Home | History | Annotate | Download | only in mirror
      1 /*
      2  * Copyright (C) 2011 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #ifndef ART_RUNTIME_MIRROR_OBJECT_READBARRIER_INL_H_
     18 #define ART_RUNTIME_MIRROR_OBJECT_READBARRIER_INL_H_
     19 
     20 #include "object.h"
     21 
     22 #include "atomic.h"
     23 #include "lock_word-inl.h"
     24 #include "object_reference-inl.h"
     25 #include "read_barrier.h"
     26 #include "runtime.h"
     27 
     28 namespace art {
     29 namespace mirror {
     30 
     31 template<VerifyObjectFlags kVerifyFlags>
     32 inline LockWord Object::GetLockWord(bool as_volatile) {
     33   if (as_volatile) {
     34     return LockWord(GetField32Volatile<kVerifyFlags>(OFFSET_OF_OBJECT_MEMBER(Object, monitor_)));
     35   }
     36   return LockWord(GetField32<kVerifyFlags>(OFFSET_OF_OBJECT_MEMBER(Object, monitor_)));
     37 }
     38 
     39 template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags>
     40 inline bool Object::CasFieldWeakRelaxed32(MemberOffset field_offset,
     41                                           int32_t old_value, int32_t new_value) {
     42   if (kCheckTransaction) {
     43     DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction());
     44   }
     45   if (kTransactionActive) {
     46     Runtime::Current()->RecordWriteField32(this, field_offset, old_value, true);
     47   }
     48   if (kVerifyFlags & kVerifyThis) {
     49     VerifyObject(this);
     50   }
     51   uint8_t* raw_addr = reinterpret_cast<uint8_t*>(this) + field_offset.Int32Value();
     52   AtomicInteger* atomic_addr = reinterpret_cast<AtomicInteger*>(raw_addr);
     53 
     54   return atomic_addr->CompareExchangeWeakRelaxed(old_value, new_value);
     55 }
     56 
     57 inline bool Object::CasLockWordWeakRelaxed(LockWord old_val, LockWord new_val) {
     58   // Force use of non-transactional mode and do not check.
     59   return CasFieldWeakRelaxed32<false, false>(
     60       OFFSET_OF_OBJECT_MEMBER(Object, monitor_), old_val.GetValue(), new_val.GetValue());
     61 }
     62 
     63 inline bool Object::CasLockWordWeakRelease(LockWord old_val, LockWord new_val) {
     64   // Force use of non-transactional mode and do not check.
     65   return CasFieldWeakRelease32<false, false>(
     66       OFFSET_OF_OBJECT_MEMBER(Object, monitor_), old_val.GetValue(), new_val.GetValue());
     67 }
     68 
     69 inline uint32_t Object::GetReadBarrierState(uintptr_t* fake_address_dependency) {
     70   if (!kUseBakerReadBarrier) {
     71     LOG(FATAL) << "Unreachable";
     72     UNREACHABLE();
     73   }
     74 #if defined(__arm__)
     75   uintptr_t obj = reinterpret_cast<uintptr_t>(this);
     76   uintptr_t result;
     77   DCHECK_EQ(OFFSETOF_MEMBER(Object, monitor_), 4U);
     78   // Use inline assembly to prevent the compiler from optimizing away the false dependency.
     79   __asm__ __volatile__(
     80       "ldr %[result], [%[obj], #4]\n\t"
     81       // This instruction is enough to "fool the compiler and the CPU" by having `fad` always be
     82       // null, without them being able to assume that fact.
     83       "eor %[fad], %[result], %[result]\n\t"
     84       : [result] "+r" (result), [fad] "=r" (*fake_address_dependency)
     85       : [obj] "r" (obj));
     86   DCHECK_EQ(*fake_address_dependency, 0U);
     87   LockWord lw(static_cast<uint32_t>(result));
     88   uint32_t rb_state = lw.ReadBarrierState();
     89   return rb_state;
     90 #elif defined(__aarch64__)
     91   uintptr_t obj = reinterpret_cast<uintptr_t>(this);
     92   uintptr_t result;
     93   DCHECK_EQ(OFFSETOF_MEMBER(Object, monitor_), 4U);
     94   // Use inline assembly to prevent the compiler from optimizing away the false dependency.
     95   __asm__ __volatile__(
     96       "ldr %w[result], [%[obj], #4]\n\t"
     97       // This instruction is enough to "fool the compiler and the CPU" by having `fad` always be
     98       // null, without them being able to assume that fact.
     99       "eor %[fad], %[result], %[result]\n\t"
    100       : [result] "+r" (result), [fad] "=r" (*fake_address_dependency)
    101       : [obj] "r" (obj));
    102   DCHECK_EQ(*fake_address_dependency, 0U);
    103   LockWord lw(static_cast<uint32_t>(result));
    104   uint32_t rb_state = lw.ReadBarrierState();
    105   return rb_state;
    106 #elif defined(__i386__) || defined(__x86_64__)
    107   LockWord lw = GetLockWord(false);
    108   // i386/x86_64 don't need fake address dependency. Use a compiler fence to avoid compiler
    109   // reordering.
    110   *fake_address_dependency = 0;
    111   std::atomic_signal_fence(std::memory_order_acquire);
    112   uint32_t rb_state = lw.ReadBarrierState();
    113   return rb_state;
    114 #else
    115   // MIPS32/MIPS64: use a memory barrier to prevent load-load reordering.
    116   LockWord lw = GetLockWord(false);
    117   *fake_address_dependency = 0;
    118   std::atomic_thread_fence(std::memory_order_acquire);
    119   uint32_t rb_state = lw.ReadBarrierState();
    120   return rb_state;
    121 #endif
    122 }
    123 
    124 inline uint32_t Object::GetReadBarrierState() {
    125   if (!kUseBakerReadBarrier) {
    126     LOG(FATAL) << "Unreachable";
    127     UNREACHABLE();
    128   }
    129   DCHECK(kUseBakerReadBarrier);
    130   LockWord lw(GetField<uint32_t, /*kIsVolatile*/false>(OFFSET_OF_OBJECT_MEMBER(Object, monitor_)));
    131   uint32_t rb_state = lw.ReadBarrierState();
    132   DCHECK(ReadBarrier::IsValidReadBarrierState(rb_state)) << rb_state;
    133   return rb_state;
    134 }
    135 
    136 inline uint32_t Object::GetReadBarrierStateAcquire() {
    137   if (!kUseBakerReadBarrier) {
    138     LOG(FATAL) << "Unreachable";
    139     UNREACHABLE();
    140   }
    141   LockWord lw(GetFieldAcquire<uint32_t>(OFFSET_OF_OBJECT_MEMBER(Object, monitor_)));
    142   uint32_t rb_state = lw.ReadBarrierState();
    143   DCHECK(ReadBarrier::IsValidReadBarrierState(rb_state)) << rb_state;
    144   return rb_state;
    145 }
    146 
    147 template<bool kCasRelease>
    148 inline bool Object::AtomicSetReadBarrierState(uint32_t expected_rb_state, uint32_t rb_state) {
    149   if (!kUseBakerReadBarrier) {
    150     LOG(FATAL) << "Unreachable";
    151     UNREACHABLE();
    152   }
    153   DCHECK(ReadBarrier::IsValidReadBarrierState(expected_rb_state)) << expected_rb_state;
    154   DCHECK(ReadBarrier::IsValidReadBarrierState(rb_state)) << rb_state;
    155   LockWord expected_lw;
    156   LockWord new_lw;
    157   do {
    158     LockWord lw = GetLockWord(false);
    159     if (UNLIKELY(lw.ReadBarrierState() != expected_rb_state)) {
    160       // Lost the race.
    161       return false;
    162     }
    163     expected_lw = lw;
    164     expected_lw.SetReadBarrierState(expected_rb_state);
    165     new_lw = lw;
    166     new_lw.SetReadBarrierState(rb_state);
    167     // ConcurrentCopying::ProcessMarkStackRef uses this with kCasRelease == true.
    168     // If kCasRelease == true, use a CAS release so that when GC updates all the fields of
    169     // an object and then changes the object from gray to black, the field updates (stores) will be
    170     // visible (won't be reordered after this CAS.)
    171   } while (!(kCasRelease ?
    172              CasLockWordWeakRelease(expected_lw, new_lw) :
    173              CasLockWordWeakRelaxed(expected_lw, new_lw)));
    174   return true;
    175 }
    176 
    177 inline bool Object::AtomicSetMarkBit(uint32_t expected_mark_bit, uint32_t mark_bit) {
    178   LockWord expected_lw;
    179   LockWord new_lw;
    180   do {
    181     LockWord lw = GetLockWord(false);
    182     if (UNLIKELY(lw.MarkBitState() != expected_mark_bit)) {
    183       // Lost the race.
    184       return false;
    185     }
    186     expected_lw = lw;
    187     new_lw = lw;
    188     new_lw.SetMarkBitState(mark_bit);
    189     // Since this is only set from the mutator, we can use the non release Cas.
    190   } while (!CasLockWordWeakRelaxed(expected_lw, new_lw));
    191   return true;
    192 }
    193 
    194 template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags>
    195 inline bool Object::CasFieldStrongRelaxedObjectWithoutWriteBarrier(
    196     MemberOffset field_offset,
    197     ObjPtr<Object> old_value,
    198     ObjPtr<Object> new_value) {
    199   if (kCheckTransaction) {
    200     DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction());
    201   }
    202   if (kVerifyFlags & kVerifyThis) {
    203     VerifyObject(this);
    204   }
    205   if (kVerifyFlags & kVerifyWrites) {
    206     VerifyObject(new_value);
    207   }
    208   if (kVerifyFlags & kVerifyReads) {
    209     VerifyObject(old_value);
    210   }
    211   if (kTransactionActive) {
    212     Runtime::Current()->RecordWriteFieldReference(this, field_offset, old_value, true);
    213   }
    214   HeapReference<Object> old_ref(HeapReference<Object>::FromObjPtr(old_value));
    215   HeapReference<Object> new_ref(HeapReference<Object>::FromObjPtr(new_value));
    216   uint8_t* raw_addr = reinterpret_cast<uint8_t*>(this) + field_offset.Int32Value();
    217   Atomic<uint32_t>* atomic_addr = reinterpret_cast<Atomic<uint32_t>*>(raw_addr);
    218 
    219   bool success = atomic_addr->CompareExchangeStrongRelaxed(old_ref.reference_,
    220                                                            new_ref.reference_);
    221   return success;
    222 }
    223 
    224 template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags>
    225 inline bool Object::CasFieldStrongReleaseObjectWithoutWriteBarrier(
    226     MemberOffset field_offset,
    227     ObjPtr<Object> old_value,
    228     ObjPtr<Object> new_value) {
    229   if (kCheckTransaction) {
    230     DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction());
    231   }
    232   if (kVerifyFlags & kVerifyThis) {
    233     VerifyObject(this);
    234   }
    235   if (kVerifyFlags & kVerifyWrites) {
    236     VerifyObject(new_value);
    237   }
    238   if (kVerifyFlags & kVerifyReads) {
    239     VerifyObject(old_value);
    240   }
    241   if (kTransactionActive) {
    242     Runtime::Current()->RecordWriteFieldReference(this, field_offset, old_value, true);
    243   }
    244   HeapReference<Object> old_ref(HeapReference<Object>::FromObjPtr(old_value));
    245   HeapReference<Object> new_ref(HeapReference<Object>::FromObjPtr(new_value));
    246   uint8_t* raw_addr = reinterpret_cast<uint8_t*>(this) + field_offset.Int32Value();
    247   Atomic<uint32_t>* atomic_addr = reinterpret_cast<Atomic<uint32_t>*>(raw_addr);
    248 
    249   bool success = atomic_addr->CompareExchangeStrongRelease(old_ref.reference_,
    250                                                            new_ref.reference_);
    251   return success;
    252 }
    253 
    254 }  // namespace mirror
    255 }  // namespace art
    256 
    257 #endif  // ART_RUNTIME_MIRROR_OBJECT_READBARRIER_INL_H_
    258