1 // Copyright 2003-2009 The RE2 Authors. All Rights Reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 #ifndef RE2_RE2_H 6 #define RE2_RE2_H 7 8 // C++ interface to the re2 regular-expression library. 9 // RE2 supports Perl-style regular expressions (with extensions like 10 // \d, \w, \s, ...). 11 // 12 // ----------------------------------------------------------------------- 13 // REGEXP SYNTAX: 14 // 15 // This module uses the re2 library and hence supports 16 // its syntax for regular expressions, which is similar to Perl's with 17 // some of the more complicated things thrown away. In particular, 18 // backreferences and generalized assertions are not available, nor is \Z. 19 // 20 // See http://code.google.com/p/re2/wiki/Syntax for the syntax 21 // supported by RE2, and a comparison with PCRE and PERL regexps. 22 // 23 // For those not familiar with Perl's regular expressions, 24 // here are some examples of the most commonly used extensions: 25 // 26 // "hello (\\w+) world" -- \w matches a "word" character 27 // "version (\\d+)" -- \d matches a digit 28 // "hello\\s+world" -- \s matches any whitespace character 29 // "\\b(\\w+)\\b" -- \b matches non-empty string at word boundary 30 // "(?i)hello" -- (?i) turns on case-insensitive matching 31 // "/\\*(.*?)\\*/" -- .*? matches . minimum no. of times possible 32 // 33 // ----------------------------------------------------------------------- 34 // MATCHING INTERFACE: 35 // 36 // The "FullMatch" operation checks that supplied text matches a 37 // supplied pattern exactly. 38 // 39 // Example: successful match 40 // CHECK(RE2::FullMatch("hello", "h.*o")); 41 // 42 // Example: unsuccessful match (requires full match): 43 // CHECK(!RE2::FullMatch("hello", "e")); 44 // 45 // ----------------------------------------------------------------------- 46 // UTF-8 AND THE MATCHING INTERFACE: 47 // 48 // By default, the pattern and input text are interpreted as UTF-8. 49 // The RE2::Latin1 option causes them to be interpreted as Latin-1. 50 // 51 // Example: 52 // CHECK(RE2::FullMatch(utf8_string, RE2(utf8_pattern))); 53 // CHECK(RE2::FullMatch(latin1_string, RE2(latin1_pattern, RE2::Latin1))); 54 // 55 // ----------------------------------------------------------------------- 56 // MATCHING WITH SUB-STRING EXTRACTION: 57 // 58 // You can supply extra pointer arguments to extract matched subpieces. 59 // 60 // Example: extracts "ruby" into "s" and 1234 into "i" 61 // int i; 62 // string s; 63 // CHECK(RE2::FullMatch("ruby:1234", "(\\w+):(\\d+)", &s, &i)); 64 // 65 // Example: fails because string cannot be stored in integer 66 // CHECK(!RE2::FullMatch("ruby", "(.*)", &i)); 67 // 68 // Example: fails because there aren't enough sub-patterns: 69 // CHECK(!RE2::FullMatch("ruby:1234", "\\w+:\\d+", &s)); 70 // 71 // Example: does not try to extract any extra sub-patterns 72 // CHECK(RE2::FullMatch("ruby:1234", "(\\w+):(\\d+)", &s)); 73 // 74 // Example: does not try to extract into NULL 75 // CHECK(RE2::FullMatch("ruby:1234", "(\\w+):(\\d+)", NULL, &i)); 76 // 77 // Example: integer overflow causes failure 78 // CHECK(!RE2::FullMatch("ruby:1234567891234", "\\w+:(\\d+)", &i)); 79 // 80 // NOTE(rsc): Asking for substrings slows successful matches quite a bit. 81 // This may get a little faster in the future, but right now is slower 82 // than PCRE. On the other hand, failed matches run *very* fast (faster 83 // than PCRE), as do matches without substring extraction. 84 // 85 // ----------------------------------------------------------------------- 86 // PARTIAL MATCHES 87 // 88 // You can use the "PartialMatch" operation when you want the pattern 89 // to match any substring of the text. 90 // 91 // Example: simple search for a string: 92 // CHECK(RE2::PartialMatch("hello", "ell")); 93 // 94 // Example: find first number in a string 95 // int number; 96 // CHECK(RE2::PartialMatch("x*100 + 20", "(\\d+)", &number)); 97 // CHECK_EQ(number, 100); 98 // 99 // ----------------------------------------------------------------------- 100 // PRE-COMPILED REGULAR EXPRESSIONS 101 // 102 // RE2 makes it easy to use any string as a regular expression, without 103 // requiring a separate compilation step. 104 // 105 // If speed is of the essence, you can create a pre-compiled "RE2" 106 // object from the pattern and use it multiple times. If you do so, 107 // you can typically parse text faster than with sscanf. 108 // 109 // Example: precompile pattern for faster matching: 110 // RE2 pattern("h.*o"); 111 // while (ReadLine(&str)) { 112 // if (RE2::FullMatch(str, pattern)) ...; 113 // } 114 // 115 // ----------------------------------------------------------------------- 116 // SCANNING TEXT INCREMENTALLY 117 // 118 // The "Consume" operation may be useful if you want to repeatedly 119 // match regular expressions at the front of a string and skip over 120 // them as they match. This requires use of the "StringPiece" type, 121 // which represents a sub-range of a real string. 122 // 123 // Example: read lines of the form "var = value" from a string. 124 // string contents = ...; // Fill string somehow 125 // StringPiece input(contents); // Wrap a StringPiece around it 126 // 127 // string var; 128 // int value; 129 // while (RE2::Consume(&input, "(\\w+) = (\\d+)\n", &var, &value)) { 130 // ...; 131 // } 132 // 133 // Each successful call to "Consume" will set "var/value", and also 134 // advance "input" so it points past the matched text. Note that if the 135 // regular expression matches an empty string, input will advance 136 // by 0 bytes. If the regular expression being used might match 137 // an empty string, the loop body must check for this case and either 138 // advance the string or break out of the loop. 139 // 140 // The "FindAndConsume" operation is similar to "Consume" but does not 141 // anchor your match at the beginning of the string. For example, you 142 // could extract all words from a string by repeatedly calling 143 // RE2::FindAndConsume(&input, "(\\w+)", &word) 144 // 145 // ----------------------------------------------------------------------- 146 // USING VARIABLE NUMBER OF ARGUMENTS 147 // 148 // The above operations require you to know the number of arguments 149 // when you write the code. This is not always possible or easy (for 150 // example, the regular expression may be calculated at run time). 151 // You can use the "N" version of the operations when the number of 152 // match arguments are determined at run time. 153 // 154 // Example: 155 // const RE2::Arg* args[10]; 156 // int n; 157 // // ... populate args with pointers to RE2::Arg values ... 158 // // ... set n to the number of RE2::Arg objects ... 159 // bool match = RE2::FullMatchN(input, pattern, args, n); 160 // 161 // The last statement is equivalent to 162 // 163 // bool match = RE2::FullMatch(input, pattern, 164 // *args[0], *args[1], ..., *args[n - 1]); 165 // 166 // ----------------------------------------------------------------------- 167 // PARSING HEX/OCTAL/C-RADIX NUMBERS 168 // 169 // By default, if you pass a pointer to a numeric value, the 170 // corresponding text is interpreted as a base-10 number. You can 171 // instead wrap the pointer with a call to one of the operators Hex(), 172 // Octal(), or CRadix() to interpret the text in another base. The 173 // CRadix operator interprets C-style "0" (base-8) and "0x" (base-16) 174 // prefixes, but defaults to base-10. 175 // 176 // Example: 177 // int a, b, c, d; 178 // CHECK(RE2::FullMatch("100 40 0100 0x40", "(.*) (.*) (.*) (.*)", 179 // RE2::Octal(&a), RE2::Hex(&b), RE2::CRadix(&c), RE2::CRadix(&d)); 180 // will leave 64 in a, b, c, and d. 181 182 183 #include <stdint.h> 184 #include <map> 185 #include <string> 186 #include "re2/stringpiece.h" 187 #include "re2/variadic_function.h" 188 189 namespace re2 { 190 191 using std::string; 192 using std::map; 193 class Mutex; 194 class Prog; 195 class Regexp; 196 197 // The following enum should be used only as a constructor argument to indicate 198 // that the variable has static storage class, and that the constructor should 199 // do nothing to its state. It indicates to the reader that it is legal to 200 // declare a static instance of the class, provided the constructor is given 201 // the LINKER_INITIALIZED argument. Normally, it is unsafe to declare a 202 // static variable that has a constructor or a destructor because invocation 203 // order is undefined. However, IF the type can be initialized by filling with 204 // zeroes (which the loader does for static variables), AND the type's 205 // destructor does nothing to the storage, then a constructor for static 206 // initialization can be declared as 207 // explicit MyClass(LinkerInitialized x) {} 208 // and invoked as 209 // static MyClass my_variable_name(LINKER_INITIALIZED); 210 enum LinkerInitialized { LINKER_INITIALIZED }; 211 212 // Interface for regular expression matching. Also corresponds to a 213 // pre-compiled regular expression. An "RE2" object is safe for 214 // concurrent use by multiple threads. 215 class RE2 { 216 public: 217 // We convert user-passed pointers into special Arg objects 218 class Arg; 219 class Options; 220 221 // Defined in set.h. 222 class Set; 223 224 enum ErrorCode { 225 NoError = 0, 226 227 // Unexpected error 228 ErrorInternal, 229 230 // Parse errors 231 ErrorBadEscape, // bad escape sequence 232 ErrorBadCharClass, // bad character class 233 ErrorBadCharRange, // bad character class range 234 ErrorMissingBracket, // missing closing ] 235 ErrorMissingParen, // missing closing ) 236 ErrorTrailingBackslash, // trailing \ at end of regexp 237 ErrorRepeatArgument, // repeat argument missing, e.g. "*" 238 ErrorRepeatSize, // bad repetition argument 239 ErrorRepeatOp, // bad repetition operator 240 ErrorBadPerlOp, // bad perl operator 241 ErrorBadUTF8, // invalid UTF-8 in regexp 242 ErrorBadNamedCapture, // bad named capture group 243 ErrorPatternTooLarge, // pattern too large (compile failed) 244 }; 245 246 // Predefined common options. 247 // If you need more complicated things, instantiate 248 // an Option class, possibly passing one of these to 249 // the Option constructor, change the settings, and pass that 250 // Option class to the RE2 constructor. 251 enum CannedOptions { 252 DefaultOptions = 0, 253 Latin1, // treat input as Latin-1 (default UTF-8) 254 POSIX, // POSIX syntax, leftmost-longest match 255 Quiet // do not log about regexp parse errors 256 }; 257 258 // Need to have the const char* and const string& forms for implicit 259 // conversions when passing string literals to FullMatch and PartialMatch. 260 // Otherwise the StringPiece form would be sufficient. 261 #ifndef SWIG 262 RE2(const char* pattern); 263 RE2(const string& pattern); 264 #endif 265 RE2(const StringPiece& pattern); 266 RE2(const StringPiece& pattern, const Options& option); 267 ~RE2(); 268 269 // Returns whether RE2 was created properly. 270 bool ok() const { return error_code() == NoError; } 271 272 // The string specification for this RE2. E.g. 273 // RE2 re("ab*c?d+"); 274 // re.pattern(); // "ab*c?d+" 275 const string& pattern() const { return pattern_; } 276 277 // If RE2 could not be created properly, returns an error string. 278 // Else returns the empty string. 279 const string& error() const { return *error_; } 280 281 // If RE2 could not be created properly, returns an error code. 282 // Else returns RE2::NoError (== 0). 283 ErrorCode error_code() const { return error_code_; } 284 285 // If RE2 could not be created properly, returns the offending 286 // portion of the regexp. 287 const string& error_arg() const { return error_arg_; } 288 289 // Returns the program size, a very approximate measure of a regexp's "cost". 290 // Larger numbers are more expensive than smaller numbers. 291 int ProgramSize() const; 292 293 // Returns the underlying Regexp; not for general use. 294 // Returns entire_regexp_ so that callers don't need 295 // to know about prefix_ and prefix_foldcase_. 296 re2::Regexp* Regexp() const { return entire_regexp_; } 297 298 /***** The useful part: the matching interface *****/ 299 300 // Matches "text" against "pattern". If pointer arguments are 301 // supplied, copies matched sub-patterns into them. 302 // 303 // You can pass in a "const char*" or a "string" for "text". 304 // You can pass in a "const char*" or a "string" or a "RE2" for "pattern". 305 // 306 // The provided pointer arguments can be pointers to any scalar numeric 307 // type, or one of: 308 // string (matched piece is copied to string) 309 // StringPiece (StringPiece is mutated to point to matched piece) 310 // T (where "bool T::ParseFrom(const char*, int)" exists) 311 // (void*)NULL (the corresponding matched sub-pattern is not copied) 312 // 313 // Returns true iff all of the following conditions are satisfied: 314 // a. "text" matches "pattern" exactly 315 // b. The number of matched sub-patterns is >= number of supplied pointers 316 // c. The "i"th argument has a suitable type for holding the 317 // string captured as the "i"th sub-pattern. If you pass in 318 // NULL for the "i"th argument, or pass fewer arguments than 319 // number of sub-patterns, "i"th captured sub-pattern is 320 // ignored. 321 // 322 // CAVEAT: An optional sub-pattern that does not exist in the 323 // matched string is assigned the empty string. Therefore, the 324 // following will return false (because the empty string is not a 325 // valid number): 326 // int number; 327 // RE2::FullMatch("abc", "[a-z]+(\\d+)?", &number); 328 static bool FullMatchN(const StringPiece& text, const RE2& re, 329 const Arg* const args[], int argc); 330 static const VariadicFunction2< 331 bool, const StringPiece&, const RE2&, Arg, RE2::FullMatchN> FullMatch; 332 333 // Exactly like FullMatch(), except that "pattern" is allowed to match 334 // a substring of "text". 335 static bool PartialMatchN(const StringPiece& text, const RE2& re, // 3..16 args 336 const Arg* const args[], int argc); 337 static const VariadicFunction2< 338 bool, const StringPiece&, const RE2&, Arg, RE2::PartialMatchN> PartialMatch; 339 340 // Like FullMatch() and PartialMatch(), except that pattern has to 341 // match a prefix of "text", and "input" is advanced past the matched 342 // text. Note: "input" is modified iff this routine returns true. 343 static bool ConsumeN(StringPiece* input, const RE2& pattern, // 3..16 args 344 const Arg* const args[], int argc); 345 static const VariadicFunction2< 346 bool, StringPiece*, const RE2&, Arg, RE2::ConsumeN> Consume; 347 348 // Like Consume(..), but does not anchor the match at the beginning of the 349 // string. That is, "pattern" need not start its match at the beginning of 350 // "input". For example, "FindAndConsume(s, "(\\w+)", &word)" finds the next 351 // word in "s" and stores it in "word". 352 static bool FindAndConsumeN(StringPiece* input, const RE2& pattern, 353 const Arg* const args[], int argc); 354 static const VariadicFunction2< 355 bool, StringPiece*, const RE2&, Arg, RE2::FindAndConsumeN> FindAndConsume; 356 357 // Replace the first match of "pattern" in "str" with "rewrite". 358 // Within "rewrite", backslash-escaped digits (\1 to \9) can be 359 // used to insert text matching corresponding parenthesized group 360 // from the pattern. \0 in "rewrite" refers to the entire matching 361 // text. E.g., 362 // 363 // string s = "yabba dabba doo"; 364 // CHECK(RE2::Replace(&s, "b+", "d")); 365 // 366 // will leave "s" containing "yada dabba doo" 367 // 368 // Returns true if the pattern matches and a replacement occurs, 369 // false otherwise. 370 static bool Replace(string *str, 371 const RE2& pattern, 372 const StringPiece& rewrite); 373 374 // Like Replace(), except replaces successive non-overlapping occurrences 375 // of the pattern in the string with the rewrite. E.g. 376 // 377 // string s = "yabba dabba doo"; 378 // CHECK(RE2::GlobalReplace(&s, "b+", "d")); 379 // 380 // will leave "s" containing "yada dada doo" 381 // Replacements are not subject to re-matching. 382 // 383 // Because GlobalReplace only replaces non-overlapping matches, 384 // replacing "ana" within "banana" makes only one replacement, not two. 385 // 386 // Returns the number of replacements made. 387 static int GlobalReplace(string *str, 388 const RE2& pattern, 389 const StringPiece& rewrite); 390 391 // Like Replace, except that if the pattern matches, "rewrite" 392 // is copied into "out" with substitutions. The non-matching 393 // portions of "text" are ignored. 394 // 395 // Returns true iff a match occurred and the extraction happened 396 // successfully; if no match occurs, the string is left unaffected. 397 static bool Extract(const StringPiece &text, 398 const RE2& pattern, 399 const StringPiece &rewrite, 400 string *out); 401 402 // Escapes all potentially meaningful regexp characters in 403 // 'unquoted'. The returned string, used as a regular expression, 404 // will exactly match the original string. For example, 405 // 1.5-2.0? 406 // may become: 407 // 1\.5\-2\.0\? 408 static string QuoteMeta(const StringPiece& unquoted); 409 410 // Computes range for any strings matching regexp. The min and max can in 411 // some cases be arbitrarily precise, so the caller gets to specify the 412 // maximum desired length of string returned. 413 // 414 // Assuming PossibleMatchRange(&min, &max, N) returns successfully, any 415 // string s that is an anchored match for this regexp satisfies 416 // min <= s && s <= max. 417 // 418 // Note that PossibleMatchRange() will only consider the first copy of an 419 // infinitely repeated element (i.e., any regexp element followed by a '*' or 420 // '+' operator). Regexps with "{N}" constructions are not affected, as those 421 // do not compile down to infinite repetitions. 422 // 423 // Returns true on success, false on error. 424 bool PossibleMatchRange(string* min, string* max, int maxlen) const; 425 426 // Generic matching interface 427 428 // Type of match. 429 enum Anchor { 430 UNANCHORED, // No anchoring 431 ANCHOR_START, // Anchor at start only 432 ANCHOR_BOTH, // Anchor at start and end 433 }; 434 435 // Return the number of capturing subpatterns, or -1 if the 436 // regexp wasn't valid on construction. The overall match ($0) 437 // does not count: if the regexp is "(a)(b)", returns 2. 438 int NumberOfCapturingGroups() const; 439 440 441 // Return a map from names to capturing indices. 442 // The map records the index of the leftmost group 443 // with the given name. 444 // Only valid until the re is deleted. 445 const map<string, int>& NamedCapturingGroups() const; 446 447 // Return a map from capturing indices to names. 448 // The map has no entries for unnamed groups. 449 // Only valid until the re is deleted. 450 const map<int, string>& CapturingGroupNames() const; 451 452 // General matching routine. 453 // Match against text starting at offset startpos 454 // and stopping the search at offset endpos. 455 // Returns true if match found, false if not. 456 // On a successful match, fills in match[] (up to nmatch entries) 457 // with information about submatches. 458 // I.e. matching RE2("(foo)|(bar)baz") on "barbazbla" will return true, 459 // setting match[0] = "barbaz", match[1] = NULL, match[2] = "bar", 460 // match[3] = NULL, ..., up to match[nmatch-1] = NULL. 461 // 462 // Don't ask for more match information than you will use: 463 // runs much faster with nmatch == 1 than nmatch > 1, and 464 // runs even faster if nmatch == 0. 465 // Doesn't make sense to use nmatch > 1 + NumberOfCapturingGroups(), 466 // but will be handled correctly. 467 // 468 // Passing text == StringPiece(NULL, 0) will be handled like any other 469 // empty string, but note that on return, it will not be possible to tell 470 // whether submatch i matched the empty string or did not match: 471 // either way, match[i] == NULL. 472 bool Match(const StringPiece& text, 473 int startpos, 474 int endpos, 475 Anchor anchor, 476 StringPiece *match, 477 int nmatch) const; 478 479 // Check that the given rewrite string is suitable for use with this 480 // regular expression. It checks that: 481 // * The regular expression has enough parenthesized subexpressions 482 // to satisfy all of the \N tokens in rewrite 483 // * The rewrite string doesn't have any syntax errors. E.g., 484 // '\' followed by anything other than a digit or '\'. 485 // A true return value guarantees that Replace() and Extract() won't 486 // fail because of a bad rewrite string. 487 bool CheckRewriteString(const StringPiece& rewrite, string* error) const; 488 489 // Returns the maximum submatch needed for the rewrite to be done by 490 // Replace(). E.g. if rewrite == "foo \\2,\\1", returns 2. 491 static int MaxSubmatch(const StringPiece& rewrite); 492 493 // Append the "rewrite" string, with backslash subsitutions from "vec", 494 // to string "out". 495 // Returns true on success. This method can fail because of a malformed 496 // rewrite string. CheckRewriteString guarantees that the rewrite will 497 // be sucessful. 498 bool Rewrite(string *out, 499 const StringPiece &rewrite, 500 const StringPiece* vec, 501 int veclen) const; 502 503 // Constructor options 504 class Options { 505 public: 506 // The options are (defaults in parentheses): 507 // 508 // utf8 (true) text and pattern are UTF-8; otherwise Latin-1 509 // posix_syntax (false) restrict regexps to POSIX egrep syntax 510 // longest_match (false) search for longest match, not first match 511 // log_errors (true) log syntax and execution errors to ERROR 512 // max_mem (see below) approx. max memory footprint of RE2 513 // literal (false) interpret string as literal, not regexp 514 // never_nl (false) never match \n, even if it is in regexp 515 // never_capture (false) parse all parens as non-capturing 516 // case_sensitive (true) match is case-sensitive (regexp can override 517 // with (?i) unless in posix_syntax mode) 518 // 519 // The following options are only consulted when posix_syntax == true. 520 // (When posix_syntax == false these features are always enabled and 521 // cannot be turned off.) 522 // perl_classes (false) allow Perl's \d \s \w \D \S \W 523 // word_boundary (false) allow Perl's \b \B (word boundary and not) 524 // one_line (false) ^ and $ only match beginning and end of text 525 // 526 // The max_mem option controls how much memory can be used 527 // to hold the compiled form of the regexp (the Prog) and 528 // its cached DFA graphs. Code Search placed limits on the number 529 // of Prog instructions and DFA states: 10,000 for both. 530 // In RE2, those limits would translate to about 240 KB per Prog 531 // and perhaps 2.5 MB per DFA (DFA state sizes vary by regexp; RE2 does a 532 // better job of keeping them small than Code Search did). 533 // Each RE2 has two Progs (one forward, one reverse), and each Prog 534 // can have two DFAs (one first match, one longest match). 535 // That makes 4 DFAs: 536 // 537 // forward, first-match - used for UNANCHORED or ANCHOR_LEFT searches 538 // if opt.longest_match() == false 539 // forward, longest-match - used for all ANCHOR_BOTH searches, 540 // and the other two kinds if 541 // opt.longest_match() == true 542 // reverse, first-match - never used 543 // reverse, longest-match - used as second phase for unanchored searches 544 // 545 // The RE2 memory budget is statically divided between the two 546 // Progs and then the DFAs: two thirds to the forward Prog 547 // and one third to the reverse Prog. The forward Prog gives half 548 // of what it has left over to each of its DFAs. The reverse Prog 549 // gives it all to its longest-match DFA. 550 // 551 // Once a DFA fills its budget, it flushes its cache and starts over. 552 // If this happens too often, RE2 falls back on the NFA implementation. 553 554 // For now, make the default budget something close to Code Search. 555 static const int kDefaultMaxMem = 8<<20; 556 557 enum Encoding { 558 EncodingUTF8 = 1, 559 EncodingLatin1 560 }; 561 562 Options() : 563 encoding_(EncodingUTF8), 564 posix_syntax_(false), 565 longest_match_(false), 566 log_errors_(true), 567 max_mem_(kDefaultMaxMem), 568 literal_(false), 569 never_nl_(false), 570 never_capture_(false), 571 case_sensitive_(true), 572 perl_classes_(false), 573 word_boundary_(false), 574 one_line_(false) { 575 } 576 577 /*implicit*/ Options(CannedOptions); 578 579 Encoding encoding() const { return encoding_; } 580 void set_encoding(Encoding encoding) { encoding_ = encoding; } 581 582 // Legacy interface to encoding. 583 // TODO(rsc): Remove once clients have been converted. 584 bool utf8() const { return encoding_ == EncodingUTF8; } 585 void set_utf8(bool b) { 586 if (b) { 587 encoding_ = EncodingUTF8; 588 } else { 589 encoding_ = EncodingLatin1; 590 } 591 } 592 593 bool posix_syntax() const { return posix_syntax_; } 594 void set_posix_syntax(bool b) { posix_syntax_ = b; } 595 596 bool longest_match() const { return longest_match_; } 597 void set_longest_match(bool b) { longest_match_ = b; } 598 599 bool log_errors() const { return log_errors_; } 600 void set_log_errors(bool b) { log_errors_ = b; } 601 602 int max_mem() const { return max_mem_; } 603 void set_max_mem(int m) { max_mem_ = m; } 604 605 bool literal() const { return literal_; } 606 void set_literal(bool b) { literal_ = b; } 607 608 bool never_nl() const { return never_nl_; } 609 void set_never_nl(bool b) { never_nl_ = b; } 610 611 bool never_capture() const { return never_capture_; } 612 void set_never_capture(bool b) { never_capture_ = b; } 613 614 bool case_sensitive() const { return case_sensitive_; } 615 void set_case_sensitive(bool b) { case_sensitive_ = b; } 616 617 bool perl_classes() const { return perl_classes_; } 618 void set_perl_classes(bool b) { perl_classes_ = b; } 619 620 bool word_boundary() const { return word_boundary_; } 621 void set_word_boundary(bool b) { word_boundary_ = b; } 622 623 bool one_line() const { return one_line_; } 624 void set_one_line(bool b) { one_line_ = b; } 625 626 void Copy(const Options& src) { 627 encoding_ = src.encoding_; 628 posix_syntax_ = src.posix_syntax_; 629 longest_match_ = src.longest_match_; 630 log_errors_ = src.log_errors_; 631 max_mem_ = src.max_mem_; 632 literal_ = src.literal_; 633 never_nl_ = src.never_nl_; 634 never_capture_ = src.never_capture_; 635 case_sensitive_ = src.case_sensitive_; 636 perl_classes_ = src.perl_classes_; 637 word_boundary_ = src.word_boundary_; 638 one_line_ = src.one_line_; 639 } 640 641 int ParseFlags() const; 642 643 private: 644 Encoding encoding_; 645 bool posix_syntax_; 646 bool longest_match_; 647 bool log_errors_; 648 int64_t max_mem_; 649 bool literal_; 650 bool never_nl_; 651 bool never_capture_; 652 bool case_sensitive_; 653 bool perl_classes_; 654 bool word_boundary_; 655 bool one_line_; 656 657 //DISALLOW_EVIL_CONSTRUCTORS(Options); 658 Options(const Options&); 659 void operator=(const Options&); 660 }; 661 662 // Returns the options set in the constructor. 663 const Options& options() const { return options_; }; 664 665 // Argument converters; see below. 666 static inline Arg CRadix(short* x); 667 static inline Arg CRadix(unsigned short* x); 668 static inline Arg CRadix(int* x); 669 static inline Arg CRadix(unsigned int* x); 670 static inline Arg CRadix(long* x); 671 static inline Arg CRadix(unsigned long* x); 672 static inline Arg CRadix(long long* x); 673 static inline Arg CRadix(unsigned long long* x); 674 675 static inline Arg Hex(short* x); 676 static inline Arg Hex(unsigned short* x); 677 static inline Arg Hex(int* x); 678 static inline Arg Hex(unsigned int* x); 679 static inline Arg Hex(long* x); 680 static inline Arg Hex(unsigned long* x); 681 static inline Arg Hex(long long* x); 682 static inline Arg Hex(unsigned long long* x); 683 684 static inline Arg Octal(short* x); 685 static inline Arg Octal(unsigned short* x); 686 static inline Arg Octal(int* x); 687 static inline Arg Octal(unsigned int* x); 688 static inline Arg Octal(long* x); 689 static inline Arg Octal(unsigned long* x); 690 static inline Arg Octal(long long* x); 691 static inline Arg Octal(unsigned long long* x); 692 693 private: 694 void Init(const StringPiece& pattern, const Options& options); 695 696 bool DoMatch(const StringPiece& text, 697 Anchor anchor, 698 int* consumed, 699 const Arg* const args[], 700 int n) const; 701 702 re2::Prog* ReverseProg() const; 703 704 mutable Mutex* mutex_; 705 string pattern_; // string regular expression 706 Options options_; // option flags 707 string prefix_; // required prefix (before regexp_) 708 bool prefix_foldcase_; // prefix is ASCII case-insensitive 709 re2::Regexp* entire_regexp_; // parsed regular expression 710 re2::Regexp* suffix_regexp_; // parsed regular expression, prefix removed 711 re2::Prog* prog_; // compiled program for regexp 712 mutable re2::Prog* rprog_; // reverse program for regexp 713 bool is_one_pass_; // can use prog_->SearchOnePass? 714 mutable const string* error_; // Error indicator 715 // (or points to empty string) 716 mutable ErrorCode error_code_; // Error code 717 mutable string error_arg_; // Fragment of regexp showing error 718 mutable int num_captures_; // Number of capturing groups 719 720 // Map from capture names to indices 721 mutable const map<string, int>* named_groups_; 722 723 // Map from capture indices to names 724 mutable const map<int, string>* group_names_; 725 726 //DISALLOW_EVIL_CONSTRUCTORS(RE2); 727 RE2(const RE2&); 728 void operator=(const RE2&); 729 }; 730 731 /***** Implementation details *****/ 732 733 // Hex/Octal/Binary? 734 735 // Special class for parsing into objects that define a ParseFrom() method 736 template <class T> 737 class _RE2_MatchObject { 738 public: 739 static inline bool Parse(const char* str, int n, void* dest) { 740 if (dest == NULL) return true; 741 T* object = reinterpret_cast<T*>(dest); 742 return object->ParseFrom(str, n); 743 } 744 }; 745 746 class RE2::Arg { 747 public: 748 // Empty constructor so we can declare arrays of RE2::Arg 749 Arg(); 750 751 // Constructor specially designed for NULL arguments 752 Arg(void*); 753 754 typedef bool (*Parser)(const char* str, int n, void* dest); 755 756 // Type-specific parsers 757 #define MAKE_PARSER(type,name) \ 758 Arg(type* p) : arg_(p), parser_(name) { } \ 759 Arg(type* p, Parser parser) : arg_(p), parser_(parser) { } \ 760 761 762 MAKE_PARSER(char, parse_char); 763 MAKE_PARSER(signed char, parse_char); 764 MAKE_PARSER(unsigned char, parse_uchar); 765 MAKE_PARSER(short, parse_short); 766 MAKE_PARSER(unsigned short, parse_ushort); 767 MAKE_PARSER(int, parse_int); 768 MAKE_PARSER(unsigned int, parse_uint); 769 MAKE_PARSER(long, parse_long); 770 MAKE_PARSER(unsigned long, parse_ulong); 771 MAKE_PARSER(long long, parse_longlong); 772 MAKE_PARSER(unsigned long long, parse_ulonglong); 773 MAKE_PARSER(float, parse_float); 774 MAKE_PARSER(double, parse_double); 775 MAKE_PARSER(string, parse_string); 776 MAKE_PARSER(StringPiece, parse_stringpiece); 777 778 #undef MAKE_PARSER 779 780 // Generic constructor 781 template <class T> Arg(T*, Parser parser); 782 // Generic constructor template 783 template <class T> Arg(T* p) 784 : arg_(p), parser_(_RE2_MatchObject<T>::Parse) { 785 } 786 787 // Parse the data 788 bool Parse(const char* str, int n) const; 789 790 private: 791 void* arg_; 792 Parser parser_; 793 794 static bool parse_null (const char* str, int n, void* dest); 795 static bool parse_char (const char* str, int n, void* dest); 796 static bool parse_uchar (const char* str, int n, void* dest); 797 static bool parse_float (const char* str, int n, void* dest); 798 static bool parse_double (const char* str, int n, void* dest); 799 static bool parse_string (const char* str, int n, void* dest); 800 static bool parse_stringpiece (const char* str, int n, void* dest); 801 802 #define DECLARE_INTEGER_PARSER(name) \ 803 private: \ 804 static bool parse_ ## name(const char* str, int n, void* dest); \ 805 static bool parse_ ## name ## _radix( \ 806 const char* str, int n, void* dest, int radix); \ 807 public: \ 808 static bool parse_ ## name ## _hex(const char* str, int n, void* dest); \ 809 static bool parse_ ## name ## _octal(const char* str, int n, void* dest); \ 810 static bool parse_ ## name ## _cradix(const char* str, int n, void* dest) 811 812 DECLARE_INTEGER_PARSER(short); 813 DECLARE_INTEGER_PARSER(ushort); 814 DECLARE_INTEGER_PARSER(int); 815 DECLARE_INTEGER_PARSER(uint); 816 DECLARE_INTEGER_PARSER(long); 817 DECLARE_INTEGER_PARSER(ulong); 818 DECLARE_INTEGER_PARSER(longlong); 819 DECLARE_INTEGER_PARSER(ulonglong); 820 821 #undef DECLARE_INTEGER_PARSER 822 }; 823 824 inline RE2::Arg::Arg() : arg_(NULL), parser_(parse_null) { } 825 inline RE2::Arg::Arg(void* p) : arg_(p), parser_(parse_null) { } 826 827 inline bool RE2::Arg::Parse(const char* str, int n) const { 828 return (*parser_)(str, n, arg_); 829 } 830 831 // This part of the parser, appropriate only for ints, deals with bases 832 #define MAKE_INTEGER_PARSER(type, name) \ 833 inline RE2::Arg RE2::Hex(type* ptr) { \ 834 return RE2::Arg(ptr, RE2::Arg::parse_ ## name ## _hex); } \ 835 inline RE2::Arg RE2::Octal(type* ptr) { \ 836 return RE2::Arg(ptr, RE2::Arg::parse_ ## name ## _octal); } \ 837 inline RE2::Arg RE2::CRadix(type* ptr) { \ 838 return RE2::Arg(ptr, RE2::Arg::parse_ ## name ## _cradix); } 839 840 MAKE_INTEGER_PARSER(short, short); 841 MAKE_INTEGER_PARSER(unsigned short, ushort); 842 MAKE_INTEGER_PARSER(int, int); 843 MAKE_INTEGER_PARSER(unsigned int, uint); 844 MAKE_INTEGER_PARSER(long, long); 845 MAKE_INTEGER_PARSER(unsigned long, ulong); 846 MAKE_INTEGER_PARSER(long long, longlong); 847 MAKE_INTEGER_PARSER(unsigned long long, ulonglong); 848 849 #undef MAKE_INTEGER_PARSER 850 851 } // namespace re2 852 853 using re2::RE2; 854 855 #endif /* RE2_RE2_H */ 856