
   1468       VerifyObject(object);
   1469 
   1470       // The object itself should look OK.
   1471       object->ObjectVerify();
   1472 
   1473       // All the interior pointers should be contained in the heap.
   1474       int size = object->Size();
   1475       object->IterateBody(map->instance_type(), size, visitor);
   1476       if (Marking::IsBlack(ObjectMarking::MarkBitFrom(object))) {
   1477         black_size += size;
   1478       }
   1479 
   1480       CHECK(object->address() + size <= top);
   1481       end_of_previous_object = object->address() + size;
   1482     }
   1483     CHECK_LE(black_size, page->LiveBytes());
   1484   }
   1485   CHECK(allocation_pointer_found_in_space);
   1486 }
   1487 #endif  // VERIFY_HEAP
   1488 
   1489 // -----------------------------------------------------------------------------
   1490 // NewSpace implementation
   1491 
   1492 bool NewSpace::SetUp(size_t initial_semispace_capacity,
   1493                      size_t maximum_semispace_capacity) {
   1494   DCHECK(initial_semispace_capacity <= maximum_semispace_capacity);
   1495   DCHECK(base::bits::IsPowerOfTwo32(
   1496       static_cast<uint32_t>(maximum_semispace_capacity)));
   1497 
   1498   to_space_.SetUp(initial_semispace_capacity, maximum_semispace_capacity);
   1499   from_space_.SetUp(initial_semispace_capacity, maximum_semispace_capacity);
   1500   if (!to_space_.Commit()) {
   1501     return false;
   1502   }
   1503   DCHECK(!from_space_.is_committed());  // No need to use memory yet.
   1504   ResetAllocationInfo();
   1505 
   1506   // Allocate and set up the histogram arrays if necessary.
   1507   allocated_histogram_ = NewArray<HistogramInfo>(LAST_TYPE + 1);
   1508   promoted_histogram_ = NewArray<HistogramInfo>(LAST_TYPE + 1);
   1509 #define SET_NAME(name)                        \
   1510   allocated_histogram_[name].set_name(#name); \
   1511   promoted_histogram_[name].set_name(#name);
   1512   INSTANCE_TYPE_LIST(SET_NAME)
   1513 #undef SET_NAME
   1514 
   1515   return true;
   1516 }
   1517 
   1518 
   1519 void NewSpace::TearDown() {
   1520   if (allocated_histogram_) {
   1521     DeleteArray(allocated_histogram_);
   1522     allocated_histogram_ = NULL;
   1523   }
   1524   if (promoted_histogram_) {
   1525     DeleteArray(promoted_histogram_);
   1526     promoted_histogram_ = NULL;
   1527   }
   1528 
   1529   allocation_info_.Reset(nullptr, nullptr);
   1530 
   1531   to_space_.TearDown();
   1532   from_space_.TearDown();
   1533 }
   1534 
   1535 void NewSpace::Flip() { SemiSpace::Swap(&from_space_, &to_space_); }
   1536 
   1537 
   1538 void NewSpace::Grow() {
   1539   // Double the semispace size but only up to maximum capacity.
   1540   DCHECK(TotalCapacity() < MaximumCapacity());
   1541   size_t new_capacity =
   1542       Min(MaximumCapacity(),
   1543           static_cast<size_t>(FLAG_semi_space_growth_factor) * TotalCapacity());
   1544   if (to_space_.GrowTo(new_capacity)) {
   1545     // Only grow from space if we managed to grow to-space.
   1546     if (!from_space_.GrowTo(new_capacity)) {
   1547       // If we managed to grow to-space but couldn't grow from-space,
   1548       // attempt to shrink to-space.
   1549       if (!to_space_.ShrinkTo(from_space_.current_capacity())) {
   1550         // We are in an inconsistent state because we could not
   1551         // commit/uncommit memory from new space.
   1552         CHECK(false);
   1553       }
   1554     }
   1555   }
   1556   DCHECK_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
   1557 }
   1558 
   1559 
   1560 void NewSpace::Shrink() {
   1561   size_t new_capacity = Max(InitialTotalCapacity(), 2 * Size());
   1562   size_t rounded_new_capacity = RoundUp(new_capacity, Page::kPageSize);
   1563   if (rounded_new_capacity < TotalCapacity() &&
   1564       to_space_.ShrinkTo(rounded_new_capacity)) {
   1565     // Only shrink from-space if we managed to shrink to-space.
   1566     from_space_.Reset();
   1567     if (!from_space_.ShrinkTo(rounded_new_capacity)) {
   1568       // If we managed to shrink to-space but couldn't shrink from
   1569       // space, attempt to grow to-space again.
   1570       if (!to_space_.GrowTo(from_space_.current_capacity())) {
   1571         // We are in an inconsistent state because we could not
   1572         // commit/uncommit memory from new space.
   1573         CHECK(false);
   1574       }
   1575     }
   1576   }
   1577   DCHECK_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
   1578 }
   1579 
   1580 bool NewSpace::Rebalance() {
   1581   CHECK(heap()->promotion_queue()->is_empty());
   1582   // Order here is important to make use of the page pool.
   1583   return to_space_.EnsureCurrentCapacity() &&
   1584          from_space_.EnsureCurrentCapacity();
   1585 }
   1586 
   1587 bool SemiSpace::EnsureCurrentCapacity() {
   1588   if (is_committed()) {
   1589     const int expected_pages =
   1590         static_cast<int>(current_capacity_ / Page::kPageSize);
   1591     int actual_pages = 0;
   1592     Page* current_page = anchor()->next_page();
   1593     while (current_page != anchor()) {
   1594       actual_pages++;
   1595       current_page = current_page->next_page();
   1596       if (actual_pages > expected_pages) {
   1597         Page* to_remove = current_page->prev_page();
   1598         // Make sure we don't overtake the actual top pointer.
   1599         CHECK_NE(to_remove, current_page_);
   1600         to_remove->Unlink();
   1601         heap()->memory_allocator()->Free<MemoryAllocator::kPooledAndQueue>(
   1602             to_remove);
   1603       }
   1604     }
   1605     while (actual_pages < expected_pages) {
   1606       actual_pages++;
   1607       current_page =
   1608           heap()->memory_allocator()->AllocatePage<MemoryAllocator::kPooled>(
   1609               Page::kAllocatableMemory, this, executable());
   1610       if (current_page == nullptr) return false;
   1611       DCHECK_NOT_NULL(current_page);
   1612       current_page->InsertAfter(anchor());
   1613       current_page->ClearLiveness();
   1614       current_page->SetFlags(anchor()->prev_page()->GetFlags(),
   1615                              Page::kCopyAllFlags);
   1616       heap()->CreateFillerObjectAt(current_page->area_start(),
   1617                                    static_cast<int>(current_page->area_size()),
   1618                                    ClearRecordedSlots::kNo);
   1619     }
   1620   }
   1621   return true;
   1622 }
   1623 
   1624 void LocalAllocationBuffer::Close() {
   1625   if (IsValid()) {
   1626     heap_->CreateFillerObjectAt(
   1627         allocation_info_.top(),
   1628         static_cast<int>(allocation_info_.limit() - allocation_info_.top()),
   1629         ClearRecordedSlots::kNo);
   1630   }
   1631 }
   1632 
   1633 
   1634 LocalAllocationBuffer::LocalAllocationBuffer(Heap* heap,
   1635                                              AllocationInfo allocation_info)
   1636     : heap_(heap), allocation_info_(allocation_info) {
   1637   if (IsValid()) {
   1638     heap_->CreateFillerObjectAt(
   1639         allocation_info_.top(),
   1640         static_cast<int>(allocation_info_.limit() - allocation_info_.top()),
   1641         ClearRecordedSlots::kNo);
   1642   }
   1643 }
   1644 
   1645 
   1646 LocalAllocationBuffer::LocalAllocationBuffer(
   1647     const LocalAllocationBuffer& other) {
   1648   *this = other;
   1649 }
   1650 
   1651 
   1652 LocalAllocationBuffer& LocalAllocationBuffer::operator=(
   1653     const LocalAllocationBuffer& other) {
   1654   Close();
   1655   heap_ = other.heap_;
   1656   allocation_info_ = other.allocation_info_;
   1657 
   1658   // This is needed since we (a) cannot yet use move-semantics, and (b) want
   1659   // to make the use of the class easy by it as value and (c) implicitly call
   1660   // {Close} upon copy.
   1661   const_cast<LocalAllocationBuffer&>(other)
   1662       .allocation_info_.Reset(nullptr, nullptr);
   1663   return *this;
   1664 }
   1665 
   1666 
   1667 void NewSpace::UpdateAllocationInfo() {
   1668   MemoryChunk::UpdateHighWaterMark(allocation_info_.top());
   1669   allocation_info_.Reset(to_space_.page_low(), to_space_.page_high());
   1670   UpdateInlineAllocationLimit(0);
   1671   DCHECK_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
   1672 }
   1673 
   1674 
   1675 void NewSpace::ResetAllocationInfo() {
   1676   Address old_top = allocation_info_.top();
   1677   to_space_.Reset();
   1678   UpdateAllocationInfo();
   1679   // Clear all mark-bits in the to-space.
   1680   for (Page* p : to_space_) {
   1681     p->ClearLiveness();
   1682   }
   1683   InlineAllocationStep(old_top, allocation_info_.top(), nullptr, 0);
   1684 }
   1685 
   1686 
   1687 void NewSpace::UpdateInlineAllocationLimit(int size_in_bytes) {
   1688   if (heap()->inline_allocation_disabled()) {
   1689     // Lowest limit when linear allocation was disabled.
   1690     Address high = to_space_.page_high();
   1691     Address new_top = allocation_info_.top() + size_in_bytes;
   1692     allocation_info_.set_limit(Min(new_top, high));
   1693   } else if (allocation_observers_paused_ || top_on_previous_step_ == 0) {
   1694     // Normal limit is the end of the current page.
   1695     allocation_info_.set_limit(to_space_.page_high());
   1696   } else {
   1697     // Lower limit during incremental marking.
   1698     Address high = to_space_.page_high();
   1699     Address new_top = allocation_info_.top() + size_in_bytes;
   1700     Address new_limit = new_top + GetNextInlineAllocationStepSize() - 1;
   1701     allocation_info_.set_limit(Min(new_limit, high));
   1702   }
   1703   DCHECK_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
   1704 }
   1705 
   1706 
   1707 bool NewSpace::AddFreshPage() {
   1708   Address top = allocation_info_.top();
   1709   DCHECK(!Page::IsAtObjectStart(top));
   1710   if (!to_space_.AdvancePage()) {
   1711     // No more pages left to advance.
   1712     return false;
   1713   }
   1714 
   1715   // Clear remainder of current page.
   1716   Address limit = Page::FromAllocationAreaAddress(top)->area_end();
   1717   if (heap()->gc_state() == Heap::SCAVENGE) {
   1718     heap()->promotion_queue()->SetNewLimit(limit);
   1719   }
   1720 
   1721   int remaining_in_page = static_cast<int>(limit - top);
   1722   heap()->CreateFillerObjectAt(top, remaining_in_page, ClearRecordedSlots::kNo);
   1723   UpdateAllocationInfo();
   1724 
   1725   return true;
   1726 }
   1727 
   1728 
   1729 bool NewSpace::AddFreshPageSynchronized() {
   1730   base::LockGuard<base::Mutex> guard(&mutex_);
   1731   return AddFreshPage();
   1732 }
   1733 
   1734 
   1735 bool NewSpace::EnsureAllocation(int size_in_bytes,
   1736                                 AllocationAlignment alignment) {
   1737   Address old_top = allocation_info_.top();
   1738   Address high = to_space_.page_high();
   1739   int filler_size = Heap::GetFillToAlign(old_top, alignment);
   1740   int aligned_size_in_bytes = size_in_bytes + filler_size;
   1741 
   1742   if (old_top + aligned_size_in_bytes > high) {
   1743     // Not enough room in the page, try to allocate a new one.
   1744     if (!AddFreshPage()) {
   1745       return false;
   1746     }
   1747 
   1748     InlineAllocationStep(old_top, allocation_info_.top(), nullptr, 0);
   1749 
   1750     old_top = allocation_info_.top();
   1751     high = to_space_.page_high();
   1752     filler_size = Heap::GetFillToAlign(old_top, alignment);
   1753   }
   1754 
   1755   DCHECK(old_top + aligned_size_in_bytes <= high);
   1756 
   1757   if (allocation_info_.limit() < high) {
   1758     // Either the limit has been lowered because linear allocation was disabled
   1759     // or because incremental marking wants to get a chance to do a step,
   1760     // or because idle scavenge job wants to get a chance to post a task.
   1761     // Set the new limit accordingly.
   1762     Address new_top = old_top + aligned_size_in_bytes;
   1763     Address soon_object = old_top + filler_size;
   1764     InlineAllocationStep(new_top, new_top, soon_object, size_in_bytes);
   1765     UpdateInlineAllocationLimit(aligned_size_in_bytes);
   1766   }
   1767   return true;
   1768 }
   1769 
   1770 
   1771 void NewSpace::StartNextInlineAllocationStep() {
   1772   if (!allocation_observers_paused_) {
   1773     top_on_previous_step_ =
   1774         allocation_observers_->length() ? allocation_info_.top() : 0;
   1775     UpdateInlineAllocationLimit(0);
   1776   }
   1777 }
   1778 
   1779 
   1780 intptr_t NewSpace::GetNextInlineAllocationStepSize() {
   1781   intptr_t next_step = 0;
   1782   for (int i = 0; i < allocation_observers_->length(); ++i) {
   1783     AllocationObserver* o = (*allocation_observers_)[i];
   1784     next_step = next_step ? Min(next_step, o->bytes_to_next_step())
   1785                           : o->bytes_to_next_step();
   1786   }
   1787   DCHECK(allocation_observers_->length() == 0 || next_step != 0);
   1788   return next_step;
   1789 }
   1790 
   1791 void NewSpace::AddAllocationObserver(AllocationObserver* observer) {
   1792   Space::AddAllocationObserver(observer);
   1793   StartNextInlineAllocationStep();
   1794 }
   1795 
   1796 void NewSpace::RemoveAllocationObserver(AllocationObserver* observer) {
   1797   Space::RemoveAllocationObserver(observer);
   1798   StartNextInlineAllocationStep();
   1799 }
   1800 
   1801 void NewSpace::PauseAllocationObservers() {
   1802   // Do a step to account for memory allocated so far.
   1803   InlineAllocationStep(top(), top(), nullptr, 0);
   1804   Space::PauseAllocationObservers();
   1805   top_on_previous_step_ = 0;
   1806   UpdateInlineAllocationLimit(0);
   1807 }
   1808 
   1809 void NewSpace::ResumeAllocationObservers() {
   1810   DCHECK(top_on_previous_step_ == 0);
   1811   Space::ResumeAllocationObservers();
   1812   StartNextInlineAllocationStep();
   1813 }
   1814 
   1815 
   1816 void NewSpace::InlineAllocationStep(Address top, Address new_top,
   1817                                     Address soon_object, size_t size) {
   1818   if (top_on_previous_step_) {
   1819     int bytes_allocated = static_cast<int>(top - top_on_previous_step_);
   1820     for (int i = 0; i < allocation_observers_->length(); ++i) {
   1821       (*allocation_observers_)[i]->AllocationStep(bytes_allocated, soon_object,
   1822                                                   size);
   1823     }
   1824     top_on_previous_step_ = new_top;
   1825   }
   1826 }
   1827 
   1828 std::unique_ptr<ObjectIterator> NewSpace::GetObjectIterator() {
   1829   return std::unique_ptr<ObjectIterator>(new SemiSpaceIterator(this));
   1830 }
   1831 
   1832 #ifdef VERIFY_HEAP
   1833 // We do not use the SemiSpaceIterator because verification doesn't assume
   1834 // that it works (it depends on the invariants we are checking).
   1835 void NewSpace::Verify() {
   1836   // The allocation pointer should be in the space or at the very end.
   1837   DCHECK_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
   1838 
   1839   // There should be objects packed in from the low address up to the
   1840   // allocation pointer.
   1841   Address current = to_space_.first_page()->area_start();
   1842   CHECK_EQ(current, to_space_.space_start());
   1843 
   1844   while (current != top()) {
   1845     if (!Page::IsAlignedToPageSize(current)) {
   1846       // The allocation pointer should not be in the middle of an object.
   1847       CHECK(!Page::FromAllocationAreaAddress(current)->ContainsLimit(top()) ||
   1848             current < top());
   1849 
   1850       HeapObject* object = HeapObject::FromAddress(current);
   1851 
   1852       // The first word should be a map, and we expect all map pointers to
   1853       // be in map space.
   1854       Map* map = object->map();
   1855       CHECK(map->IsMap());
   1856       CHECK(heap()->map_space()->Contains(map));
   1857 
   1858       // The object should not be code or a map.
   1859       CHECK(!object->IsMap());
   1860       CHECK(!object->IsAbstractCode());
   1861 
   1862       // The object itself should look OK.
   1863       object->ObjectVerify();
   1864 
   1865       // All the interior pointers should be contained in the heap.
   1866       VerifyPointersVisitor visitor;
   1867       int size = object->Size();
   1868       object->IterateBody(map->instance_type(), size, &visitor);
   1869 
   1870       current += size;
   1871     } else {
   1872       // At end of page, switch to next page.
   1873       Page* page = Page::FromAllocationAreaAddress(current)->next_page();
   1874       // Next page should be valid.
   1875       CHECK(!page->is_anchor());
   1876       current = page->area_start();
   1877     }
   1878   }
   1879 
   1880   // Check semi-spaces.
   1881   CHECK_EQ(from_space_.id(), kFromSpace);
   1882   CHECK_EQ(to_space_.id(), kToSpace);
   1883   from_space_.Verify();
   1884   to_space_.Verify();
   1885 }
   1886 #endif
   1887 
   1888 // -----------------------------------------------------------------------------
   1889 // SemiSpace implementation
   1890 
   1891 void SemiSpace::SetUp(size_t initial_capacity, size_t maximum_capacity) {
   1892   DCHECK_GE(maximum_capacity, static_cast<size_t>(Page::kPageSize));
   1893   minimum_capacity_ = RoundDown(initial_capacity, Page::kPageSize);
   1894   current_capacity_ = minimum_capacity_;
   1895   maximum_capacity_ = RoundDown(maximum_capacity, Page::kPageSize);
   1896   committed_ = false;
   1897 }
   1898 
   1899 
   1900 void SemiSpace::TearDown() {
   1901   // Properly uncommit memory to keep the allocator counters in sync.
   1902   if (is_committed()) {
   1903     for (Page* p : *this) {
   1904       ArrayBufferTracker::FreeAll(p);
   1905     }
   1906     Uncommit();
   1907   }
   1908   current_capacity_ = maximum_capacity_ = 0;
   1909 }
   1910 
   1911 
   1912 bool SemiSpace::Commit() {
   1913   DCHECK(!is_committed());
   1914   Page* current = anchor();
   1915   const int num_pages = static_cast<int>(current_capacity_ / Page::kPageSize);
   1916   for (int pages_added = 0; pages_added < num_pages; pages_added++) {
   1917     Page* new_page =
   1918         heap()->memory_allocator()->AllocatePage<MemoryAllocator::kPooled>(
   1919             Page::kAllocatableMemory, this, executable());
   1920     if (new_page == nullptr) {
   1921       RewindPages(current, pages_added);
   1922       return false;
   1923     }
   1924     new_page->InsertAfter(current);
   1925     current = new_page;
   1926   }
   1927   Reset();
   1928   AccountCommitted(current_capacity_);
   1929   if (age_mark_ == nullptr) {
   1930     age_mark_ = first_page()->area_start();
   1931   }
   1932   committed_ = true;
   1933   return true;
   1934 }
   1935 
   1936 
   1937 bool SemiSpace::Uncommit() {
   1938   DCHECK(is_committed());
   1939   for (auto it = begin(); it != end();) {
   1940     Page* p = *(it++);
   1941     heap()->memory_allocator()->Free<MemoryAllocator::kPooledAndQueue>(p);
   1942   }
   1943   anchor()->set_next_page(anchor());
   1944   anchor()->set_prev_page(anchor());
   1945   AccountUncommitted(current_capacity_);
   1946   committed_ = false;
   1947   heap()->memory_allocator()->unmapper()->FreeQueuedChunks();
   1948   return true;
   1949 }
   1950 
   1951 
   1952 size_t SemiSpace::CommittedPhysicalMemory() {
   1953   if (!is_committed()) return 0;
   1954   size_t size = 0;
   1955   for (Page* p : *this) {
   1956     size += p->CommittedPhysicalMemory();
   1957   }
   1958   return size;
   1959 }
   1960 
   1961 bool SemiSpace::GrowTo(size_t new_capacity) {
   1962   if (!is_committed()) {
   1963     if (!Commit()) return false;
   1964   }
   1965   DCHECK_EQ(new_capacity & Page::kPageAlignmentMask, 0u);
   1966   DCHECK_LE(new_capacity, maximum_capacity_);
   1967   DCHECK_GT(new_capacity, current_capacity_);
   1968   const size_t delta = new_capacity - current_capacity_;
   1969   DCHECK(IsAligned(delta, base::OS::AllocateAlignment()));
   1970   const int delta_pages = static_cast<int>(delta / Page::kPageSize);
   1971   Page* last_page = anchor()->prev_page();
   1972   DCHECK_NE(last_page, anchor());
   1973   for (int pages_added = 0; pages_added < delta_pages; pages_added++) {
   1974     Page* new_page =
   1975         heap()->memory_allocator()->AllocatePage<MemoryAllocator::kPooled>(
   1976             Page::kAllocatableMemory, this, executable());
   1977     if (new_page == nullptr) {
   1978       RewindPages(last_page, pages_added);
   1979       return false;
   1980     }
   1981     new_page->InsertAfter(last_page);
   1982     new_page->ClearLiveness();
   1983     // Duplicate the flags that was set on the old page.
   1984     new_page->SetFlags(last_page->GetFlags(), Page::kCopyOnFlipFlagsMask);
   1985     last_page = new_page;
   1986   }
   1987   AccountCommitted(delta);
   1988   current_capacity_ = new_capacity;
   1989   return true;
   1990 }
   1991 
   1992 void SemiSpace::RewindPages(Page* start, int num_pages) {
   1993   Page* new_last_page = nullptr;
   1994   Page* last_page = start;
   1995   while (num_pages > 0) {
   1996     DCHECK_NE(last_page, anchor());
   1997     new_last_page = last_page->prev_page();
   1998     last_page->prev_page()->set_next_page(last_page->next_page());
   1999     last_page->next_page()->set_prev_page(last_page->prev_page());
   2000     last_page = new_last_page;
   2001     num_pages--;
   2002   }
   2003 }
   2004 
   2005 bool SemiSpace::ShrinkTo(size_t new_capacity) {
   2006   DCHECK_EQ(new_capacity & Page::kPageAlignmentMask, 0u);
   2007   DCHECK_GE(new_capacity, minimum_capacity_);
   2008   DCHECK_LT(new_capacity, current_capacity_);
   2009   if (is_committed()) {
   2010     const size_t delta = current_capacity_ - new_capacity;
   2011     DCHECK(IsAligned(delta, base::OS::AllocateAlignment()));
   2012     int delta_pages = static_cast<int>(delta / Page::kPageSize);
   2013     Page* new_last_page;
   2014     Page* last_page;
   2015     while (delta_pages > 0) {
   2016       last_page = anchor()->prev_page();
   2017       new_last_page = last_page->prev_page();
   2018       new_last_page->set_next_page(anchor());
   2019       anchor()->set_prev_page(new_last_page);
   2020       heap()->memory_allocator()->Free<MemoryAllocator::kPooledAndQueue>(
   2021           last_page);
   2022       delta_pages--;
   2023     }
   2024     AccountUncommitted(delta);
   2025     heap()->memory_allocator()->unmapper()->FreeQueuedChunks();
   2026   }
   2027   current_capacity_ = new_capacity;
   2028   return true;
   2029 }
   2030 
   2031 void SemiSpace::FixPagesFlags(intptr_t flags, intptr_t mask) {
   2032   anchor_.set_owner(this);
   2033   anchor_.prev_page()->set_next_page(&anchor_);
   2034   anchor_.next_page()->set_prev_page(&anchor_);
   2035 
   2036   for (Page* page : *this) {
   2037     page->set_owner(this);
   2038     page->SetFlags(flags, mask);
   2039     if (id_ == kToSpace) {
   2040       page->ClearFlag(MemoryChunk::IN_FROM_SPACE);
   2041       page->SetFlag(MemoryChunk::IN_TO_SPACE);
   2042       page->ClearFlag(MemoryChunk::NEW_SPACE_BELOW_AGE_MARK);
   2043       page->ResetLiveBytes();
   2044     } else {
   2045       page->SetFlag(MemoryChunk::IN_FROM_SPACE);
   2046       page->ClearFlag(MemoryChunk::IN_TO_SPACE);
   2047     }
   2048     DCHECK(page->IsFlagSet(MemoryChunk::IN_TO_SPACE) ||
   2049            page->IsFlagSet(MemoryChunk::IN_FROM_SPACE));
   2050   }
   2051 }
   2052 
   2053 
   2054 void SemiSpace::Reset() {
   2055   DCHECK_NE(anchor_.next_page(), &anchor_);
   2056   current_page_ = anchor_.next_page();
   2057   pages_used_ = 0;
   2058 }
   2059 
   2060 void SemiSpace::RemovePage(Page* page) {
   2061   if (current_page_ == page) {
   2062     current_page_ = page->prev_page();
   2063   }
   2064   page->Unlink();
   2065 }
   2066 
   2067 void SemiSpace::PrependPage(Page* page) {
   2068   page->SetFlags(current_page()->GetFlags(), Page::kCopyAllFlags);
   2069   page->set_owner(this);
   2070   page->InsertAfter(anchor());
   2071   pages_used_++;
   2072 }
   2073 
   2074 void SemiSpace::Swap(SemiSpace* from, SemiSpace* to) {
   2075   // We won't be swapping semispaces without data in them.
   2076   DCHECK_NE(from->anchor_.next_page(), &from->anchor_);
   2077   DCHECK_NE(to->anchor_.next_page(), &to->anchor_);
   2078 
   2079   intptr_t saved_to_space_flags = to->current_page()->GetFlags();
   2080 
   2081   // We swap all properties but id_.
   2082   std::swap(from->current_capacity_, to->current_capacity_);
   2083   std::swap(from->maximum_capacity_, to->maximum_capacity_);
   2084   std::swap(from->minimum_capacity_, to->minimum_capacity_);
   2085   std::swap(from->age_mark_, to->age_mark_);
   2086   std::swap(from->committed_, to->committed_);
   2087   std::swap(from->anchor_, to->anchor_);
   2088   std::swap(from->current_page_, to->current_page_);
   2089 
   2090   to->FixPagesFlags(saved_to_space_flags, Page::kCopyOnFlipFlagsMask);
   2091   from->FixPagesFlags(0, 0);
   2092 }
   2093 
   2094 void SemiSpace::set_age_mark(Address mark) {
   2095   DCHECK_EQ(Page::FromAllocationAreaAddress(mark)->owner(), this);
   2096   age_mark_ = mark;
   2097   // Mark all pages up to the one containing mark.
   2098   for (Page* p : NewSpacePageRange(space_start(), mark)) {
   2099     p->SetFlag(MemoryChunk::NEW_SPACE_BELOW_AGE_MARK);
   2100   }
   2101 }
   2102 
   2103 std::unique_ptr<ObjectIterator> SemiSpace::GetObjectIterator() {
   2104   // Use the NewSpace::NewObjectIterator to iterate the ToSpace.
   2105   UNREACHABLE();
   2106   return std::unique_ptr<ObjectIterator>();
   2107 }
   2108 
   2109 #ifdef DEBUG
   2110 void SemiSpace::Print() {}
   2111 #endif
   2112 
   2113 #ifdef VERIFY_HEAP
   2114 void SemiSpace::Verify() {
   2115   bool is_from_space = (id_ == kFromSpace);
   2116   Page* page = anchor_.next_page();
   2117   CHECK(anchor_.owner() == this);
   2118   while (page != &anchor_) {
   2119     CHECK_EQ(page->owner(), this);
   2120     CHECK(page->InNewSpace());
   2121     CHECK(page->IsFlagSet(is_from_space ? MemoryChunk::IN_FROM_SPACE
   2122                                         : MemoryChunk::IN_TO_SPACE));
   2123     CHECK(!page->IsFlagSet(is_from_space ? MemoryChunk::IN_TO_SPACE
   2124                                          : MemoryChunk::IN_FROM_SPACE));
   2125     CHECK(page->IsFlagSet(MemoryChunk::POINTERS_TO_HERE_ARE_INTERESTING));
   2126     if (!is_from_space) {
   2127       // The pointers-from-here-are-interesting flag isn't updated dynamically
   2128       // on from-space pages, so it might be out of sync with the marking state.
   2129       if (page->heap()->incremental_marking()->IsMarking()) {
   2130         CHECK(page->IsFlagSet(MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING));
   2131       } else {
   2132         CHECK(
   2133             !page->IsFlagSet(MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING));
   2134       }
   2135       // TODO(gc): Check that the live_bytes_count_ field matches the
   2136       // black marking on the page (if we make it match in new-space).
   2137     }
   2138     CHECK_EQ(page->prev_page()->next_page(), page);
   2139     page = page->next_page();
   2140   }
   2141 }
   2142 #endif
   2143 
   2144 #ifdef DEBUG
   2145 void SemiSpace::AssertValidRange(Address start, Address end) {
   2146   // Addresses belong to same semi-space
   2147   Page* page = Page::FromAllocationAreaAddress(start);
   2148   Page* end_page = Page::FromAllocationAreaAddress(end);
   2149   SemiSpace* space = reinterpret_cast<SemiSpace*>(page->owner());
   2150   CHECK_EQ(space, end_page->owner());
   2151   // Start address is before end address, either on same page,
   2152   // or end address is on a later page in the linked list of
   2153   // semi-space pages.
   2154   if (page == end_page) {
   2155     CHECK_LE(start, end);
   2156   } else {
   2157     while (page != end_page) {
   2158       page = page->next_page();
   2159       CHECK_NE(page, space->anchor());
   2160     }
   2161   }
   2162 }
   2163 #endif
   2164 
   2165 
   2166 // -----------------------------------------------------------------------------
   2167 // SemiSpaceIterator implementation.
   2168 
   2169 SemiSpaceIterator::SemiSpaceIterator(NewSpace* space) {
   2170   Initialize(space->bottom(), space->top());
   2171 }
   2172 
   2173 
   2174 void SemiSpaceIterator::Initialize(Address start, Address end) {
   2175   SemiSpace::AssertValidRange(start, end);
   2176   current_ = start;
   2177   limit_ = end;
   2178 }
   2179 
   2180 #ifdef DEBUG
   2181 // heap_histograms is shared, always clear it before using it.
   2182 static void ClearHistograms(Isolate* isolate) {
   2183 // We reset the name each time, though it hasn't changed.
   2184 #define DEF_TYPE_NAME(name) isolate->heap_histograms()[name].set_name(#name);
   2185   INSTANCE_TYPE_LIST(DEF_TYPE_NAME)
   2186 #undef DEF_TYPE_NAME
   2187 
   2188 #define CLEAR_HISTOGRAM(name) isolate->heap_histograms()[name].clear();
   2189   INSTANCE_TYPE_LIST(CLEAR_HISTOGRAM)
   2190 #undef CLEAR_HISTOGRAM
   2191 
   2192   isolate->js_spill_information()->Clear();
   2193 }
   2194 
   2195 static int CollectHistogramInfo(HeapObject* obj) {
   2196   Isolate* isolate = obj->GetIsolate();
   2197   InstanceType type = obj->map()->instance_type();
   2198   DCHECK(0 <= type && type <= LAST_TYPE);
   2199   DCHECK(isolate->heap_histograms()[type].name() != NULL);
   2200   isolate->heap_histograms()[type].increment_number(1);
   2201   isolate->heap_histograms()[type].increment_bytes(obj->Size());
   2202 
   2203   if (FLAG_collect_heap_spill_statistics && obj->IsJSObject()) {
   2204     JSObject::cast(obj)
   2205         ->IncrementSpillStatistics(isolate->js_spill_information());
   2206   }
   2207 
   2208   return obj->Size();
   2209 }
   2210 
   2211 
   2212 static void ReportHistogram(Isolate* isolate, bool print_spill) {
   2213   PrintF("\n  Object Histogram:\n");
   2214   for (int i = 0; i <= LAST_TYPE; i++) {
   2215     if (isolate->heap_histograms()[i].number() > 0) {
   2216       PrintF("    %-34s%10d (%10d bytes)\n",
   2217              isolate->heap_histograms()[i].name(),
   2218              isolate->heap_histograms()[i].number(),
   2219              isolate->heap_histograms()[i].bytes());
   2220     }
   2221   }
   2222   PrintF("\n");
   2223 
   2224   // Summarize string types.
   2225   int string_number = 0;
   2226   int string_bytes = 0;
   2227 #define INCREMENT(type, size, name, camel_name)               \
   2228   string_number += isolate->heap_histograms()[type].number(); \
   2229   string_bytes += isolate->heap_histograms()[type].bytes();
   2230   STRING_TYPE_LIST(INCREMENT)
   2231 #undef INCREMENT
   2232   if (string_number > 0) {
   2233     PrintF("    %-34s%10d (%10d bytes)\n\n", "STRING_TYPE", string_number,
   2234            string_bytes);
   2235   }
   2236 
   2237   if (FLAG_collect_heap_spill_statistics && print_spill) {
   2238     isolate->js_spill_information()->Print();
   2239   }
   2240 }
   2241 #endif  // DEBUG
   2242 
   2243 
   2244 // Support for statistics gathering for --heap-stats and --log-gc.
   2245 void NewSpace::ClearHistograms() {
   2246   for (int i = 0; i <= LAST_TYPE; i++) {
   2247     allocated_histogram_[i].clear();
   2248     promoted_histogram_[i].clear();
   2249   }
   2250 }
   2251 
   2252 
   2253 // Because the copying collector does not touch garbage objects, we iterate
   2254 // the new space before a collection to get a histogram of allocated objects.
   2255 // This only happens when --log-gc flag is set.
   2256 void NewSpace::CollectStatistics() {
   2257   ClearHistograms();
   2258   SemiSpaceIterator it(this);
   2259   for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next())
   2260     RecordAllocation(obj);
   2261 }
   2262 
   2263 
   2264 static void DoReportStatistics(Isolate* isolate, HistogramInfo* info,
   2265                                const char* description) {
   2266   LOG(isolate, HeapSampleBeginEvent("NewSpace", description));
   2267   // Lump all the string types together.
   2268   int string_number = 0;
   2269   int string_bytes = 0;
   2270 #define INCREMENT(type, size, name, camel_name) \
   2271   string_number += info[type].number();         \
   2272   string_bytes += info[type].bytes();
   2273   STRING_TYPE_LIST(INCREMENT)
   2274 #undef INCREMENT
   2275   if (string_number > 0) {
   2276     LOG(isolate,
   2277         HeapSampleItemEvent("STRING_TYPE", string_number, string_bytes));
   2278   }
   2279 
   2280   // Then do the other types.
   2281   for (int i = FIRST_NONSTRING_TYPE; i <= LAST_TYPE; ++i) {
   2282     if (info[i].number() > 0) {
   2283       LOG(isolate, HeapSampleItemEvent(info[i].name(), info[i].number(),
   2284                                        info[i].bytes()));
   2285     }
   2286   }
   2287   LOG(isolate, HeapSampleEndEvent("NewSpace", description));
   2288 }
   2289 
   2290 
   2291 void NewSpace::ReportStatistics() {
   2292 #ifdef DEBUG
   2293   if (FLAG_heap_stats) {
   2294     float pct = static_cast<float>(Available()) / TotalCapacity();
   2295     PrintF("  capacity: %" V8PRIdPTR ", available: %" V8PRIdPTR ", %%%d\n",
   2296            TotalCapacity(), Available(), static_cast<int>(pct * 100));
   2297     PrintF("\n  Object Histogram:\n");
   2298     for (int i = 0; i <= LAST_TYPE; i++) {
   2299       if (allocated_histogram_[i].number() > 0) {
   2300         PrintF("    %-34s%10d (%10d bytes)\n", allocated_histogram_[i].name(),
   2301                allocated_histogram_[i].number(),
   2302                allocated_histogram_[i].bytes());
   2303       }
   2304     }
   2305     PrintF("\n");
   2306   }
   2307 #endif  // DEBUG
   2308 
   2309   if (FLAG_log_gc) {
   2310     Isolate* isolate = heap()->isolate();
   2311     DoReportStatistics(isolate, allocated_histogram_, "allocated");
   2312     DoReportStatistics(isolate, promoted_histogram_, "promoted");
   2313   }
   2314 }
   2315 
   2316 
   2317 void NewSpace::RecordAllocation(HeapObject* obj) {
   2318   InstanceType type = obj->map()->instance_type();
   2319   DCHECK(0 <= type && type <= LAST_TYPE);
   2320   allocated_histogram_[type].increment_number(1);
   2321   allocated_histogram_[type].increment_bytes(obj->Size());
   2322 }
   2323 
   2324 
   2325 void NewSpace::RecordPromotion(HeapObject* obj) {
   2326   InstanceType type = obj->map()->instance_type();
   2327   DCHECK(0 <= type && type <= LAST_TYPE);
   2328   promoted_histogram_[type].increment_number(1);
   2329   promoted_histogram_[type].increment_bytes(obj->Size());
   2330 }
   2331 
   2332 
   2333 size_t NewSpace::CommittedPhysicalMemory() {
   2334   if (!base::VirtualMemory::HasLazyCommits()) return CommittedMemory();
   2335   MemoryChunk::UpdateHighWaterMark(allocation_info_.top());
   2336   size_t size = to_space_.CommittedPhysicalMemory();
   2337   if (from_space_.is_committed()) {
   2338     size += from_space_.CommittedPhysicalMemory();
   2339   }
   2340   return size;
   2341 }
   2342 
   2343 
   2344 // -----------------------------------------------------------------------------
   2345 // Free lists for old object spaces implementation
   2346 
   2347 
   2348 void FreeListCategory::Reset() {
   2349   set_top(nullptr);
   2350   set_prev(nullptr);
   2351   set_next(nullptr);
   2352   available_ = 0;
   2353 }
   2354 
   2355 FreeSpace* FreeListCategory::PickNodeFromList(size_t* node_size) {
   2356   DCHECK(page()->CanAllocate());
   2357 
   2358   FreeSpace* node = top();
   2359   if (node == nullptr) return nullptr;
   2360   set_top(node->next());
   2361   *node_size = node->Size();
   2362   available_ -= *node_size;
   2363   return node;
   2364 }
   2365 
   2366 FreeSpace* FreeListCategory::TryPickNodeFromList(size_t minimum_size,
   2367                                                  size_t* node_size) {
   2368   DCHECK(page()->CanAllocate());
   2369 
   2370   FreeSpace* node = PickNodeFromList(node_size);
   2371   if ((node != nullptr) && (*node_size < minimum_size)) {
   2372     Free(node, *node_size, kLinkCategory);
   2373     *node_size = 0;
   2374     return nullptr;
   2375   }
   2376   return node;
   2377 }
   2378 
   2379 FreeSpace* FreeListCategory::SearchForNodeInList(size_t minimum_size,
   2380                                                  size_t* node_size) {
   2381   DCHECK(page()->CanAllocate());
   2382 
   2383   FreeSpace* prev_non_evac_node = nullptr;
   2384   for (FreeSpace* cur_node = top(); cur_node != nullptr;
   2385        cur_node = cur_node->next()) {
   2386     size_t size = cur_node->size();
   2387     if (size >= minimum_size) {
   2388       DCHECK_GE(available_, size);
   2389       available_ -= size;
   2390       if (cur_node == top()) {
   2391         set_top(cur_node->next());
   2392       }
   2393       if (prev_non_evac_node != nullptr) {
   2394         prev_non_evac_node->set_next(cur_node->next());
   2395       }
   2396       *node_size = size;
   2397       return cur_node;
   2398     }
   2399 
   2400     prev_non_evac_node = cur_node;
   2401   }
   2402   return nullptr;
   2403 }
   2404 
   2405 bool FreeListCategory::Free(FreeSpace* free_space, size_t size_in_bytes,
   2406                             FreeMode mode) {
   2407   if (!page()->CanAllocate()) return false;
   2408 
   2409   free_space->set_next(top());
   2410   set_top(free_space);
   2411   available_ += size_in_bytes;
   2412   if ((mode == kLinkCategory) && (prev() == nullptr) && (next() == nullptr)) {
   2413     owner()->AddCategory(this);
   2414   }
   2415   return true;
   2416 }
   2417 
   2418 
   2419 void FreeListCategory::RepairFreeList(Heap* heap) {
   2420   FreeSpace* n = top();
   2421   while (n != NULL) {
   2422     Map** map_location = reinterpret_cast<Map**>(n->address());
   2423     if (*map_location == NULL) {
   2424       *map_location = heap->free_space_map();
   2425     } else {
   2426       DCHECK(*map_location == heap->free_space_map());
   2427     }
   2428     n = n->next();
   2429   }
   2430 }
   2431 
   2432 void FreeListCategory::Relink() {
   2433   DCHECK(!is_linked());
   2434   owner()->AddCategory(this);
   2435 }
   2436 
   2437 void FreeListCategory::Invalidate() {
   2438   page()->remove_available_in_free_list(available());
   2439   Reset();
   2440   type_ = kInvalidCategory;
   2441 }
   2442 
   2443 FreeList::FreeList(PagedSpace* owner) : owner_(owner), wasted_bytes_(0) {
   2444   for (int i = kFirstCategory; i < kNumberOfCategories; i++) {
   2445     categories_[i] = nullptr;
   2446   }
   2447   Reset();
   2448 }
   2449 
   2450 
   2451 void FreeList::Reset() {
   2452   ForAllFreeListCategories(
   2453       [](FreeListCategory* category) { category->Reset(); });
   2454   for (int i = kFirstCategory; i < kNumberOfCategories; i++) {
   2455     categories_[i] = nullptr;
   2456   }
   2457   ResetStats();
   2458 }
   2459 
   2460 size_t FreeList::Free(Address start, size_t size_in_bytes, FreeMode mode) {
   2461   if (size_in_bytes == 0) return 0;
   2462 
   2463   owner()->heap()->CreateFillerObjectAt(start, static_cast<int>(size_in_bytes),
   2464                                         ClearRecordedSlots::kNo);
   2465 
   2466   Page* page = Page::FromAddress(start);
   2467 
   2468   // Blocks have to be a minimum size to hold free list items.
   2469   if (size_in_bytes < kMinBlockSize) {
   2470     page->add_wasted_memory(size_in_bytes);
   2471     wasted_bytes_.Increment(size_in_bytes);
   2472     return size_in_bytes;
   2473   }
   2474 
   2475   FreeSpace* free_space = FreeSpace::cast(HeapObject::FromAddress(start));
   2476   // Insert other blocks at the head of a free list of the appropriate
   2477   // magnitude.
   2478   FreeListCategoryType type = SelectFreeListCategoryType(size_in_bytes);
   2479   if (page->free_list_category(type)->Free(free_space, size_in_bytes, mode)) {
   2480     page->add_available_in_free_list(size_in_bytes);
   2481   }
   2482   DCHECK_EQ(page->AvailableInFreeList(), page->available_in_free_list());
   2483   return 0;
   2484 }
   2485 
   2486 FreeSpace* FreeList::FindNodeIn(FreeListCategoryType type, size_t* node_size) {
   2487   FreeListCategoryIterator it(this, type);
   2488   FreeSpace* node = nullptr;
   2489   while (it.HasNext()) {
   2490     FreeListCategory* current = it.Next();
   2491     node = current->PickNodeFromList(node_size);
   2492     if (node != nullptr) {
   2493       Page::FromAddress(node->address())
   2494           ->remove_available_in_free_list(*node_size);
   2495       DCHECK(IsVeryLong() || Available() == SumFreeLists());
   2496       return node;
   2497     }
   2498     RemoveCategory(current);
   2499   }
   2500   return node;
   2501 }
   2502 
   2503 FreeSpace* FreeList::TryFindNodeIn(FreeListCategoryType type, size_t* node_size,
   2504                                    size_t minimum_size) {
   2505   if (categories_[type] == nullptr) return nullptr;
   2506   FreeSpace* node =
   2507       categories_[type]->TryPickNodeFromList(minimum_size, node_size);
   2508   if (node != nullptr) {
   2509     Page::FromAddress(node->address())
   2510         ->remove_available_in_free_list(*node_size);
   2511     DCHECK(IsVeryLong() || Available() == SumFreeLists());
   2512   }
   2513   return node;
   2514 }
   2515 
   2516 FreeSpace* FreeList::SearchForNodeInList(FreeListCategoryType type,
   2517                                          size_t* node_size,
   2518                                          size_t minimum_size) {
   2519   FreeListCategoryIterator it(this, type);
   2520   FreeSpace* node = nullptr;
   2521   while (it.HasNext()) {
   2522     FreeListCategory* current = it.Next();
   2523     node = current->SearchForNodeInList(minimum_size, node_size);
   2524     if (node != nullptr) {
   2525       Page::FromAddress(node->address())
   2526           ->remove_available_in_free_list(*node_size);
   2527       DCHECK(IsVeryLong() || Available() == SumFreeLists());
   2528       return node;
   2529     }
   2530     if (current->is_empty()) {
   2531       RemoveCategory(current);
   2532     }
   2533   }
   2534   return node;
   2535 }
   2536 
   2537 FreeSpace* FreeList::FindNodeFor(size_t size_in_bytes, size_t* node_size) {
   2538   FreeSpace* node = nullptr;
   2539 
   2540   // First try the allocation fast path: try to allocate the minimum element
   2541   // size of a free list category. This operation is constant time.
   2542   FreeListCategoryType type =
   2543       SelectFastAllocationFreeListCategoryType(size_in_bytes);
   2544   for (int i = type; i < kHuge; i++) {
   2545     node = FindNodeIn(static_cast<FreeListCategoryType>(i), node_size);
   2546     if (node != nullptr) return node;
   2547   }
   2548 
   2549   // Next search the huge list for free list nodes. This takes linear time in
   2550   // the number of huge elements.
   2551   node = SearchForNodeInList(kHuge, node_size, size_in_bytes);
   2552   if (node != nullptr) {
   2553     DCHECK(IsVeryLong() || Available() == SumFreeLists());
   2554     return node;
   2555   }
   2556 
   2557   // We need a huge block of memory, but we didn't find anything in the huge
   2558   // list.
   2559   if (type == kHuge) return nullptr;
   2560 
   2561   // Now search the best fitting free list for a node that has at least the
   2562   // requested size.
   2563   type = SelectFreeListCategoryType(size_in_bytes);
   2564   node = TryFindNodeIn(type, node_size, size_in_bytes);
   2565 
   2566   DCHECK(IsVeryLong() || Available() == SumFreeLists());
   2567   return node;
   2568 }
   2569 
   2570 // Allocation on the old space free list.  If it succeeds then a new linear
   2571 // allocation space has been set up with the top and limit of the space.  If
   2572 // the allocation fails then NULL is returned, and the caller can perform a GC
   2573 // or allocate a new page before retrying.
   2574 HeapObject* FreeList::Allocate(size_t size_in_bytes) {
   2575   DCHECK(size_in_bytes <= kMaxBlockSize);
   2576   DCHECK(IsAligned(size_in_bytes, kPointerSize));
   2577   DCHECK_LE(owner_->top(), owner_->limit());
   2578 #ifdef DEBUG
   2579   if (owner_->top() != owner_->limit()) {
   2580     DCHECK_EQ(Page::FromAddress(owner_->top()),
   2581               Page::FromAddress(owner_->limit() - 1));
   2582   }
   2583 #endif
   2584   // Don't free list allocate if there is linear space available.
   2585   DCHECK_LT(static_cast<size_t>(owner_->limit() - owner_->top()),
   2586             size_in_bytes);
   2587 
   2588   // Mark the old linear allocation area with a free space map so it can be
   2589   // skipped when scanning the heap.  This also puts it back in the free list
   2590   // if it is big enough.
   2591   owner_->EmptyAllocationInfo();
   2592 
   2593   owner_->heap()->StartIncrementalMarkingIfAllocationLimitIsReached(
   2594       Heap::kNoGCFlags, kNoGCCallbackFlags);
   2595 
   2596   size_t new_node_size = 0;
   2597   FreeSpace* new_node = FindNodeFor(size_in_bytes, &new_node_size);
   2598   if (new_node == nullptr) return nullptr;
   2599 
   2600   DCHECK_GE(new_node_size, size_in_bytes);
   2601   size_t bytes_left = new_node_size - size_in_bytes;
   2602 
   2603 #ifdef DEBUG
   2604   for (size_t i = 0; i < size_in_bytes / kPointerSize; i++) {
   2605     reinterpret_cast<Object**>(new_node->address())[i] =
   2606         Smi::FromInt(kCodeZapValue);
   2607   }
   2608 #endif
   2609 
   2610   // The old-space-step might have finished sweeping and restarted marking.
   2611   // Verify that it did not turn the page of the new node into an evacuation
   2612   // candidate.
   2613   DCHECK(!MarkCompactCollector::IsOnEvacuationCandidate(new_node));
   2614 
   2615   const size_t kThreshold = IncrementalMarking::kAllocatedThreshold;
   2616 
   2617   // Memory in the linear allocation area is counted as allocated.  We may free
   2618   // a little of this again immediately - see below.
   2619   owner_->Allocate(static_cast<int>(new_node_size));
   2620 
   2621   if (owner_->heap()->inline_allocation_disabled()) {
   2622     // Keep the linear allocation area empty if requested to do so, just
   2623     // return area back to the free list instead.
   2624     owner_->Free(new_node->address() + size_in_bytes, bytes_left);
   2625     owner_->SetAllocationInfo(new_node->address() + size_in_bytes,
   2626                               new_node->address() + size_in_bytes);
   2627   } else if (bytes_left > kThreshold &&
   2628              owner_->heap()->incremental_marking()->IsMarkingIncomplete() &&
   2629              FLAG_incremental_marking) {
   2630     size_t linear_size = owner_->RoundSizeDownToObjectAlignment(kThreshold);
   2631     // We don't want to give too large linear areas to the allocator while
   2632     // incremental marking is going on, because we won't check again whether
   2633     // we want to do another increment until the linear area is used up.
   2634     DCHECK_GE(new_node_size, size_in_bytes + linear_size);
   2635     owner_->Free(new_node->address() + size_in_bytes + linear_size,
   2636                  new_node_size - size_in_bytes - linear_size);
   2637     owner_->SetAllocationInfo(
   2638         new_node->address() + size_in_bytes,
   2639         new_node->address() + size_in_bytes + linear_size);
   2640   } else {
   2641     // Normally we give the rest of the node to the allocator as its new
   2642     // linear allocation area.
   2643     owner_->SetAllocationInfo(new_node->address() + size_in_bytes,
   2644                               new_node->address() + new_node_size);
   2645   }
   2646 
   2647   return new_node;
   2648 }
   2649 
   2650 size_t FreeList::EvictFreeListItems(Page* page) {
   2651   size_t sum = 0;
   2652   page->ForAllFreeListCategories(
   2653       [this, &sum, page](FreeListCategory* category) {
   2654         DCHECK_EQ(this, category->owner());
   2655         sum += category->available();
   2656         RemoveCategory(category);
   2657         category->Invalidate();
   2658       });
   2659   return sum;
   2660 }
   2661 
   2662 bool FreeList::ContainsPageFreeListItems(Page* page) {
   2663   bool contained = false;
   2664   page->ForAllFreeListCategories(
   2665       [this, &contained](FreeListCategory* category) {
   2666         if (category->owner() == this && category->is_linked()) {
   2667           contained = true;
   2668         }
   2669       });
   2670   return contained;
   2671 }
   2672 
   2673 void FreeList::RepairLists(Heap* heap) {
   2674   ForAllFreeListCategories(
   2675       [heap](FreeListCategory* category) { category->RepairFreeList(heap); });
   2676 }
   2677 
   2678 bool FreeList::AddCategory(FreeListCategory* category) {
   2679   FreeListCategoryType type = category->type_;
   2680   FreeListCategory* top = categories_[type];
   2681 
   2682   if (category->is_empty()) return false;
   2683   if (top == category) return false;
   2684 
   2685   // Common double-linked list insertion.
   2686   if (top != nullptr) {
   2687     top->set_prev(category);
   2688   }
   2689   category->set_next(top);
   2690   categories_[type] = category;
   2691   return true;
   2692 }
   2693 
   2694 void FreeList::RemoveCategory(FreeListCategory* category) {
   2695   FreeListCategoryType type = category->type_;
   2696   FreeListCategory* top = categories_[type];
   2697 
   2698   // Common double-linked list removal.
   2699   if (top == category) {
   2700     categories_[type] = category->next();
   2701   }
   2702   if (category->prev() != nullptr) {
   2703     category->prev()->set_next(category->next());
   2704   }
   2705   if (category->next() != nullptr) {
   2706     category->next()->set_prev(category->prev());
   2707   }
   2708   category->set_next(nullptr);
   2709   category->set_prev(nullptr);
   2710 }
   2711 
   2712 void FreeList::PrintCategories(FreeListCategoryType type) {
   2713   FreeListCategoryIterator it(this, type);
   2714   PrintF("FreeList[%p, top=%p, %d] ", static_cast<void*>(this),
   2715          static_cast<void*>(categories_[type]), type);
   2716   while (it.HasNext()) {
   2717     FreeListCategory* current = it.Next();
   2718     PrintF("%p -> ", static_cast<void*>(current));
   2719   }
   2720   PrintF("null\n");
   2721 }
   2722 
   2723 
   2724 #ifdef DEBUG
   2725 size_t FreeListCategory::SumFreeList() {
   2726   size_t sum = 0;
   2727   FreeSpace* cur = top();
   2728   while (cur != NULL) {
   2729     DCHECK(cur->map() == cur->GetHeap()->root(Heap::kFreeSpaceMapRootIndex));
   2730     sum += cur->nobarrier_size();
   2731     cur = cur->next();
   2732   }
   2733   return sum;
   2734 }
   2735 
   2736 int FreeListCategory::FreeListLength() {
   2737   int length = 0;
   2738   FreeSpace* cur = top();
   2739   while (cur != NULL) {
   2740     length++;
   2741     cur = cur->next();
   2742     if (length == kVeryLongFreeList) return length;
   2743   }
   2744   return length;
   2745 }
   2746 
   2747 bool FreeList::IsVeryLong() {
   2748   int len = 0;
   2749   for (int i = kFirstCategory; i < kNumberOfCategories; i++) {
   2750     FreeListCategoryIterator it(this, static_cast<FreeListCategoryType>(i));
   2751     while (it.HasNext()) {
   2752       len += it.Next()->FreeListLength();
   2753       if (len >= FreeListCategory::kVeryLongFreeList) return true;
   2754     }
   2755   }
   2756   return false;
   2757 }
   2758 
   2759 
   2760 // This can take a very long time because it is linear in the number of entries
   2761 // on the free list, so it should not be called if FreeListLength returns
   2762 // kVeryLongFreeList.
   2763 size_t FreeList::SumFreeLists() {
   2764   size_t sum = 0;
   2765   ForAllFreeListCategories(
   2766       [&sum](FreeListCategory* category) { sum += category->SumFreeList(); });
   2767   return sum;
   2768 }
   2769 #endif
   2770 
   2771 
   2772 // -----------------------------------------------------------------------------
   2773 // OldSpace implementation
   2774 
   2775 void PagedSpace::PrepareForMarkCompact() {
   2776   // We don't have a linear allocation area while sweeping.  It will be restored
   2777   // on the first allocation after the sweep.
   2778   EmptyAllocationInfo();
   2779 
   2780   // Clear the free list before a full GC---it will be rebuilt afterward.
   2781   free_list_.Reset();
   2782 }
   2783 
   2784 size_t PagedSpace::SizeOfObjects() {
   2785   CHECK_GE(limit(), top());
   2786   DCHECK_GE(Size(), static_cast<size_t>(limit() - top()));
   2787   return Size() - (limit() - top());
   2788 }
   2789 
   2790 
   2791 // After we have booted, we have created a map which represents free space
   2792 // on the heap.  If there was already a free list then the elements on it
   2793 // were created with the wrong FreeSpaceMap (normally NULL), so we need to
   2794 // fix them.
   2795 void PagedSpace::RepairFreeListsAfterDeserialization() {
   2796   free_list_.RepairLists(heap());
   2797   // Each page may have a small free space that is not tracked by a free list.
   2798   // Update the maps for those free space objects.
   2799   for (Page* page : *this) {
   2800     size_t size = page->wasted_memory();
   2801     if (size == 0) continue;
   2802     DCHECK_GE(static_cast<size_t>(Page::kPageSize), size);
   2803     Address address = page->OffsetToAddress(Page::kPageSize - size);
   2804     heap()->CreateFillerObjectAt(address, static_cast<int>(size),
   2805                                  ClearRecordedSlots::kNo);
   2806   }
   2807 }
   2808 
   2809 
   2810 HeapObject* PagedSpace::SweepAndRetryAllocation(int size_in_bytes) {
   2811   MarkCompactCollector* collector = heap()->mark_compact_collector();
   2812   if (collector->sweeping_in_progress()) {
   2813     // Wait for the sweeper threads here and complete the sweeping phase.
   2814     collector->EnsureSweepingCompleted();
   2815 
   2816     // After waiting for the sweeper threads, there may be new free-list
   2817     // entries.
   2818     return free_list_.Allocate(size_in_bytes);
   2819   }
   2820   return nullptr;
   2821 }
   2822 
   2823 
   2824 HeapObject* CompactionSpace::SweepAndRetryAllocation(int size_in_bytes) {
   2825   MarkCompactCollector* collector = heap()->mark_compact_collector();
   2826   if (collector->sweeping_in_progress()) {
   2827     collector->SweepAndRefill(this);
   2828     return free_list_.Allocate(size_in_bytes);
   2829   }
   2830   return nullptr;
   2831 }
   2832 
   2833 HeapObject* PagedSpace::SlowAllocateRaw(int size_in_bytes) {
   2834   DCHECK_GE(size_in_bytes, 0);
   2835   const int kMaxPagesToSweep = 1;
   2836 
   2837   // Allocation in this space has failed.
   2838 
   2839   MarkCompactCollector* collector = heap()->mark_compact_collector();
   2840   // Sweeping is still in progress.
   2841   if (collector->sweeping_in_progress()) {
   2842     // First try to refill the free-list, concurrent sweeper threads
   2843     // may have freed some objects in the meantime.
   2844     RefillFreeList();
   2845 
   2846     // Retry the free list allocation.
   2847     HeapObject* object =
   2848         free_list_.Allocate(static_cast<size_t>(size_in_bytes));
   2849     if (object != NULL) return object;
   2850 
   2851     // If sweeping is still in progress try to sweep pages on the main thread.
   2852     int max_freed = collector->sweeper().ParallelSweepSpace(
   2853         identity(), size_in_bytes, kMaxPagesToSweep);
   2854     RefillFreeList();
   2855     if (max_freed >= size_in_bytes) {
   2856       object = free_list_.Allocate(static_cast<size_t>(size_in_bytes));
   2857       if (object != nullptr) return object;
   2858     }
   2859   }
   2860 
   2861   if (heap()->ShouldExpandOldGenerationOnSlowAllocation() && Expand()) {
   2862     DCHECK((CountTotalPages() > 1) ||
   2863            (static_cast<size_t>(size_in_bytes) <= free_list_.Available()));
   2864     return free_list_.Allocate(static_cast<size_t>(size_in_bytes));
   2865   }
   2866 
   2867   // If sweeper threads are active, wait for them at that point and steal
   2868   // elements form their free-lists. Allocation may still fail their which
   2869   // would indicate that there is not enough memory for the given allocation.
   2870   return SweepAndRetryAllocation(size_in_bytes);
   2871 }
   2872 
   2873 #ifdef DEBUG
   2874 void PagedSpace::ReportStatistics() {
   2875   int pct = static_cast<int>(Available() * 100 / Capacity());
   2876   PrintF("  capacity: %" V8PRIdPTR ", waste: %" V8PRIdPTR
   2877          ", available: %" V8PRIdPTR ", %%%d\n",
   2878          Capacity(), Waste(), Available(), pct);
   2879 
   2880   if (heap()->mark_compact_collector()->sweeping_in_progress()) {
   2881     heap()->mark_compact_collector()->EnsureSweepingCompleted();
   2882   }
   2883   ClearHistograms(heap()->isolate());
   2884   HeapObjectIterator obj_it(this);
   2885   for (HeapObject* obj = obj_it.Next(); obj != NULL; obj = obj_it.Next())
   2886     CollectHistogramInfo(obj);
   2887   ReportHistogram(heap()->isolate(), true);
   2888 }
   2889 #endif
   2890 
   2891 
   2892 // -----------------------------------------------------------------------------
   2893 // MapSpace implementation
   2894 
   2895 #ifdef VERIFY_HEAP
   2896 void MapSpace::VerifyObject(HeapObject* object) { CHECK(object->IsMap()); }
   2897 #endif
   2898 
   2899 Address LargePage::GetAddressToShrink() {
   2900   HeapObject* object = GetObject();
   2901   if (executable() == EXECUTABLE) {
   2902     return 0;
   2903   }
   2904   size_t used_size = RoundUp((object->address() - address()) + object->Size(),
   2905                              MemoryAllocator::GetCommitPageSize());
   2906   if (used_size < CommittedPhysicalMemory()) {
   2907     return address() + used_size;
   2908   }
   2909   return 0;
   2910 }
   2911 
   2912 void LargePage::ClearOutOfLiveRangeSlots(Address free_start) {
   2913   RememberedSet<OLD_TO_NEW>::RemoveRange(this, free_start, area_end(),
   2914                                          SlotSet::FREE_EMPTY_BUCKETS);
   2915   RememberedSet<OLD_TO_OLD>::RemoveRange(this, free_start, area_end(),
   2916                                          SlotSet::FREE_EMPTY_BUCKETS);
   2917   RememberedSet<OLD_TO_NEW>::RemoveRangeTyped(this, free_start, area_end());
   2918   RememberedSet<OLD_TO_OLD>::RemoveRangeTyped(this, free_start, area_end());
   2919 }
   2920 
   2921 // -----------------------------------------------------------------------------
   2922 // LargeObjectIterator
   2923 
   2924 LargeObjectIterator::LargeObjectIterator(LargeObjectSpace* space) {
   2925   current_ = space->first_page_;
   2926 }
   2927 
   2928 
   2929 HeapObject* LargeObjectIterator::Next() {
   2930   if (current_ == NULL) return NULL;
   2931 
   2932   HeapObject* object = current_->GetObject();
   2933   current_ = current_->next_page();
   2934   return object;
   2935 }
   2936 
   2937 
   2938 // -----------------------------------------------------------------------------
   2939 // LargeObjectSpace
   2940 
   2941 LargeObjectSpace::LargeObjectSpace(Heap* heap, AllocationSpace id)
   2942     : Space(heap, id, NOT_EXECUTABLE),  // Managed on a per-allocation basis
   2943       first_page_(NULL),
   2944       size_(0),
   2945       page_count_(0),
   2946       objects_size_(0),
   2947       chunk_map_(1024) {}
   2948 
   2949 LargeObjectSpace::~LargeObjectSpace() {}
   2950 
   2951 
   2952 bool LargeObjectSpace::SetUp() {
   2953   first_page_ = NULL;
   2954   size_ = 0;
   2955   page_count_ = 0;
   2956   objects_size_ = 0;
   2957   chunk_map_.Clear();
   2958   return true;
   2959 }
   2960 
   2961 
   2962 void LargeObjectSpace::TearDown() {
   2963   while (first_page_ != NULL) {
   2964     LargePage* page = first_page_;
   2965     first_page_ = first_page_->next_page();
   2966     LOG(heap()->isolate(), DeleteEvent("LargeObjectChunk", page->address()));
   2967     heap()->memory_allocator()->Free<MemoryAllocator::kFull>(page);
   2968   }
   2969   SetUp();
   2970 }
   2971 
   2972 
   2973 AllocationResult LargeObjectSpace::AllocateRaw(int object_size,
   2974                                                Executability executable) {
   2975   // Check if we want to force a GC before growing the old space further.
   2976   // If so, fail the allocation.
   2977   if (!heap()->CanExpandOldGeneration(object_size) ||
   2978       !heap()->ShouldExpandOldGenerationOnSlowAllocation()) {
   2979     return AllocationResult::Retry(identity());
   2980   }
   2981 
   2982   LargePage* page = heap()->memory_allocator()->AllocateLargePage(
   2983       object_size, this, executable);
   2984   if (page == NULL) return AllocationResult::Retry(identity());
   2985   DCHECK_GE(page->area_size(), static_cast<size_t>(object_size));
   2986 
   2987   size_ += static_cast<int>(page->size());
   2988   AccountCommitted(page->size());
   2989   objects_size_ += object_size;
   2990   page_count_++;
   2991   page->set_next_page(first_page_);
   2992   first_page_ = page;
   2993 
   2994   InsertChunkMapEntries(page);
   2995 
   2996   HeapObject* object = page->GetObject();
   2997   MSAN_ALLOCATED_UNINITIALIZED_MEMORY(object->address(), object_size);
   2998 
   2999   if (Heap::ShouldZapGarbage()) {
   3000     // Make the object consistent so the heap can be verified in OldSpaceStep.
   3001     // We only need to do this in debug builds or if verify_heap is on.
   3002     reinterpret_cast<Object**>(object->address())[0] =
   3003         heap()->fixed_array_map();
   3004     reinterpret_cast<Object**>(object->address())[1] = Smi::kZero;
   3005   }
   3006 
   3007   heap()->StartIncrementalMarkingIfAllocationLimitIsReached(Heap::kNoGCFlags,
   3008                                                             kNoGCCallbackFlags);
   3009   AllocationStep(object->address(), object_size);
   3010 
   3011   if (heap()->incremental_marking()->black_allocation()) {
   3012     Marking::MarkBlack(ObjectMarking::MarkBitFrom(object));
   3013     MemoryChunk::IncrementLiveBytesFromGC(object, object_size);
   3014   }
   3015   return object;
   3016 }
   3017 
   3018 
   3019 size_t LargeObjectSpace::CommittedPhysicalMemory() {
   3020   // On a platform that provides lazy committing of memory, we over-account
   3021   // the actually committed memory. There is no easy way right now to support
   3022   // precise accounting of committed memory in large object space.
   3023   return CommittedMemory();
   3024 }
   3025 
   3026 
   3027 // GC support
   3028 Object* LargeObjectSpace::FindObject(Address a) {
   3029   LargePage* page = FindPage(a);
   3030   if (page != NULL) {
   3031     return page->GetObject();
   3032   }
   3033   return Smi::kZero;  // Signaling not found.
   3034 }
   3035 
   3036 
   3037 LargePage* LargeObjectSpace::FindPage(Address a) {
   3038   uintptr_t key = reinterpret_cast<uintptr_t>(a) / MemoryChunk::kAlignment;
   3039   base::HashMap::Entry* e = chunk_map_.Lookup(reinterpret_cast<void*>(key),
   3040                                               static_cast<uint32_t>(key));
   3041   if (e != NULL) {
   3042     DCHECK(e->value != NULL);
   3043     LargePage* page = reinterpret_cast<LargePage*>(e->value);
   3044     DCHECK(LargePage::IsValid(page));
   3045     if (page->Contains(a)) {
   3046       return page;
   3047     }
   3048   }
   3049   return NULL;
   3050 }
   3051 
   3052 
   3053 void LargeObjectSpace::ClearMarkingStateOfLiveObjects() {
   3054   LargePage* current = first_page_;
   3055   while (current != NULL) {
   3056     HeapObject* object = current->GetObject();
   3057     MarkBit mark_bit = ObjectMarking::MarkBitFrom(object);
   3058     DCHECK(Marking::IsBlack(mark_bit));
   3059     Marking::BlackToWhite(mark_bit);
   3060     Page::FromAddress(object->address())->ResetProgressBar();
   3061     Page::FromAddress(object->address())->ResetLiveBytes();
   3062     current = current->next_page();
   3063   }
   3064 }
   3065 
   3066 void LargeObjectSpace::InsertChunkMapEntries(LargePage* page) {
   3067   // Register all MemoryChunk::kAlignment-aligned chunks covered by
   3068   // this large page in the chunk map.
   3069   uintptr_t start = reinterpret_cast<uintptr_t>(page) / MemoryChunk::kAlignment;
   3070   uintptr_t limit = (reinterpret_cast<uintptr_t>(page) + (page->size() - 1)) /
   3071                     MemoryChunk::kAlignment;
   3072   for (uintptr_t key = start; key <= limit; key++) {
   3073     base::HashMap::Entry* entry = chunk_map_.InsertNew(
   3074         reinterpret_cast<void*>(key), static_cast<uint32_t>(key));
   3075     DCHECK(entry != NULL);
   3076     entry->value = page;
   3077   }
   3078 }
   3079 
   3080 void LargeObjectSpace::RemoveChunkMapEntries(LargePage* page) {
   3081   RemoveChunkMapEntries(page, page->address());
   3082 }
   3083 
   3084 void LargeObjectSpace::RemoveChunkMapEntries(LargePage* page,
   3085                                              Address free_start) {
   3086   uintptr_t start = RoundUp(reinterpret_cast<uintptr_t>(free_start),
   3087                             MemoryChunk::kAlignment) /
   3088                     MemoryChunk::kAlignment;
   3089   uintptr_t limit = (reinterpret_cast<uintptr_t>(page) + (page->size() - 1)) /
   3090                     MemoryChunk::kAlignment;
   3091   for (uintptr_t key = start; key <= limit; key++) {
   3092     chunk_map_.Remove(reinterpret_cast<void*>(key), static_cast<uint32_t>(key));
   3093   }
   3094 }
   3095 
   3096 void LargeObjectSpace::FreeUnmarkedObjects() {
   3097   LargePage* previous = NULL;
   3098   LargePage* current = first_page_;
   3099   while (current != NULL) {
   3100     HeapObject* object = current->GetObject();
   3101     MarkBit mark_bit = ObjectMarking::MarkBitFrom(object);
   3102     DCHECK(!Marking::IsGrey(mark_bit));
   3103     if (Marking::IsBlack(mark_bit)) {
   3104       Address free_start;
   3105       if ((free_start = current->GetAddressToShrink()) != 0) {
   3106         // TODO(hpayer): Perform partial free concurrently.
   3107         current->ClearOutOfLiveRangeSlots(free_start);
   3108         RemoveChunkMapEntries(current, free_start);
   3109         heap()->memory_allocator()->PartialFreeMemory(current, free_start);
   3110       }
   3111       previous = current;
   3112       current = current->next_page();
   3113     } else {
   3114       LargePage* page = current;
   3115       // Cut the chunk out from the chunk list.
   3116       current = current->next_page();
   3117       if (previous == NULL) {
   3118         first_page_ = current;
   3119       } else {
   3120         previous->set_next_page(current);
   3121       }
   3122 
   3123       // Free the chunk.
   3124       size_ -= static_cast<int>(page->size());
   3125       AccountUncommitted(page->size());
   3126       objects_size_ -= object->Size();
   3127       page_count_--;
   3128 
   3129       RemoveChunkMapEntries(page);
   3130       heap()->memory_allocator()->Free<MemoryAllocator::kPreFreeAndQueue>(page);
   3131     }
   3132   }
   3133 }
   3134 
   3135 
   3136 bool LargeObjectSpace::Contains(HeapObject* object) {
   3137   Address address = object->address();
   3138   MemoryChunk* chunk = MemoryChunk::FromAddress(address);
   3139 
   3140   bool owned = (chunk->owner() == this);
   3141 
   3142   SLOW_DCHECK(!owned || FindObject(address)->IsHeapObject());
   3143 
   3144   return owned;
   3145 }
   3146 
   3147 std::unique_ptr<ObjectIterator> LargeObjectSpace::GetObjectIterator() {
   3148   return std::unique_ptr<ObjectIterator>(new LargeObjectIterator(this));
   3149 }
   3150 
   3151 #ifdef VERIFY_HEAP
   3152 // We do not assume that the large object iterator works, because it depends
   3153 // on the invariants we are checking during verification.
   3154 void LargeObjectSpace::Verify() {
   3155   for (LargePage* chunk = first_page_; chunk != NULL;
   3156        chunk = chunk->next_page()) {
   3157     // Each chunk contains an object that starts at the large object page's
   3158     // object area start.
   3159     HeapObject* object = chunk->GetObject();
   3160     Page* page = Page::FromAddress(object->address());
   3161     CHECK(object->address() == page->area_start());
   3162 
   3163     // The first word should be a map, and we expect all map pointers to be
   3164     // in map space.
   3165     Map* map = object->map();
   3166     CHECK(map->IsMap());
   3167     CHECK(heap()->map_space()->Contains(map));
   3168 
   3169     // We have only code, sequential strings, external strings
   3170     // (sequential strings that have been morphed into external
   3171     // strings), fixed arrays, byte arrays, and constant pool arrays in the
   3172     // large object space.
   3173     CHECK(object->IsAbstractCode() || object->IsSeqString() ||
   3174           object->IsExternalString() || object->IsFixedArray() ||
   3175           object->IsFixedDoubleArray() || object->IsByteArray());
   3176 
   3177     // The object itself should look OK.
   3178     object->ObjectVerify();
   3179 
   3180     // Byte arrays and strings don't have interior pointers.
   3181     if (object->IsAbstractCode()) {
   3182       VerifyPointersVisitor code_visitor;
   3183       object->IterateBody(map->instance_type(), object->Size(), &code_visitor);
   3184     } else if (object->IsFixedArray()) {
   3185       FixedArray* array = FixedArray::cast(object);
   3186       for (int j = 0; j < array->length(); j++) {
   3187         Object* element = array->get(j);
   3188         if (element->IsHeapObject()) {
   3189           HeapObject* element_object = HeapObject::cast(element);
   3190           CHECK(heap()->Contains(element_object));
   3191           CHECK(element_object->map()->IsMap());
   3192         }
   3193       }
   3194     }
   3195   }
   3196 }
   3197 #endif
   3198 
   3199 #ifdef DEBUG
   3200 void LargeObjectSpace::Print() {
   3201   OFStream os(stdout);
   3202   LargeObjectIterator it(this);
   3203   for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) {
   3204     obj->Print(os);
   3205   }
   3206 }
   3207 
   3208 
   3209 void LargeObjectSpace::ReportStatistics() {
   3210   PrintF("  size: %" V8PRIdPTR "\n", size_);
   3211   int num_objects = 0;
   3212   ClearHistograms(heap()->isolate());
   3213   LargeObjectIterator it(this);
   3214   for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) {
   3215     num_objects++;
   3216     CollectHistogramInfo(obj);
   3217   }
   3218 
   3219   PrintF(
   3220       "  number of objects %d, "
   3221       "size of objects %" V8PRIdPTR "\n",
   3222       num_objects, objects_size_);
   3223   if (num_objects > 0) ReportHistogram(heap()->isolate(), false);
   3224 }
   3225 
   3226 
   3227 void Page::Print() {
   3228   // Make a best-effort to print the objects in the page.
   3229   PrintF("Page@%p in %s\n", static_cast<void*>(this->address()),
   3230          AllocationSpaceName(this->owner()->identity()));
   3231   printf(" --------------------------------------\n");
   3232   HeapObjectIterator objects(this);
   3233   unsigned mark_size = 0;
   3234   for (HeapObject* object = objects.Next(); object != NULL;
   3235        object = objects.Next()) {
   3236     bool is_marked = Marking::IsBlackOrGrey(ObjectMarking::MarkBitFrom(object));
   3237     PrintF(" %c ", (is_marked ? '!' : ' '));  // Indent a little.
   3238     if (is_marked) {
   3239       mark_size += object->Size();
   3240     }
   3241     object->ShortPrint();
   3242     PrintF("\n");
   3243   }
   3244   printf(" --------------------------------------\n");
   3245   printf(" Marked: %x, LiveCount: %x\n", mark_size, LiveBytes());
   3246 }
   3247 
   3248 #endif  // DEBUG
   3249 }  // namespace internal
   3250 }  // namespace v8
   3251