Home | History | Annotate | Download | only in space
      1 /*
      2  * Copyright (C) 2012 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "large_object_space.h"
     18 
     19 #include <memory>
     20 
     21 #include "gc/accounting/heap_bitmap-inl.h"
     22 #include "gc/accounting/space_bitmap-inl.h"
     23 #include "base/logging.h"
     24 #include "base/memory_tool.h"
     25 #include "base/mutex-inl.h"
     26 #include "base/stl_util.h"
     27 #include "image.h"
     28 #include "os.h"
     29 #include "scoped_thread_state_change-inl.h"
     30 #include "space-inl.h"
     31 #include "thread-inl.h"
     32 
     33 namespace art {
     34 namespace gc {
     35 namespace space {
     36 
     37 class MemoryToolLargeObjectMapSpace FINAL : public LargeObjectMapSpace {
     38  public:
     39   explicit MemoryToolLargeObjectMapSpace(const std::string& name) : LargeObjectMapSpace(name) {
     40   }
     41 
     42   ~MemoryToolLargeObjectMapSpace() OVERRIDE {
     43     // Keep valgrind happy if there is any large objects such as dex cache arrays which aren't
     44     // freed since they are held live by the class linker.
     45     MutexLock mu(Thread::Current(), lock_);
     46     for (auto& m : large_objects_) {
     47       delete m.second.mem_map;
     48     }
     49   }
     50 
     51   mirror::Object* Alloc(Thread* self, size_t num_bytes, size_t* bytes_allocated,
     52                         size_t* usable_size, size_t* bytes_tl_bulk_allocated)
     53       OVERRIDE {
     54     mirror::Object* obj =
     55         LargeObjectMapSpace::Alloc(self, num_bytes + kMemoryToolRedZoneBytes * 2, bytes_allocated,
     56                                    usable_size, bytes_tl_bulk_allocated);
     57     mirror::Object* object_without_rdz = reinterpret_cast<mirror::Object*>(
     58         reinterpret_cast<uintptr_t>(obj) + kMemoryToolRedZoneBytes);
     59     MEMORY_TOOL_MAKE_NOACCESS(reinterpret_cast<void*>(obj), kMemoryToolRedZoneBytes);
     60     MEMORY_TOOL_MAKE_NOACCESS(
     61         reinterpret_cast<uint8_t*>(object_without_rdz) + num_bytes,
     62         kMemoryToolRedZoneBytes);
     63     if (usable_size != nullptr) {
     64       *usable_size = num_bytes;  // Since we have redzones, shrink the usable size.
     65     }
     66     return object_without_rdz;
     67   }
     68 
     69   size_t AllocationSize(mirror::Object* obj, size_t* usable_size) OVERRIDE {
     70     return LargeObjectMapSpace::AllocationSize(ObjectWithRedzone(obj), usable_size);
     71   }
     72 
     73   bool IsZygoteLargeObject(Thread* self, mirror::Object* obj) const OVERRIDE {
     74     return LargeObjectMapSpace::IsZygoteLargeObject(self, ObjectWithRedzone(obj));
     75   }
     76 
     77   size_t Free(Thread* self, mirror::Object* obj) OVERRIDE {
     78     mirror::Object* object_with_rdz = ObjectWithRedzone(obj);
     79     MEMORY_TOOL_MAKE_UNDEFINED(object_with_rdz, AllocationSize(obj, nullptr));
     80     return LargeObjectMapSpace::Free(self, object_with_rdz);
     81   }
     82 
     83   bool Contains(const mirror::Object* obj) const OVERRIDE {
     84     return LargeObjectMapSpace::Contains(ObjectWithRedzone(obj));
     85   }
     86 
     87  private:
     88   static const mirror::Object* ObjectWithRedzone(const mirror::Object* obj) {
     89     return reinterpret_cast<const mirror::Object*>(
     90         reinterpret_cast<uintptr_t>(obj) - kMemoryToolRedZoneBytes);
     91   }
     92 
     93   static mirror::Object* ObjectWithRedzone(mirror::Object* obj) {
     94     return reinterpret_cast<mirror::Object*>(
     95         reinterpret_cast<uintptr_t>(obj) - kMemoryToolRedZoneBytes);
     96   }
     97 
     98   static constexpr size_t kMemoryToolRedZoneBytes = kPageSize;
     99 };
    100 
    101 void LargeObjectSpace::SwapBitmaps() {
    102   live_bitmap_.swap(mark_bitmap_);
    103   // Swap names to get more descriptive diagnostics.
    104   std::string temp_name = live_bitmap_->GetName();
    105   live_bitmap_->SetName(mark_bitmap_->GetName());
    106   mark_bitmap_->SetName(temp_name);
    107 }
    108 
    109 LargeObjectSpace::LargeObjectSpace(const std::string& name, uint8_t* begin, uint8_t* end)
    110     : DiscontinuousSpace(name, kGcRetentionPolicyAlwaysCollect),
    111       num_bytes_allocated_(0), num_objects_allocated_(0), total_bytes_allocated_(0),
    112       total_objects_allocated_(0), begin_(begin), end_(end) {
    113 }
    114 
    115 
    116 void LargeObjectSpace::CopyLiveToMarked() {
    117   mark_bitmap_->CopyFrom(live_bitmap_.get());
    118 }
    119 
    120 LargeObjectMapSpace::LargeObjectMapSpace(const std::string& name)
    121     : LargeObjectSpace(name, nullptr, nullptr),
    122       lock_("large object map space lock", kAllocSpaceLock) {}
    123 
    124 LargeObjectMapSpace* LargeObjectMapSpace::Create(const std::string& name) {
    125   if (Runtime::Current()->IsRunningOnMemoryTool()) {
    126     return new MemoryToolLargeObjectMapSpace(name);
    127   } else {
    128     return new LargeObjectMapSpace(name);
    129   }
    130 }
    131 
    132 mirror::Object* LargeObjectMapSpace::Alloc(Thread* self, size_t num_bytes,
    133                                            size_t* bytes_allocated, size_t* usable_size,
    134                                            size_t* bytes_tl_bulk_allocated) {
    135   std::string error_msg;
    136   MemMap* mem_map = MemMap::MapAnonymous("large object space allocation", nullptr, num_bytes,
    137                                          PROT_READ | PROT_WRITE, true, false, &error_msg);
    138   if (UNLIKELY(mem_map == nullptr)) {
    139     LOG(WARNING) << "Large object allocation failed: " << error_msg;
    140     return nullptr;
    141   }
    142   mirror::Object* const obj = reinterpret_cast<mirror::Object*>(mem_map->Begin());
    143   MutexLock mu(self, lock_);
    144   large_objects_.Put(obj, LargeObject {mem_map, false /* not zygote */});
    145   const size_t allocation_size = mem_map->BaseSize();
    146   DCHECK(bytes_allocated != nullptr);
    147 
    148   if (begin_ == nullptr || begin_ > reinterpret_cast<uint8_t*>(obj)) {
    149     begin_ = reinterpret_cast<uint8_t*>(obj);
    150   }
    151   end_ = std::max(end_, reinterpret_cast<uint8_t*>(obj) + allocation_size);
    152 
    153   *bytes_allocated = allocation_size;
    154   if (usable_size != nullptr) {
    155     *usable_size = allocation_size;
    156   }
    157   DCHECK(bytes_tl_bulk_allocated != nullptr);
    158   *bytes_tl_bulk_allocated = allocation_size;
    159   num_bytes_allocated_ += allocation_size;
    160   total_bytes_allocated_ += allocation_size;
    161   ++num_objects_allocated_;
    162   ++total_objects_allocated_;
    163   return obj;
    164 }
    165 
    166 bool LargeObjectMapSpace::IsZygoteLargeObject(Thread* self, mirror::Object* obj) const {
    167   MutexLock mu(self, lock_);
    168   auto it = large_objects_.find(obj);
    169   CHECK(it != large_objects_.end());
    170   return it->second.is_zygote;
    171 }
    172 
    173 void LargeObjectMapSpace::SetAllLargeObjectsAsZygoteObjects(Thread* self) {
    174   MutexLock mu(self, lock_);
    175   for (auto& pair : large_objects_) {
    176     pair.second.is_zygote = true;
    177   }
    178 }
    179 
    180 size_t LargeObjectMapSpace::Free(Thread* self, mirror::Object* ptr) {
    181   MutexLock mu(self, lock_);
    182   auto it = large_objects_.find(ptr);
    183   if (UNLIKELY(it == large_objects_.end())) {
    184     ScopedObjectAccess soa(self);
    185     Runtime::Current()->GetHeap()->DumpSpaces(LOG_STREAM(FATAL_WITHOUT_ABORT));
    186     LOG(FATAL) << "Attempted to free large object " << ptr << " which was not live";
    187   }
    188   MemMap* mem_map = it->second.mem_map;
    189   const size_t map_size = mem_map->BaseSize();
    190   DCHECK_GE(num_bytes_allocated_, map_size);
    191   size_t allocation_size = map_size;
    192   num_bytes_allocated_ -= allocation_size;
    193   --num_objects_allocated_;
    194   delete mem_map;
    195   large_objects_.erase(it);
    196   return allocation_size;
    197 }
    198 
    199 size_t LargeObjectMapSpace::AllocationSize(mirror::Object* obj, size_t* usable_size) {
    200   MutexLock mu(Thread::Current(), lock_);
    201   auto it = large_objects_.find(obj);
    202   CHECK(it != large_objects_.end()) << "Attempted to get size of a large object which is not live";
    203   size_t alloc_size = it->second.mem_map->BaseSize();
    204   if (usable_size != nullptr) {
    205     *usable_size = alloc_size;
    206   }
    207   return alloc_size;
    208 }
    209 
    210 size_t LargeObjectSpace::FreeList(Thread* self, size_t num_ptrs, mirror::Object** ptrs) {
    211   size_t total = 0;
    212   for (size_t i = 0; i < num_ptrs; ++i) {
    213     if (kDebugSpaces) {
    214       CHECK(Contains(ptrs[i]));
    215     }
    216     total += Free(self, ptrs[i]);
    217   }
    218   return total;
    219 }
    220 
    221 void LargeObjectMapSpace::Walk(DlMallocSpace::WalkCallback callback, void* arg) {
    222   MutexLock mu(Thread::Current(), lock_);
    223   for (auto& pair : large_objects_) {
    224     MemMap* mem_map = pair.second.mem_map;
    225     callback(mem_map->Begin(), mem_map->End(), mem_map->Size(), arg);
    226     callback(nullptr, nullptr, 0, arg);
    227   }
    228 }
    229 
    230 bool LargeObjectMapSpace::Contains(const mirror::Object* obj) const {
    231   Thread* self = Thread::Current();
    232   if (lock_.IsExclusiveHeld(self)) {
    233     // We hold lock_ so do the check.
    234     return large_objects_.find(const_cast<mirror::Object*>(obj)) != large_objects_.end();
    235   } else {
    236     MutexLock mu(self, lock_);
    237     return large_objects_.find(const_cast<mirror::Object*>(obj)) != large_objects_.end();
    238   }
    239 }
    240 
    241 // Keeps track of allocation sizes + whether or not the previous allocation is free.
    242 // Used to coalesce free blocks and find the best fit block for an allocation for best fit object
    243 // allocation. Each allocation has an AllocationInfo which contains the size of the previous free
    244 // block preceding it. Implemented in such a way that we can also find the iterator for any
    245 // allocation info pointer.
    246 class AllocationInfo {
    247  public:
    248   AllocationInfo() : prev_free_(0), alloc_size_(0) {
    249   }
    250   // Return the number of pages that the allocation info covers.
    251   size_t AlignSize() const {
    252     return alloc_size_ & kFlagsMask;
    253   }
    254   // Returns the allocation size in bytes.
    255   size_t ByteSize() const {
    256     return AlignSize() * FreeListSpace::kAlignment;
    257   }
    258   // Updates the allocation size and whether or not it is free.
    259   void SetByteSize(size_t size, bool free) {
    260     DCHECK_EQ(size & ~kFlagsMask, 0u);
    261     DCHECK_ALIGNED(size, FreeListSpace::kAlignment);
    262     alloc_size_ = (size / FreeListSpace::kAlignment) | (free ? kFlagFree : 0u);
    263   }
    264   // Returns true if the block is free.
    265   bool IsFree() const {
    266     return (alloc_size_ & kFlagFree) != 0;
    267   }
    268   // Return true if the large object is a zygote object.
    269   bool IsZygoteObject() const {
    270     return (alloc_size_ & kFlagZygote) != 0;
    271   }
    272   // Change the object to be a zygote object.
    273   void SetZygoteObject() {
    274     alloc_size_ |= kFlagZygote;
    275   }
    276   // Return true if this is a zygote large object.
    277   // Finds and returns the next non free allocation info after ourself.
    278   AllocationInfo* GetNextInfo() {
    279     return this + AlignSize();
    280   }
    281   const AllocationInfo* GetNextInfo() const {
    282     return this + AlignSize();
    283   }
    284   // Returns the previous free allocation info by using the prev_free_ member to figure out
    285   // where it is. This is only used for coalescing so we only need to be able to do it if the
    286   // previous allocation info is free.
    287   AllocationInfo* GetPrevFreeInfo() {
    288     DCHECK_NE(prev_free_, 0U);
    289     return this - prev_free_;
    290   }
    291   // Returns the address of the object associated with this allocation info.
    292   mirror::Object* GetObjectAddress() {
    293     return reinterpret_cast<mirror::Object*>(reinterpret_cast<uintptr_t>(this) + sizeof(*this));
    294   }
    295   // Return how many kAlignment units there are before the free block.
    296   size_t GetPrevFree() const {
    297     return prev_free_;
    298   }
    299   // Returns how many free bytes there is before the block.
    300   size_t GetPrevFreeBytes() const {
    301     return GetPrevFree() * FreeListSpace::kAlignment;
    302   }
    303   // Update the size of the free block prior to the allocation.
    304   void SetPrevFreeBytes(size_t bytes) {
    305     DCHECK_ALIGNED(bytes, FreeListSpace::kAlignment);
    306     prev_free_ = bytes / FreeListSpace::kAlignment;
    307   }
    308 
    309  private:
    310   static constexpr uint32_t kFlagFree = 0x80000000;  // If block is free.
    311   static constexpr uint32_t kFlagZygote = 0x40000000;  // If the large object is a zygote object.
    312   static constexpr uint32_t kFlagsMask = ~(kFlagFree | kFlagZygote);  // Combined flags for masking.
    313   // Contains the size of the previous free block with kAlignment as the unit. If 0 then the
    314   // allocation before us is not free.
    315   // These variables are undefined in the middle of allocations / free blocks.
    316   uint32_t prev_free_;
    317   // Allocation size of this object in kAlignment as the unit.
    318   uint32_t alloc_size_;
    319 };
    320 
    321 size_t FreeListSpace::GetSlotIndexForAllocationInfo(const AllocationInfo* info) const {
    322   DCHECK_GE(info, allocation_info_);
    323   DCHECK_LT(info, reinterpret_cast<AllocationInfo*>(allocation_info_map_->End()));
    324   return info - allocation_info_;
    325 }
    326 
    327 AllocationInfo* FreeListSpace::GetAllocationInfoForAddress(uintptr_t address) {
    328   return &allocation_info_[GetSlotIndexForAddress(address)];
    329 }
    330 
    331 const AllocationInfo* FreeListSpace::GetAllocationInfoForAddress(uintptr_t address) const {
    332   return &allocation_info_[GetSlotIndexForAddress(address)];
    333 }
    334 
    335 inline bool FreeListSpace::SortByPrevFree::operator()(const AllocationInfo* a,
    336                                                       const AllocationInfo* b) const {
    337   if (a->GetPrevFree() < b->GetPrevFree()) return true;
    338   if (a->GetPrevFree() > b->GetPrevFree()) return false;
    339   if (a->AlignSize() < b->AlignSize()) return true;
    340   if (a->AlignSize() > b->AlignSize()) return false;
    341   return reinterpret_cast<uintptr_t>(a) < reinterpret_cast<uintptr_t>(b);
    342 }
    343 
    344 FreeListSpace* FreeListSpace::Create(const std::string& name, uint8_t* requested_begin, size_t size) {
    345   CHECK_EQ(size % kAlignment, 0U);
    346   std::string error_msg;
    347   MemMap* mem_map = MemMap::MapAnonymous(name.c_str(), requested_begin, size,
    348                                          PROT_READ | PROT_WRITE, true, false, &error_msg);
    349   CHECK(mem_map != nullptr) << "Failed to allocate large object space mem map: " << error_msg;
    350   return new FreeListSpace(name, mem_map, mem_map->Begin(), mem_map->End());
    351 }
    352 
    353 FreeListSpace::FreeListSpace(const std::string& name, MemMap* mem_map, uint8_t* begin, uint8_t* end)
    354     : LargeObjectSpace(name, begin, end),
    355       mem_map_(mem_map),
    356       lock_("free list space lock", kAllocSpaceLock) {
    357   const size_t space_capacity = end - begin;
    358   free_end_ = space_capacity;
    359   CHECK_ALIGNED(space_capacity, kAlignment);
    360   const size_t alloc_info_size = sizeof(AllocationInfo) * (space_capacity / kAlignment);
    361   std::string error_msg;
    362   allocation_info_map_.reset(
    363       MemMap::MapAnonymous("large object free list space allocation info map",
    364                            nullptr, alloc_info_size, PROT_READ | PROT_WRITE,
    365                            false, false, &error_msg));
    366   CHECK(allocation_info_map_.get() != nullptr) << "Failed to allocate allocation info map"
    367       << error_msg;
    368   allocation_info_ = reinterpret_cast<AllocationInfo*>(allocation_info_map_->Begin());
    369 }
    370 
    371 FreeListSpace::~FreeListSpace() {}
    372 
    373 void FreeListSpace::Walk(DlMallocSpace::WalkCallback callback, void* arg) {
    374   MutexLock mu(Thread::Current(), lock_);
    375   const uintptr_t free_end_start = reinterpret_cast<uintptr_t>(end_) - free_end_;
    376   AllocationInfo* cur_info = &allocation_info_[0];
    377   const AllocationInfo* end_info = GetAllocationInfoForAddress(free_end_start);
    378   while (cur_info < end_info) {
    379     if (!cur_info->IsFree()) {
    380       size_t alloc_size = cur_info->ByteSize();
    381       uint8_t* byte_start = reinterpret_cast<uint8_t*>(GetAddressForAllocationInfo(cur_info));
    382       uint8_t* byte_end = byte_start + alloc_size;
    383       callback(byte_start, byte_end, alloc_size, arg);
    384       callback(nullptr, nullptr, 0, arg);
    385     }
    386     cur_info = cur_info->GetNextInfo();
    387   }
    388   CHECK_EQ(cur_info, end_info);
    389 }
    390 
    391 void FreeListSpace::RemoveFreePrev(AllocationInfo* info) {
    392   CHECK_GT(info->GetPrevFree(), 0U);
    393   auto it = free_blocks_.lower_bound(info);
    394   CHECK(it != free_blocks_.end());
    395   CHECK_EQ(*it, info);
    396   free_blocks_.erase(it);
    397 }
    398 
    399 size_t FreeListSpace::Free(Thread* self, mirror::Object* obj) {
    400   MutexLock mu(self, lock_);
    401   DCHECK(Contains(obj)) << reinterpret_cast<void*>(Begin()) << " " << obj << " "
    402                         << reinterpret_cast<void*>(End());
    403   DCHECK_ALIGNED(obj, kAlignment);
    404   AllocationInfo* info = GetAllocationInfoForAddress(reinterpret_cast<uintptr_t>(obj));
    405   DCHECK(!info->IsFree());
    406   const size_t allocation_size = info->ByteSize();
    407   DCHECK_GT(allocation_size, 0U);
    408   DCHECK_ALIGNED(allocation_size, kAlignment);
    409   info->SetByteSize(allocation_size, true);  // Mark as free.
    410   // Look at the next chunk.
    411   AllocationInfo* next_info = info->GetNextInfo();
    412   // Calculate the start of the end free block.
    413   uintptr_t free_end_start = reinterpret_cast<uintptr_t>(end_) - free_end_;
    414   size_t prev_free_bytes = info->GetPrevFreeBytes();
    415   size_t new_free_size = allocation_size;
    416   if (prev_free_bytes != 0) {
    417     // Coalesce with previous free chunk.
    418     new_free_size += prev_free_bytes;
    419     RemoveFreePrev(info);
    420     info = info->GetPrevFreeInfo();
    421     // The previous allocation info must not be free since we are supposed to always coalesce.
    422     DCHECK_EQ(info->GetPrevFreeBytes(), 0U) << "Previous allocation was free";
    423   }
    424   uintptr_t next_addr = GetAddressForAllocationInfo(next_info);
    425   if (next_addr >= free_end_start) {
    426     // Easy case, the next chunk is the end free region.
    427     CHECK_EQ(next_addr, free_end_start);
    428     free_end_ += new_free_size;
    429   } else {
    430     AllocationInfo* new_free_info;
    431     if (next_info->IsFree()) {
    432       AllocationInfo* next_next_info = next_info->GetNextInfo();
    433       // Next next info can't be free since we always coalesce.
    434       DCHECK(!next_next_info->IsFree());
    435       DCHECK_ALIGNED(next_next_info->ByteSize(), kAlignment);
    436       new_free_info = next_next_info;
    437       new_free_size += next_next_info->GetPrevFreeBytes();
    438       RemoveFreePrev(next_next_info);
    439     } else {
    440       new_free_info = next_info;
    441     }
    442     new_free_info->SetPrevFreeBytes(new_free_size);
    443     free_blocks_.insert(new_free_info);
    444     info->SetByteSize(new_free_size, true);
    445     DCHECK_EQ(info->GetNextInfo(), new_free_info);
    446   }
    447   --num_objects_allocated_;
    448   DCHECK_LE(allocation_size, num_bytes_allocated_);
    449   num_bytes_allocated_ -= allocation_size;
    450   madvise(obj, allocation_size, MADV_DONTNEED);
    451   if (kIsDebugBuild) {
    452     // Can't disallow reads since we use them to find next chunks during coalescing.
    453     mprotect(obj, allocation_size, PROT_READ);
    454   }
    455   return allocation_size;
    456 }
    457 
    458 size_t FreeListSpace::AllocationSize(mirror::Object* obj, size_t* usable_size) {
    459   DCHECK(Contains(obj));
    460   AllocationInfo* info = GetAllocationInfoForAddress(reinterpret_cast<uintptr_t>(obj));
    461   DCHECK(!info->IsFree());
    462   size_t alloc_size = info->ByteSize();
    463   if (usable_size != nullptr) {
    464     *usable_size = alloc_size;
    465   }
    466   return alloc_size;
    467 }
    468 
    469 mirror::Object* FreeListSpace::Alloc(Thread* self, size_t num_bytes, size_t* bytes_allocated,
    470                                      size_t* usable_size, size_t* bytes_tl_bulk_allocated) {
    471   MutexLock mu(self, lock_);
    472   const size_t allocation_size = RoundUp(num_bytes, kAlignment);
    473   AllocationInfo temp_info;
    474   temp_info.SetPrevFreeBytes(allocation_size);
    475   temp_info.SetByteSize(0, false);
    476   AllocationInfo* new_info;
    477   // Find the smallest chunk at least num_bytes in size.
    478   auto it = free_blocks_.lower_bound(&temp_info);
    479   if (it != free_blocks_.end()) {
    480     AllocationInfo* info = *it;
    481     free_blocks_.erase(it);
    482     // Fit our object in the previous allocation info free space.
    483     new_info = info->GetPrevFreeInfo();
    484     // Remove the newly allocated block from the info and update the prev_free_.
    485     info->SetPrevFreeBytes(info->GetPrevFreeBytes() - allocation_size);
    486     if (info->GetPrevFreeBytes() > 0) {
    487       AllocationInfo* new_free = info - info->GetPrevFree();
    488       new_free->SetPrevFreeBytes(0);
    489       new_free->SetByteSize(info->GetPrevFreeBytes(), true);
    490       // If there is remaining space, insert back into the free set.
    491       free_blocks_.insert(info);
    492     }
    493   } else {
    494     // Try to steal some memory from the free space at the end of the space.
    495     if (LIKELY(free_end_ >= allocation_size)) {
    496       // Fit our object at the start of the end free block.
    497       new_info = GetAllocationInfoForAddress(reinterpret_cast<uintptr_t>(End()) - free_end_);
    498       free_end_ -= allocation_size;
    499     } else {
    500       return nullptr;
    501     }
    502   }
    503   DCHECK(bytes_allocated != nullptr);
    504   *bytes_allocated = allocation_size;
    505   if (usable_size != nullptr) {
    506     *usable_size = allocation_size;
    507   }
    508   DCHECK(bytes_tl_bulk_allocated != nullptr);
    509   *bytes_tl_bulk_allocated = allocation_size;
    510   // Need to do these inside of the lock.
    511   ++num_objects_allocated_;
    512   ++total_objects_allocated_;
    513   num_bytes_allocated_ += allocation_size;
    514   total_bytes_allocated_ += allocation_size;
    515   mirror::Object* obj = reinterpret_cast<mirror::Object*>(GetAddressForAllocationInfo(new_info));
    516   // We always put our object at the start of the free block, there cannot be another free block
    517   // before it.
    518   if (kIsDebugBuild) {
    519     mprotect(obj, allocation_size, PROT_READ | PROT_WRITE);
    520   }
    521   new_info->SetPrevFreeBytes(0);
    522   new_info->SetByteSize(allocation_size, false);
    523   return obj;
    524 }
    525 
    526 void FreeListSpace::Dump(std::ostream& os) const {
    527   MutexLock mu(Thread::Current(), lock_);
    528   os << GetName() << " -"
    529      << " begin: " << reinterpret_cast<void*>(Begin())
    530      << " end: " << reinterpret_cast<void*>(End()) << "\n";
    531   uintptr_t free_end_start = reinterpret_cast<uintptr_t>(end_) - free_end_;
    532   const AllocationInfo* cur_info =
    533       GetAllocationInfoForAddress(reinterpret_cast<uintptr_t>(Begin()));
    534   const AllocationInfo* end_info = GetAllocationInfoForAddress(free_end_start);
    535   while (cur_info < end_info) {
    536     size_t size = cur_info->ByteSize();
    537     uintptr_t address = GetAddressForAllocationInfo(cur_info);
    538     if (cur_info->IsFree()) {
    539       os << "Free block at address: " << reinterpret_cast<const void*>(address)
    540          << " of length " << size << " bytes\n";
    541     } else {
    542       os << "Large object at address: " << reinterpret_cast<const void*>(address)
    543          << " of length " << size << " bytes\n";
    544     }
    545     cur_info = cur_info->GetNextInfo();
    546   }
    547   if (free_end_) {
    548     os << "Free block at address: " << reinterpret_cast<const void*>(free_end_start)
    549        << " of length " << free_end_ << " bytes\n";
    550   }
    551 }
    552 
    553 bool FreeListSpace::IsZygoteLargeObject(Thread* self ATTRIBUTE_UNUSED, mirror::Object* obj) const {
    554   const AllocationInfo* info = GetAllocationInfoForAddress(reinterpret_cast<uintptr_t>(obj));
    555   DCHECK(info != nullptr);
    556   return info->IsZygoteObject();
    557 }
    558 
    559 void FreeListSpace::SetAllLargeObjectsAsZygoteObjects(Thread* self) {
    560   MutexLock mu(self, lock_);
    561   uintptr_t free_end_start = reinterpret_cast<uintptr_t>(end_) - free_end_;
    562   for (AllocationInfo* cur_info = GetAllocationInfoForAddress(reinterpret_cast<uintptr_t>(Begin())),
    563       *end_info = GetAllocationInfoForAddress(free_end_start); cur_info < end_info;
    564       cur_info = cur_info->GetNextInfo()) {
    565     if (!cur_info->IsFree()) {
    566       cur_info->SetZygoteObject();
    567     }
    568   }
    569 }
    570 
    571 void LargeObjectSpace::SweepCallback(size_t num_ptrs, mirror::Object** ptrs, void* arg) {
    572   SweepCallbackContext* context = static_cast<SweepCallbackContext*>(arg);
    573   space::LargeObjectSpace* space = context->space->AsLargeObjectSpace();
    574   Thread* self = context->self;
    575   Locks::heap_bitmap_lock_->AssertExclusiveHeld(self);
    576   // If the bitmaps aren't swapped we need to clear the bits since the GC isn't going to re-swap
    577   // the bitmaps as an optimization.
    578   if (!context->swap_bitmaps) {
    579     accounting::LargeObjectBitmap* bitmap = space->GetLiveBitmap();
    580     for (size_t i = 0; i < num_ptrs; ++i) {
    581       bitmap->Clear(ptrs[i]);
    582     }
    583   }
    584   context->freed.objects += num_ptrs;
    585   context->freed.bytes += space->FreeList(self, num_ptrs, ptrs);
    586 }
    587 
    588 collector::ObjectBytePair LargeObjectSpace::Sweep(bool swap_bitmaps) {
    589   if (Begin() >= End()) {
    590     return collector::ObjectBytePair(0, 0);
    591   }
    592   accounting::LargeObjectBitmap* live_bitmap = GetLiveBitmap();
    593   accounting::LargeObjectBitmap* mark_bitmap = GetMarkBitmap();
    594   if (swap_bitmaps) {
    595     std::swap(live_bitmap, mark_bitmap);
    596   }
    597   AllocSpace::SweepCallbackContext scc(swap_bitmaps, this);
    598   std::pair<uint8_t*, uint8_t*> range = GetBeginEndAtomic();
    599   accounting::LargeObjectBitmap::SweepWalk(*live_bitmap, *mark_bitmap,
    600                                            reinterpret_cast<uintptr_t>(range.first),
    601                                            reinterpret_cast<uintptr_t>(range.second),
    602                                            SweepCallback,
    603                                            &scc);
    604   return scc.freed;
    605 }
    606 
    607 void LargeObjectSpace::LogFragmentationAllocFailure(std::ostream& /*os*/,
    608                                                     size_t /*failed_alloc_bytes*/) {
    609   UNIMPLEMENTED(FATAL);
    610 }
    611 
    612 std::pair<uint8_t*, uint8_t*> LargeObjectMapSpace::GetBeginEndAtomic() const {
    613   MutexLock mu(Thread::Current(), lock_);
    614   return std::make_pair(Begin(), End());
    615 }
    616 
    617 std::pair<uint8_t*, uint8_t*> FreeListSpace::GetBeginEndAtomic() const {
    618   MutexLock mu(Thread::Current(), lock_);
    619   return std::make_pair(Begin(), End());
    620 }
    621 
    622 }  // namespace space
    623 }  // namespace gc
    624 }  // namespace art
    625