Home | History | Annotate | Download | only in Core
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1 (at) gmail.com>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 #ifndef EIGEN_NUMTRAITS_H
     11 #define EIGEN_NUMTRAITS_H
     12 
     13 namespace Eigen {
     14 
     15 namespace internal {
     16 
     17 // default implementation of digits10(), based on numeric_limits if specialized,
     18 // 0 for integer types, and log10(epsilon()) otherwise.
     19 template< typename T,
     20           bool use_numeric_limits = std::numeric_limits<T>::is_specialized,
     21           bool is_integer = NumTraits<T>::IsInteger>
     22 struct default_digits10_impl
     23 {
     24   static int run() { return std::numeric_limits<T>::digits10; }
     25 };
     26 
     27 template<typename T>
     28 struct default_digits10_impl<T,false,false> // Floating point
     29 {
     30   static int run() {
     31     using std::log10;
     32     using std::ceil;
     33     typedef typename NumTraits<T>::Real Real;
     34     return int(ceil(-log10(NumTraits<Real>::epsilon())));
     35   }
     36 };
     37 
     38 template<typename T>
     39 struct default_digits10_impl<T,false,true> // Integer
     40 {
     41   static int run() { return 0; }
     42 };
     43 
     44 } // end namespace internal
     45 
     46 /** \class NumTraits
     47   * \ingroup Core_Module
     48   *
     49   * \brief Holds information about the various numeric (i.e. scalar) types allowed by Eigen.
     50   *
     51   * \tparam T the numeric type at hand
     52   *
     53   * This class stores enums, typedefs and static methods giving information about a numeric type.
     54   *
     55   * The provided data consists of:
     56   * \li A typedef \c Real, giving the "real part" type of \a T. If \a T is already real,
     57   *     then \c Real is just a typedef to \a T. If \a T is \c std::complex<U> then \c Real
     58   *     is a typedef to \a U.
     59   * \li A typedef \c NonInteger, giving the type that should be used for operations producing non-integral values,
     60   *     such as quotients, square roots, etc. If \a T is a floating-point type, then this typedef just gives
     61   *     \a T again. Note however that many Eigen functions such as internal::sqrt simply refuse to
     62   *     take integers. Outside of a few cases, Eigen doesn't do automatic type promotion. Thus, this typedef is
     63   *     only intended as a helper for code that needs to explicitly promote types.
     64   * \li A typedef \c Literal giving the type to use for numeric literals such as "2" or "0.5". For instance, for \c std::complex<U>, Literal is defined as \c U.
     65   *     Of course, this type must be fully compatible with \a T. In doubt, just use \a T here.
     66   * \li A typedef \a Nested giving the type to use to nest a value inside of the expression tree. If you don't know what
     67   *     this means, just use \a T here.
     68   * \li An enum value \a IsComplex. It is equal to 1 if \a T is a \c std::complex
     69   *     type, and to 0 otherwise.
     70   * \li An enum value \a IsInteger. It is equal to \c 1 if \a T is an integer type such as \c int,
     71   *     and to \c 0 otherwise.
     72   * \li Enum values ReadCost, AddCost and MulCost representing a rough estimate of the number of CPU cycles needed
     73   *     to by move / add / mul instructions respectively, assuming the data is already stored in CPU registers.
     74   *     Stay vague here. No need to do architecture-specific stuff.
     75   * \li An enum value \a IsSigned. It is equal to \c 1 if \a T is a signed type and to 0 if \a T is unsigned.
     76   * \li An enum value \a RequireInitialization. It is equal to \c 1 if the constructor of the numeric type \a T must
     77   *     be called, and to 0 if it is safe not to call it. Default is 0 if \a T is an arithmetic type, and 1 otherwise.
     78   * \li An epsilon() function which, unlike <a href="http://en.cppreference.com/w/cpp/types/numeric_limits/epsilon">std::numeric_limits::epsilon()</a>,
     79   *     it returns a \a Real instead of a \a T.
     80   * \li A dummy_precision() function returning a weak epsilon value. It is mainly used as a default
     81   *     value by the fuzzy comparison operators.
     82   * \li highest() and lowest() functions returning the highest and lowest possible values respectively.
     83   * \li digits10() function returning the number of decimal digits that can be represented without change. This is
     84   *     the analogue of <a href="http://en.cppreference.com/w/cpp/types/numeric_limits/digits10">std::numeric_limits<T>::digits10</a>
     85   *     which is used as the default implementation if specialized.
     86   */
     87 
     88 template<typename T> struct GenericNumTraits
     89 {
     90   enum {
     91     IsInteger = std::numeric_limits<T>::is_integer,
     92     IsSigned = std::numeric_limits<T>::is_signed,
     93     IsComplex = 0,
     94     RequireInitialization = internal::is_arithmetic<T>::value ? 0 : 1,
     95     ReadCost = 1,
     96     AddCost = 1,
     97     MulCost = 1
     98   };
     99 
    100   typedef T Real;
    101   typedef typename internal::conditional<
    102                      IsInteger,
    103                      typename internal::conditional<sizeof(T)<=2, float, double>::type,
    104                      T
    105                    >::type NonInteger;
    106   typedef T Nested;
    107   typedef T Literal;
    108 
    109   EIGEN_DEVICE_FUNC
    110   static inline Real epsilon()
    111   {
    112     return numext::numeric_limits<T>::epsilon();
    113   }
    114 
    115   EIGEN_DEVICE_FUNC
    116   static inline int digits10()
    117   {
    118     return internal::default_digits10_impl<T>::run();
    119   }
    120 
    121   EIGEN_DEVICE_FUNC
    122   static inline Real dummy_precision()
    123   {
    124     // make sure to override this for floating-point types
    125     return Real(0);
    126   }
    127 
    128 
    129   EIGEN_DEVICE_FUNC
    130   static inline T highest() {
    131     return (numext::numeric_limits<T>::max)();
    132   }
    133 
    134   EIGEN_DEVICE_FUNC
    135   static inline T lowest()  {
    136     return IsInteger ? (numext::numeric_limits<T>::min)() : (-(numext::numeric_limits<T>::max)());
    137   }
    138 
    139   EIGEN_DEVICE_FUNC
    140   static inline T infinity() {
    141     return numext::numeric_limits<T>::infinity();
    142   }
    143 
    144   EIGEN_DEVICE_FUNC
    145   static inline T quiet_NaN() {
    146     return numext::numeric_limits<T>::quiet_NaN();
    147   }
    148 };
    149 
    150 template<typename T> struct NumTraits : GenericNumTraits<T>
    151 {};
    152 
    153 template<> struct NumTraits<float>
    154   : GenericNumTraits<float>
    155 {
    156   EIGEN_DEVICE_FUNC
    157   static inline float dummy_precision() { return 1e-5f; }
    158 };
    159 
    160 template<> struct NumTraits<double> : GenericNumTraits<double>
    161 {
    162   EIGEN_DEVICE_FUNC
    163   static inline double dummy_precision() { return 1e-12; }
    164 };
    165 
    166 template<> struct NumTraits<long double>
    167   : GenericNumTraits<long double>
    168 {
    169   static inline long double dummy_precision() { return 1e-15l; }
    170 };
    171 
    172 template<typename _Real> struct NumTraits<std::complex<_Real> >
    173   : GenericNumTraits<std::complex<_Real> >
    174 {
    175   typedef _Real Real;
    176   typedef typename NumTraits<_Real>::Literal Literal;
    177   enum {
    178     IsComplex = 1,
    179     RequireInitialization = NumTraits<_Real>::RequireInitialization,
    180     ReadCost = 2 * NumTraits<_Real>::ReadCost,
    181     AddCost = 2 * NumTraits<Real>::AddCost,
    182     MulCost = 4 * NumTraits<Real>::MulCost + 2 * NumTraits<Real>::AddCost
    183   };
    184 
    185   EIGEN_DEVICE_FUNC
    186   static inline Real epsilon() { return NumTraits<Real>::epsilon(); }
    187   EIGEN_DEVICE_FUNC
    188   static inline Real dummy_precision() { return NumTraits<Real>::dummy_precision(); }
    189   EIGEN_DEVICE_FUNC
    190   static inline int digits10() { return NumTraits<Real>::digits10(); }
    191 };
    192 
    193 template<typename Scalar, int Rows, int Cols, int Options, int MaxRows, int MaxCols>
    194 struct NumTraits<Array<Scalar, Rows, Cols, Options, MaxRows, MaxCols> >
    195 {
    196   typedef Array<Scalar, Rows, Cols, Options, MaxRows, MaxCols> ArrayType;
    197   typedef typename NumTraits<Scalar>::Real RealScalar;
    198   typedef Array<RealScalar, Rows, Cols, Options, MaxRows, MaxCols> Real;
    199   typedef typename NumTraits<Scalar>::NonInteger NonIntegerScalar;
    200   typedef Array<NonIntegerScalar, Rows, Cols, Options, MaxRows, MaxCols> NonInteger;
    201   typedef ArrayType & Nested;
    202   typedef typename NumTraits<Scalar>::Literal Literal;
    203 
    204   enum {
    205     IsComplex = NumTraits<Scalar>::IsComplex,
    206     IsInteger = NumTraits<Scalar>::IsInteger,
    207     IsSigned  = NumTraits<Scalar>::IsSigned,
    208     RequireInitialization = 1,
    209     ReadCost = ArrayType::SizeAtCompileTime==Dynamic ? HugeCost : ArrayType::SizeAtCompileTime * NumTraits<Scalar>::ReadCost,
    210     AddCost  = ArrayType::SizeAtCompileTime==Dynamic ? HugeCost : ArrayType::SizeAtCompileTime * NumTraits<Scalar>::AddCost,
    211     MulCost  = ArrayType::SizeAtCompileTime==Dynamic ? HugeCost : ArrayType::SizeAtCompileTime * NumTraits<Scalar>::MulCost
    212   };
    213 
    214   EIGEN_DEVICE_FUNC
    215   static inline RealScalar epsilon() { return NumTraits<RealScalar>::epsilon(); }
    216   EIGEN_DEVICE_FUNC
    217   static inline RealScalar dummy_precision() { return NumTraits<RealScalar>::dummy_precision(); }
    218 };
    219 
    220 template<> struct NumTraits<std::string>
    221   : GenericNumTraits<std::string>
    222 {
    223   enum {
    224     RequireInitialization = 1,
    225     ReadCost = HugeCost,
    226     AddCost  = HugeCost,
    227     MulCost  = HugeCost
    228   };
    229 
    230   static inline int digits10() { return 0; }
    231 
    232 private:
    233   static inline std::string epsilon();
    234   static inline std::string dummy_precision();
    235   static inline std::string lowest();
    236   static inline std::string highest();
    237   static inline std::string infinity();
    238   static inline std::string quiet_NaN();
    239 };
    240 
    241 // Empty specialization for void to allow template specialization based on NumTraits<T>::Real with T==void and SFINAE.
    242 template<> struct NumTraits<void> {};
    243 
    244 } // end namespace Eigen
    245 
    246 #endif // EIGEN_NUMTRAITS_H
    247