Home | History | Annotate | Download | only in arm64
      1 /*
      2  * Copyright (C) 2015 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "linker/arm64/relative_patcher_arm64.h"
     18 
     19 #include "arch/arm64/asm_support_arm64.h"
     20 #include "arch/arm64/instruction_set_features_arm64.h"
     21 #include "art_method.h"
     22 #include "base/bit_utils.h"
     23 #include "compiled_method.h"
     24 #include "driver/compiler_driver.h"
     25 #include "entrypoints/quick/quick_entrypoints_enum.h"
     26 #include "linker/output_stream.h"
     27 #include "lock_word.h"
     28 #include "mirror/object.h"
     29 #include "mirror/array-inl.h"
     30 #include "oat.h"
     31 #include "oat_quick_method_header.h"
     32 #include "utils/arm64/assembler_arm64.h"
     33 
     34 namespace art {
     35 namespace linker {
     36 
     37 namespace {
     38 
     39 // Maximum positive and negative displacement for method call measured from the patch location.
     40 // (Signed 28 bit displacement with the last two bits 0 has range [-2^27, 2^27-4] measured from
     41 // the ARM64 PC pointing to the BL.)
     42 constexpr uint32_t kMaxMethodCallPositiveDisplacement = (1u << 27) - 4u;
     43 constexpr uint32_t kMaxMethodCallNegativeDisplacement = (1u << 27);
     44 
     45 // Maximum positive and negative displacement for a conditional branch measured from the patch
     46 // location. (Signed 21 bit displacement with the last two bits 0 has range [-2^20, 2^20-4]
     47 // measured from the ARM64 PC pointing to the B.cond.)
     48 constexpr uint32_t kMaxBcondPositiveDisplacement = (1u << 20) - 4u;
     49 constexpr uint32_t kMaxBcondNegativeDisplacement = (1u << 20);
     50 
     51 // The ADRP thunk for erratum 843419 is 2 instructions, i.e. 8 bytes.
     52 constexpr uint32_t kAdrpThunkSize = 8u;
     53 
     54 inline bool IsAdrpPatch(const LinkerPatch& patch) {
     55   switch (patch.GetType()) {
     56     case LinkerPatch::Type::kMethod:
     57     case LinkerPatch::Type::kCall:
     58     case LinkerPatch::Type::kCallRelative:
     59     case LinkerPatch::Type::kType:
     60     case LinkerPatch::Type::kString:
     61     case LinkerPatch::Type::kBakerReadBarrierBranch:
     62       return false;
     63     case LinkerPatch::Type::kTypeRelative:
     64     case LinkerPatch::Type::kTypeBssEntry:
     65     case LinkerPatch::Type::kStringRelative:
     66     case LinkerPatch::Type::kStringBssEntry:
     67     case LinkerPatch::Type::kDexCacheArray:
     68       return patch.LiteralOffset() == patch.PcInsnOffset();
     69   }
     70 }
     71 
     72 inline uint32_t MaxExtraSpace(size_t num_adrp, size_t code_size) {
     73   if (num_adrp == 0u) {
     74     return 0u;
     75   }
     76   uint32_t alignment_bytes = CompiledMethod::AlignCode(code_size, kArm64) - code_size;
     77   return kAdrpThunkSize * num_adrp + alignment_bytes;
     78 }
     79 
     80 }  // anonymous namespace
     81 
     82 Arm64RelativePatcher::Arm64RelativePatcher(RelativePatcherTargetProvider* provider,
     83                                            const Arm64InstructionSetFeatures* features)
     84     : ArmBaseRelativePatcher(provider, kArm64),
     85       fix_cortex_a53_843419_(features->NeedFixCortexA53_843419()),
     86       reserved_adrp_thunks_(0u),
     87       processed_adrp_thunks_(0u) {
     88   if (fix_cortex_a53_843419_) {
     89     adrp_thunk_locations_.reserve(16u);
     90     current_method_thunks_.reserve(16u * kAdrpThunkSize);
     91   }
     92 }
     93 
     94 uint32_t Arm64RelativePatcher::ReserveSpace(uint32_t offset,
     95                                             const CompiledMethod* compiled_method,
     96                                             MethodReference method_ref) {
     97   if (!fix_cortex_a53_843419_) {
     98     DCHECK(adrp_thunk_locations_.empty());
     99     return ReserveSpaceInternal(offset, compiled_method, method_ref, 0u);
    100   }
    101 
    102   // Add thunks for previous method if any.
    103   if (reserved_adrp_thunks_ != adrp_thunk_locations_.size()) {
    104     size_t num_adrp_thunks = adrp_thunk_locations_.size() - reserved_adrp_thunks_;
    105     offset = CompiledMethod::AlignCode(offset, kArm64) + kAdrpThunkSize * num_adrp_thunks;
    106     reserved_adrp_thunks_ = adrp_thunk_locations_.size();
    107   }
    108 
    109   // Count the number of ADRP insns as the upper bound on the number of thunks needed
    110   // and use it to reserve space for other linker patches.
    111   size_t num_adrp = 0u;
    112   DCHECK(compiled_method != nullptr);
    113   for (const LinkerPatch& patch : compiled_method->GetPatches()) {
    114     if (IsAdrpPatch(patch)) {
    115       ++num_adrp;
    116     }
    117   }
    118   ArrayRef<const uint8_t> code = compiled_method->GetQuickCode();
    119   uint32_t max_extra_space = MaxExtraSpace(num_adrp, code.size());
    120   offset = ReserveSpaceInternal(offset, compiled_method, method_ref, max_extra_space);
    121   if (num_adrp == 0u) {
    122     return offset;
    123   }
    124 
    125   // Now that we have the actual offset where the code will be placed, locate the ADRP insns
    126   // that actually require the thunk.
    127   uint32_t quick_code_offset = compiled_method->AlignCode(offset + sizeof(OatQuickMethodHeader));
    128   uint32_t thunk_offset = compiled_method->AlignCode(quick_code_offset + code.size());
    129   DCHECK(compiled_method != nullptr);
    130   for (const LinkerPatch& patch : compiled_method->GetPatches()) {
    131     if (IsAdrpPatch(patch)) {
    132       uint32_t patch_offset = quick_code_offset + patch.LiteralOffset();
    133       if (NeedsErratum843419Thunk(code, patch.LiteralOffset(), patch_offset)) {
    134         adrp_thunk_locations_.emplace_back(patch_offset, thunk_offset);
    135         thunk_offset += kAdrpThunkSize;
    136       }
    137     }
    138   }
    139   return offset;
    140 }
    141 
    142 uint32_t Arm64RelativePatcher::ReserveSpaceEnd(uint32_t offset) {
    143   if (!fix_cortex_a53_843419_) {
    144     DCHECK(adrp_thunk_locations_.empty());
    145   } else {
    146     // Add thunks for the last method if any.
    147     if (reserved_adrp_thunks_ != adrp_thunk_locations_.size()) {
    148       size_t num_adrp_thunks = adrp_thunk_locations_.size() - reserved_adrp_thunks_;
    149       offset = CompiledMethod::AlignCode(offset, kArm64) + kAdrpThunkSize * num_adrp_thunks;
    150       reserved_adrp_thunks_ = adrp_thunk_locations_.size();
    151     }
    152   }
    153   return ArmBaseRelativePatcher::ReserveSpaceEnd(offset);
    154 }
    155 
    156 uint32_t Arm64RelativePatcher::WriteThunks(OutputStream* out, uint32_t offset) {
    157   if (fix_cortex_a53_843419_) {
    158     if (!current_method_thunks_.empty()) {
    159       uint32_t aligned_offset = CompiledMethod::AlignCode(offset, kArm64);
    160       if (kIsDebugBuild) {
    161         CHECK_ALIGNED(current_method_thunks_.size(), kAdrpThunkSize);
    162         size_t num_thunks = current_method_thunks_.size() / kAdrpThunkSize;
    163         CHECK_LE(num_thunks, processed_adrp_thunks_);
    164         for (size_t i = 0u; i != num_thunks; ++i) {
    165           const auto& entry = adrp_thunk_locations_[processed_adrp_thunks_ - num_thunks + i];
    166           CHECK_EQ(entry.second, aligned_offset + i * kAdrpThunkSize);
    167         }
    168       }
    169       uint32_t aligned_code_delta = aligned_offset - offset;
    170       if (aligned_code_delta != 0u && !WriteCodeAlignment(out, aligned_code_delta)) {
    171         return 0u;
    172       }
    173       if (!WriteMiscThunk(out, ArrayRef<const uint8_t>(current_method_thunks_))) {
    174         return 0u;
    175       }
    176       offset = aligned_offset + current_method_thunks_.size();
    177       current_method_thunks_.clear();
    178     }
    179   }
    180   return ArmBaseRelativePatcher::WriteThunks(out, offset);
    181 }
    182 
    183 void Arm64RelativePatcher::PatchCall(std::vector<uint8_t>* code,
    184                                      uint32_t literal_offset,
    185                                      uint32_t patch_offset, uint32_t
    186                                      target_offset) {
    187   DCHECK_LE(literal_offset + 4u, code->size());
    188   DCHECK_EQ(literal_offset & 3u, 0u);
    189   DCHECK_EQ(patch_offset & 3u, 0u);
    190   DCHECK_EQ(target_offset & 3u, 0u);
    191   uint32_t displacement = CalculateMethodCallDisplacement(patch_offset, target_offset & ~1u);
    192   DCHECK_EQ(displacement & 3u, 0u);
    193   DCHECK((displacement >> 27) == 0u || (displacement >> 27) == 31u);  // 28-bit signed.
    194   uint32_t insn = (displacement & 0x0fffffffu) >> 2;
    195   insn |= 0x94000000;  // BL
    196 
    197   // Check that we're just overwriting an existing BL.
    198   DCHECK_EQ(GetInsn(code, literal_offset) & 0xfc000000u, 0x94000000u);
    199   // Write the new BL.
    200   SetInsn(code, literal_offset, insn);
    201 }
    202 
    203 void Arm64RelativePatcher::PatchPcRelativeReference(std::vector<uint8_t>* code,
    204                                                     const LinkerPatch& patch,
    205                                                     uint32_t patch_offset,
    206                                                     uint32_t target_offset) {
    207   DCHECK_EQ(patch_offset & 3u, 0u);
    208   DCHECK_EQ(target_offset & 3u, 0u);
    209   uint32_t literal_offset = patch.LiteralOffset();
    210   uint32_t insn = GetInsn(code, literal_offset);
    211   uint32_t pc_insn_offset = patch.PcInsnOffset();
    212   uint32_t disp = target_offset - ((patch_offset - literal_offset + pc_insn_offset) & ~0xfffu);
    213   bool wide = (insn & 0x40000000) != 0;
    214   uint32_t shift = wide ? 3u : 2u;
    215   if (literal_offset == pc_insn_offset) {
    216     // Check it's an ADRP with imm == 0 (unset).
    217     DCHECK_EQ((insn & 0xffffffe0u), 0x90000000u)
    218         << literal_offset << ", " << pc_insn_offset << ", 0x" << std::hex << insn;
    219     if (fix_cortex_a53_843419_ && processed_adrp_thunks_ != adrp_thunk_locations_.size() &&
    220         adrp_thunk_locations_[processed_adrp_thunks_].first == patch_offset) {
    221       DCHECK(NeedsErratum843419Thunk(ArrayRef<const uint8_t>(*code),
    222                                      literal_offset, patch_offset));
    223       uint32_t thunk_offset = adrp_thunk_locations_[processed_adrp_thunks_].second;
    224       uint32_t adrp_disp = target_offset - (thunk_offset & ~0xfffu);
    225       uint32_t adrp = PatchAdrp(insn, adrp_disp);
    226 
    227       uint32_t out_disp = thunk_offset - patch_offset;
    228       DCHECK_EQ(out_disp & 3u, 0u);
    229       DCHECK((out_disp >> 27) == 0u || (out_disp >> 27) == 31u);  // 28-bit signed.
    230       insn = (out_disp & 0x0fffffffu) >> shift;
    231       insn |= 0x14000000;  // B <thunk>
    232 
    233       uint32_t back_disp = -out_disp;
    234       DCHECK_EQ(back_disp & 3u, 0u);
    235       DCHECK((back_disp >> 27) == 0u || (back_disp >> 27) == 31u);  // 28-bit signed.
    236       uint32_t b_back = (back_disp & 0x0fffffffu) >> 2;
    237       b_back |= 0x14000000;  // B <back>
    238       size_t thunks_code_offset = current_method_thunks_.size();
    239       current_method_thunks_.resize(thunks_code_offset + kAdrpThunkSize);
    240       SetInsn(&current_method_thunks_, thunks_code_offset, adrp);
    241       SetInsn(&current_method_thunks_, thunks_code_offset + 4u, b_back);
    242       static_assert(kAdrpThunkSize == 2 * 4u, "thunk has 2 instructions");
    243 
    244       processed_adrp_thunks_ += 1u;
    245     } else {
    246       insn = PatchAdrp(insn, disp);
    247     }
    248     // Write the new ADRP (or B to the erratum 843419 thunk).
    249     SetInsn(code, literal_offset, insn);
    250   } else {
    251     if ((insn & 0xfffffc00) == 0x91000000) {
    252       // ADD immediate, 64-bit with imm12 == 0 (unset).
    253       if (!kEmitCompilerReadBarrier) {
    254         DCHECK(patch.GetType() == LinkerPatch::Type::kStringRelative ||
    255                patch.GetType() == LinkerPatch::Type::kTypeRelative) << patch.GetType();
    256       } else {
    257         // With the read barrier (non-Baker) enabled, it could be kStringBssEntry or kTypeBssEntry.
    258         DCHECK(patch.GetType() == LinkerPatch::Type::kStringRelative ||
    259                patch.GetType() == LinkerPatch::Type::kTypeRelative ||
    260                patch.GetType() == LinkerPatch::Type::kStringBssEntry ||
    261                patch.GetType() == LinkerPatch::Type::kTypeBssEntry) << patch.GetType();
    262       }
    263       shift = 0u;  // No shift for ADD.
    264     } else {
    265       // LDR/STR 32-bit or 64-bit with imm12 == 0 (unset).
    266       DCHECK(patch.GetType() == LinkerPatch::Type::kDexCacheArray ||
    267              patch.GetType() == LinkerPatch::Type::kTypeBssEntry ||
    268              patch.GetType() == LinkerPatch::Type::kStringBssEntry) << patch.GetType();
    269       DCHECK_EQ(insn & 0xbfbffc00, 0xb9000000) << std::hex << insn;
    270     }
    271     if (kIsDebugBuild) {
    272       uint32_t adrp = GetInsn(code, pc_insn_offset);
    273       if ((adrp & 0x9f000000u) != 0x90000000u) {
    274         CHECK(fix_cortex_a53_843419_);
    275         CHECK_EQ(adrp & 0xfc000000u, 0x14000000u);  // B <thunk>
    276         CHECK_ALIGNED(current_method_thunks_.size(), kAdrpThunkSize);
    277         size_t num_thunks = current_method_thunks_.size() / kAdrpThunkSize;
    278         CHECK_LE(num_thunks, processed_adrp_thunks_);
    279         uint32_t b_offset = patch_offset - literal_offset + pc_insn_offset;
    280         for (size_t i = processed_adrp_thunks_ - num_thunks; ; ++i) {
    281           CHECK_NE(i, processed_adrp_thunks_);
    282           if (adrp_thunk_locations_[i].first == b_offset) {
    283             size_t idx = num_thunks - (processed_adrp_thunks_ - i);
    284             adrp = GetInsn(&current_method_thunks_, idx * kAdrpThunkSize);
    285             break;
    286           }
    287         }
    288       }
    289       CHECK_EQ(adrp & 0x9f00001fu,                    // Check that pc_insn_offset points
    290                0x90000000 | ((insn >> 5) & 0x1fu));   // to ADRP with matching register.
    291     }
    292     uint32_t imm12 = (disp & 0xfffu) >> shift;
    293     insn = (insn & ~(0xfffu << 10)) | (imm12 << 10);
    294     SetInsn(code, literal_offset, insn);
    295   }
    296 }
    297 
    298 void Arm64RelativePatcher::PatchBakerReadBarrierBranch(std::vector<uint8_t>* code,
    299                                                        const LinkerPatch& patch,
    300                                                        uint32_t patch_offset) {
    301   DCHECK_ALIGNED(patch_offset, 4u);
    302   uint32_t literal_offset = patch.LiteralOffset();
    303   DCHECK_ALIGNED(literal_offset, 4u);
    304   DCHECK_LT(literal_offset, code->size());
    305   uint32_t insn = GetInsn(code, literal_offset);
    306   DCHECK_EQ(insn & 0xffffffe0u, 0xb5000000);  // CBNZ Xt, +0 (unpatched)
    307   ThunkKey key = GetBakerReadBarrierKey(patch);
    308   if (kIsDebugBuild) {
    309     // Check that the next instruction matches the expected LDR.
    310     switch (key.GetType()) {
    311       case ThunkType::kBakerReadBarrierField: {
    312         DCHECK_GE(code->size() - literal_offset, 8u);
    313         uint32_t next_insn = GetInsn(code, literal_offset + 4u);
    314         // LDR (immediate) with correct base_reg.
    315         CheckValidReg(next_insn & 0x1fu);  // Check destination register.
    316         CHECK_EQ(next_insn & 0xffc003e0u, 0xb9400000u | (key.GetOffsetParams().base_reg << 5));
    317         break;
    318       }
    319       case ThunkType::kBakerReadBarrierRoot: {
    320         DCHECK_GE(literal_offset, 4u);
    321         uint32_t prev_insn = GetInsn(code, literal_offset - 4u);
    322         // LDR (immediate) with correct root_reg.
    323         CHECK_EQ(prev_insn & 0xffc0001fu, 0xb9400000u | key.GetRootParams().root_reg);
    324         break;
    325       }
    326       default:
    327         LOG(FATAL) << "Unexpected type: " << static_cast<uint32_t>(key.GetType());
    328         UNREACHABLE();
    329     }
    330   }
    331   uint32_t target_offset = GetThunkTargetOffset(key, patch_offset);
    332   DCHECK_ALIGNED(target_offset, 4u);
    333   uint32_t disp = target_offset - patch_offset;
    334   DCHECK((disp >> 20) == 0u || (disp >> 20) == 4095u);  // 21-bit signed.
    335   insn |= (disp << (5 - 2)) & 0x00ffffe0u;              // Shift bits 2-20 to 5-23.
    336   SetInsn(code, literal_offset, insn);
    337 }
    338 
    339 ArmBaseRelativePatcher::ThunkKey Arm64RelativePatcher::GetBakerReadBarrierKey(
    340     const LinkerPatch& patch) {
    341   DCHECK_EQ(patch.GetType(), LinkerPatch::Type::kBakerReadBarrierBranch);
    342   uint32_t value = patch.GetBakerCustomValue1();
    343   BakerReadBarrierKind type = BakerReadBarrierKindField::Decode(value);
    344   ThunkParams params;
    345   switch (type) {
    346     case BakerReadBarrierKind::kField:
    347       params.offset_params.base_reg = BakerReadBarrierFirstRegField::Decode(value);
    348       CheckValidReg(params.offset_params.base_reg);
    349       params.offset_params.holder_reg = BakerReadBarrierSecondRegField::Decode(value);
    350       CheckValidReg(params.offset_params.holder_reg);
    351       break;
    352     case BakerReadBarrierKind::kGcRoot:
    353       params.root_params.root_reg = BakerReadBarrierFirstRegField::Decode(value);
    354       CheckValidReg(params.root_params.root_reg);
    355       params.root_params.dummy = 0u;
    356       DCHECK_EQ(BakerReadBarrierSecondRegField::Decode(value), kInvalidEncodedReg);
    357       break;
    358     default:
    359       LOG(FATAL) << "Unexpected type: " << static_cast<uint32_t>(type);
    360       UNREACHABLE();
    361   }
    362   constexpr uint8_t kTypeTranslationOffset = 1u;
    363   static_assert(static_cast<uint32_t>(BakerReadBarrierKind::kField) + kTypeTranslationOffset ==
    364                 static_cast<uint32_t>(ThunkType::kBakerReadBarrierField),
    365                 "Thunk type translation check.");
    366   static_assert(static_cast<uint32_t>(BakerReadBarrierKind::kGcRoot) + kTypeTranslationOffset ==
    367                 static_cast<uint32_t>(ThunkType::kBakerReadBarrierRoot),
    368                 "Thunk type translation check.");
    369   return ThunkKey(static_cast<ThunkType>(static_cast<uint32_t>(type) + kTypeTranslationOffset),
    370                   params);
    371 }
    372 
    373 #define __ assembler.GetVIXLAssembler()->
    374 
    375 static void EmitGrayCheckAndFastPath(arm64::Arm64Assembler& assembler,
    376                                      vixl::aarch64::Register base_reg,
    377                                      vixl::aarch64::MemOperand& lock_word,
    378                                      vixl::aarch64::Label* slow_path) {
    379   using namespace vixl::aarch64;  // NOLINT(build/namespaces)
    380   // Load the lock word containing the rb_state.
    381   __ Ldr(ip0.W(), lock_word);
    382   // Given the numeric representation, it's enough to check the low bit of the rb_state.
    383   static_assert(ReadBarrier::WhiteState() == 0, "Expecting white to have value 0");
    384   static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1");
    385   __ Tbnz(ip0.W(), LockWord::kReadBarrierStateShift, slow_path);
    386   static_assert(
    387       BAKER_MARK_INTROSPECTION_ARRAY_LDR_OFFSET == BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET,
    388       "Field and array LDR offsets must be the same to reuse the same code.");
    389   // Adjust the return address back to the LDR (1 instruction; 2 for heap poisoning).
    390   static_assert(BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET == (kPoisonHeapReferences ? -8 : -4),
    391                 "Field LDR must be 1 instruction (4B) before the return address label; "
    392                 " 2 instructions (8B) for heap poisoning.");
    393   __ Add(lr, lr, BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET);
    394   // Introduce a dependency on the lock_word including rb_state,
    395   // to prevent load-load reordering, and without using
    396   // a memory barrier (which would be more expensive).
    397   __ Add(base_reg, base_reg, Operand(vixl::aarch64::ip0, LSR, 32));
    398   __ Br(lr);          // And return back to the function.
    399   // Note: The fake dependency is unnecessary for the slow path.
    400 }
    401 
    402 std::vector<uint8_t> Arm64RelativePatcher::CompileThunk(const ThunkKey& key) {
    403   using namespace vixl::aarch64;  // NOLINT(build/namespaces)
    404   ArenaPool pool;
    405   ArenaAllocator arena(&pool);
    406   arm64::Arm64Assembler assembler(&arena);
    407 
    408   switch (key.GetType()) {
    409     case ThunkType::kMethodCall: {
    410       // The thunk just uses the entry point in the ArtMethod. This works even for calls
    411       // to the generic JNI and interpreter trampolines.
    412       Offset offset(ArtMethod::EntryPointFromQuickCompiledCodeOffset(
    413           kArm64PointerSize).Int32Value());
    414       assembler.JumpTo(ManagedRegister(arm64::X0), offset, ManagedRegister(arm64::IP0));
    415       break;
    416     }
    417     case ThunkType::kBakerReadBarrierField: {
    418       // Check if the holder is gray and, if not, add fake dependency to the base register
    419       // and return to the LDR instruction to load the reference. Otherwise, use introspection
    420       // to load the reference and call the entrypoint (in IP1) that performs further checks
    421       // on the reference and marks it if needed.
    422       auto holder_reg = Register::GetXRegFromCode(key.GetOffsetParams().holder_reg);
    423       auto base_reg = Register::GetXRegFromCode(key.GetOffsetParams().base_reg);
    424       UseScratchRegisterScope temps(assembler.GetVIXLAssembler());
    425       temps.Exclude(ip0, ip1);
    426       // If base_reg differs from holder_reg, the offset was too large and we must have
    427       // emitted an explicit null check before the load. Otherwise, we need to null-check
    428       // the holder as we do not necessarily do that check before going to the thunk.
    429       vixl::aarch64::Label throw_npe;
    430       if (holder_reg.Is(base_reg)) {
    431         __ Cbz(holder_reg.W(), &throw_npe);
    432       }
    433       vixl::aarch64::Label slow_path;
    434       MemOperand lock_word(holder_reg, mirror::Object::MonitorOffset().Int32Value());
    435       EmitGrayCheckAndFastPath(assembler, base_reg, lock_word, &slow_path);
    436       __ Bind(&slow_path);
    437       MemOperand ldr_address(lr, BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET);
    438       __ Ldr(ip0.W(), ldr_address);         // Load the LDR (immediate) unsigned offset.
    439       __ Ubfx(ip0.W(), ip0.W(), 10, 12);    // Extract the offset.
    440       __ Ldr(ip0.W(), MemOperand(base_reg, ip0, LSL, 2));   // Load the reference.
    441       // Do not unpoison. With heap poisoning enabled, the entrypoint expects a poisoned reference.
    442       __ Br(ip1);                           // Jump to the entrypoint.
    443       if (holder_reg.Is(base_reg)) {
    444         // Add null check slow path. The stack map is at the address pointed to by LR.
    445         __ Bind(&throw_npe);
    446         int32_t offset = GetThreadOffset<kArm64PointerSize>(kQuickThrowNullPointer).Int32Value();
    447         __ Ldr(ip0, MemOperand(vixl::aarch64::x19, offset));
    448         __ Br(ip0);
    449       }
    450       break;
    451     }
    452     case ThunkType::kBakerReadBarrierRoot: {
    453       // Check if the reference needs to be marked and if so (i.e. not null, not marked yet
    454       // and it does not have a forwarding address), call the correct introspection entrypoint;
    455       // otherwise return the reference (or the extracted forwarding address).
    456       // There is no gray bit check for GC roots.
    457       auto root_reg = Register::GetWRegFromCode(key.GetRootParams().root_reg);
    458       UseScratchRegisterScope temps(assembler.GetVIXLAssembler());
    459       temps.Exclude(ip0, ip1);
    460       vixl::aarch64::Label return_label, not_marked, forwarding_address;
    461       __ Cbz(root_reg, &return_label);
    462       MemOperand lock_word(root_reg.X(), mirror::Object::MonitorOffset().Int32Value());
    463       __ Ldr(ip0.W(), lock_word);
    464       __ Tbz(ip0.W(), LockWord::kMarkBitStateShift, &not_marked);
    465       __ Bind(&return_label);
    466       __ Br(lr);
    467       __ Bind(&not_marked);
    468       __ Tst(ip0.W(), Operand(ip0.W(), LSL, 1));
    469       __ B(&forwarding_address, mi);
    470       // Adjust the art_quick_read_barrier_mark_introspection address in IP1 to
    471       // art_quick_read_barrier_mark_introspection_gc_roots.
    472       __ Add(ip1, ip1, Operand(BAKER_MARK_INTROSPECTION_GC_ROOT_ENTRYPOINT_OFFSET));
    473       __ Mov(ip0.W(), root_reg);
    474       __ Br(ip1);
    475       __ Bind(&forwarding_address);
    476       __ Lsl(root_reg, ip0.W(), LockWord::kForwardingAddressShift);
    477       __ Br(lr);
    478       break;
    479     }
    480   }
    481 
    482   // Ensure we emit the literal pool.
    483   assembler.FinalizeCode();
    484   std::vector<uint8_t> thunk_code(assembler.CodeSize());
    485   MemoryRegion code(thunk_code.data(), thunk_code.size());
    486   assembler.FinalizeInstructions(code);
    487   return thunk_code;
    488 }
    489 
    490 #undef __
    491 
    492 uint32_t Arm64RelativePatcher::MaxPositiveDisplacement(ThunkType type) {
    493   switch (type) {
    494     case ThunkType::kMethodCall:
    495       return kMaxMethodCallPositiveDisplacement;
    496     case ThunkType::kBakerReadBarrierField:
    497     case ThunkType::kBakerReadBarrierRoot:
    498       return kMaxBcondPositiveDisplacement;
    499   }
    500 }
    501 
    502 uint32_t Arm64RelativePatcher::MaxNegativeDisplacement(ThunkType type) {
    503   switch (type) {
    504     case ThunkType::kMethodCall:
    505       return kMaxMethodCallNegativeDisplacement;
    506     case ThunkType::kBakerReadBarrierField:
    507     case ThunkType::kBakerReadBarrierRoot:
    508       return kMaxBcondNegativeDisplacement;
    509   }
    510 }
    511 
    512 uint32_t Arm64RelativePatcher::PatchAdrp(uint32_t adrp, uint32_t disp) {
    513   return (adrp & 0x9f00001fu) |  // Clear offset bits, keep ADRP with destination reg.
    514       // Bottom 12 bits are ignored, the next 2 lowest bits are encoded in bits 29-30.
    515       ((disp & 0x00003000u) << (29 - 12)) |
    516       // The next 16 bits are encoded in bits 5-22.
    517       ((disp & 0xffffc000u) >> (12 + 2 - 5)) |
    518       // Since the target_offset is based on the beginning of the oat file and the
    519       // image space precedes the oat file, the target_offset into image space will
    520       // be negative yet passed as uint32_t. Therefore we limit the displacement
    521       // to +-2GiB (rather than the maximim +-4GiB) and determine the sign bit from
    522       // the highest bit of the displacement. This is encoded in bit 23.
    523       ((disp & 0x80000000u) >> (31 - 23));
    524 }
    525 
    526 bool Arm64RelativePatcher::NeedsErratum843419Thunk(ArrayRef<const uint8_t> code,
    527                                                    uint32_t literal_offset,
    528                                                    uint32_t patch_offset) {
    529   DCHECK_EQ(patch_offset & 0x3u, 0u);
    530   if ((patch_offset & 0xff8) == 0xff8) {  // ...ff8 or ...ffc
    531     uint32_t adrp = GetInsn(code, literal_offset);
    532     DCHECK_EQ(adrp & 0x9f000000, 0x90000000);
    533     uint32_t next_offset = patch_offset + 4u;
    534     uint32_t next_insn = GetInsn(code, literal_offset + 4u);
    535 
    536     // Below we avoid patching sequences where the adrp is followed by a load which can easily
    537     // be proved to be aligned.
    538 
    539     // First check if the next insn is the LDR using the result of the ADRP.
    540     // LDR <Wt>, [<Xn>, #pimm], where <Xn> == ADRP destination reg.
    541     if ((next_insn & 0xffc00000) == 0xb9400000 &&
    542         (((next_insn >> 5) ^ adrp) & 0x1f) == 0) {
    543       return false;
    544     }
    545 
    546     // And since LinkerPatch::Type::kStringRelative is using the result of the ADRP
    547     // for an ADD immediate, check for that as well. We generalize a bit to include
    548     // ADD/ADDS/SUB/SUBS immediate that either uses the ADRP destination or stores
    549     // the result to a different register.
    550     if ((next_insn & 0x1f000000) == 0x11000000 &&
    551         ((((next_insn >> 5) ^ adrp) & 0x1f) == 0 || ((next_insn ^ adrp) & 0x1f) != 0)) {
    552       return false;
    553     }
    554 
    555     // LDR <Wt>, <label> is always aligned and thus it doesn't cause boundary crossing.
    556     if ((next_insn & 0xff000000) == 0x18000000) {
    557       return false;
    558     }
    559 
    560     // LDR <Xt>, <label> is aligned iff the pc + displacement is a multiple of 8.
    561     if ((next_insn & 0xff000000) == 0x58000000) {
    562       bool is_aligned_load = (((next_offset >> 2) ^ (next_insn >> 5)) & 1) == 0;
    563       return !is_aligned_load;
    564     }
    565 
    566     // LDR <Wt>, [SP, #<pimm>] and LDR <Xt>, [SP, #<pimm>] are always aligned loads, as SP is
    567     // guaranteed to be 128-bits aligned and <pimm> is multiple of the load size.
    568     if ((next_insn & 0xbfc003e0) == 0xb94003e0) {
    569       return false;
    570     }
    571     return true;
    572   }
    573   return false;
    574 }
    575 
    576 void Arm64RelativePatcher::SetInsn(std::vector<uint8_t>* code, uint32_t offset, uint32_t value) {
    577   DCHECK_LE(offset + 4u, code->size());
    578   DCHECK_EQ(offset & 3u, 0u);
    579   uint8_t* addr = &(*code)[offset];
    580   addr[0] = (value >> 0) & 0xff;
    581   addr[1] = (value >> 8) & 0xff;
    582   addr[2] = (value >> 16) & 0xff;
    583   addr[3] = (value >> 24) & 0xff;
    584 }
    585 
    586 uint32_t Arm64RelativePatcher::GetInsn(ArrayRef<const uint8_t> code, uint32_t offset) {
    587   DCHECK_LE(offset + 4u, code.size());
    588   DCHECK_EQ(offset & 3u, 0u);
    589   const uint8_t* addr = &code[offset];
    590   return
    591       (static_cast<uint32_t>(addr[0]) << 0) +
    592       (static_cast<uint32_t>(addr[1]) << 8) +
    593       (static_cast<uint32_t>(addr[2]) << 16)+
    594       (static_cast<uint32_t>(addr[3]) << 24);
    595 }
    596 
    597 template <typename Alloc>
    598 uint32_t Arm64RelativePatcher::GetInsn(std::vector<uint8_t, Alloc>* code, uint32_t offset) {
    599   return GetInsn(ArrayRef<const uint8_t>(*code), offset);
    600 }
    601 
    602 }  // namespace linker
    603 }  // namespace art
    604