1 //===--- DeltaTree.cpp - B-Tree for Rewrite Delta tracking ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the DeltaTree and related classes. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Rewrite/Core/DeltaTree.h" 15 #include "clang/Basic/LLVM.h" 16 #include <cstdio> 17 #include <cstring> 18 using namespace clang; 19 20 /// The DeltaTree class is a multiway search tree (BTree) structure with some 21 /// fancy features. B-Trees are generally more memory and cache efficient 22 /// than binary trees, because they store multiple keys/values in each node. 23 /// 24 /// DeltaTree implements a key/value mapping from FileIndex to Delta, allowing 25 /// fast lookup by FileIndex. However, an added (important) bonus is that it 26 /// can also efficiently tell us the full accumulated delta for a specific 27 /// file offset as well, without traversing the whole tree. 28 /// 29 /// The nodes of the tree are made up of instances of two classes: 30 /// DeltaTreeNode and DeltaTreeInteriorNode. The later subclasses the 31 /// former and adds children pointers. Each node knows the full delta of all 32 /// entries (recursively) contained inside of it, which allows us to get the 33 /// full delta implied by a whole subtree in constant time. 34 35 namespace { 36 /// SourceDelta - As code in the original input buffer is added and deleted, 37 /// SourceDelta records are used to keep track of how the input SourceLocation 38 /// object is mapped into the output buffer. 39 struct SourceDelta { 40 unsigned FileLoc; 41 int Delta; 42 43 static SourceDelta get(unsigned Loc, int D) { 44 SourceDelta Delta; 45 Delta.FileLoc = Loc; 46 Delta.Delta = D; 47 return Delta; 48 } 49 }; 50 51 /// DeltaTreeNode - The common part of all nodes. 52 /// 53 class DeltaTreeNode { 54 public: 55 struct InsertResult { 56 DeltaTreeNode *LHS, *RHS; 57 SourceDelta Split; 58 }; 59 60 private: 61 friend class DeltaTreeInteriorNode; 62 63 /// WidthFactor - This controls the number of K/V slots held in the BTree: 64 /// how wide it is. Each level of the BTree is guaranteed to have at least 65 /// WidthFactor-1 K/V pairs (except the root) and may have at most 66 /// 2*WidthFactor-1 K/V pairs. 67 enum { WidthFactor = 8 }; 68 69 /// Values - This tracks the SourceDelta's currently in this node. 70 /// 71 SourceDelta Values[2*WidthFactor-1]; 72 73 /// NumValuesUsed - This tracks the number of values this node currently 74 /// holds. 75 unsigned char NumValuesUsed; 76 77 /// IsLeaf - This is true if this is a leaf of the btree. If false, this is 78 /// an interior node, and is actually an instance of DeltaTreeInteriorNode. 79 bool IsLeaf; 80 81 /// FullDelta - This is the full delta of all the values in this node and 82 /// all children nodes. 83 int FullDelta; 84 public: 85 DeltaTreeNode(bool isLeaf = true) 86 : NumValuesUsed(0), IsLeaf(isLeaf), FullDelta(0) {} 87 88 bool isLeaf() const { return IsLeaf; } 89 int getFullDelta() const { return FullDelta; } 90 bool isFull() const { return NumValuesUsed == 2*WidthFactor-1; } 91 92 unsigned getNumValuesUsed() const { return NumValuesUsed; } 93 const SourceDelta &getValue(unsigned i) const { 94 assert(i < NumValuesUsed && "Invalid value #"); 95 return Values[i]; 96 } 97 SourceDelta &getValue(unsigned i) { 98 assert(i < NumValuesUsed && "Invalid value #"); 99 return Values[i]; 100 } 101 102 /// DoInsertion - Do an insertion of the specified FileIndex/Delta pair into 103 /// this node. If insertion is easy, do it and return false. Otherwise, 104 /// split the node, populate InsertRes with info about the split, and return 105 /// true. 106 bool DoInsertion(unsigned FileIndex, int Delta, InsertResult *InsertRes); 107 108 void DoSplit(InsertResult &InsertRes); 109 110 111 /// RecomputeFullDeltaLocally - Recompute the FullDelta field by doing a 112 /// local walk over our contained deltas. 113 void RecomputeFullDeltaLocally(); 114 115 void Destroy(); 116 }; 117 } // end anonymous namespace 118 119 namespace { 120 /// DeltaTreeInteriorNode - When isLeaf = false, a node has child pointers. 121 /// This class tracks them. 122 class DeltaTreeInteriorNode : public DeltaTreeNode { 123 DeltaTreeNode *Children[2*WidthFactor]; 124 ~DeltaTreeInteriorNode() { 125 for (unsigned i = 0, e = NumValuesUsed+1; i != e; ++i) 126 Children[i]->Destroy(); 127 } 128 friend class DeltaTreeNode; 129 public: 130 DeltaTreeInteriorNode() : DeltaTreeNode(false /*nonleaf*/) {} 131 132 DeltaTreeInteriorNode(const InsertResult &IR) 133 : DeltaTreeNode(false /*nonleaf*/) { 134 Children[0] = IR.LHS; 135 Children[1] = IR.RHS; 136 Values[0] = IR.Split; 137 FullDelta = IR.LHS->getFullDelta()+IR.RHS->getFullDelta()+IR.Split.Delta; 138 NumValuesUsed = 1; 139 } 140 141 const DeltaTreeNode *getChild(unsigned i) const { 142 assert(i < getNumValuesUsed()+1 && "Invalid child"); 143 return Children[i]; 144 } 145 DeltaTreeNode *getChild(unsigned i) { 146 assert(i < getNumValuesUsed()+1 && "Invalid child"); 147 return Children[i]; 148 } 149 150 static inline bool classof(const DeltaTreeNode *N) { return !N->isLeaf(); } 151 }; 152 } 153 154 155 /// Destroy - A 'virtual' destructor. 156 void DeltaTreeNode::Destroy() { 157 if (isLeaf()) 158 delete this; 159 else 160 delete cast<DeltaTreeInteriorNode>(this); 161 } 162 163 /// RecomputeFullDeltaLocally - Recompute the FullDelta field by doing a 164 /// local walk over our contained deltas. 165 void DeltaTreeNode::RecomputeFullDeltaLocally() { 166 int NewFullDelta = 0; 167 for (unsigned i = 0, e = getNumValuesUsed(); i != e; ++i) 168 NewFullDelta += Values[i].Delta; 169 if (DeltaTreeInteriorNode *IN = dyn_cast<DeltaTreeInteriorNode>(this)) 170 for (unsigned i = 0, e = getNumValuesUsed()+1; i != e; ++i) 171 NewFullDelta += IN->getChild(i)->getFullDelta(); 172 FullDelta = NewFullDelta; 173 } 174 175 /// DoInsertion - Do an insertion of the specified FileIndex/Delta pair into 176 /// this node. If insertion is easy, do it and return false. Otherwise, 177 /// split the node, populate InsertRes with info about the split, and return 178 /// true. 179 bool DeltaTreeNode::DoInsertion(unsigned FileIndex, int Delta, 180 InsertResult *InsertRes) { 181 // Maintain full delta for this node. 182 FullDelta += Delta; 183 184 // Find the insertion point, the first delta whose index is >= FileIndex. 185 unsigned i = 0, e = getNumValuesUsed(); 186 while (i != e && FileIndex > getValue(i).FileLoc) 187 ++i; 188 189 // If we found an a record for exactly this file index, just merge this 190 // value into the pre-existing record and finish early. 191 if (i != e && getValue(i).FileLoc == FileIndex) { 192 // NOTE: Delta could drop to zero here. This means that the delta entry is 193 // useless and could be removed. Supporting erases is more complex than 194 // leaving an entry with Delta=0, so we just leave an entry with Delta=0 in 195 // the tree. 196 Values[i].Delta += Delta; 197 return false; 198 } 199 200 // Otherwise, we found an insertion point, and we know that the value at the 201 // specified index is > FileIndex. Handle the leaf case first. 202 if (isLeaf()) { 203 if (!isFull()) { 204 // For an insertion into a non-full leaf node, just insert the value in 205 // its sorted position. This requires moving later values over. 206 if (i != e) 207 memmove(&Values[i+1], &Values[i], sizeof(Values[0])*(e-i)); 208 Values[i] = SourceDelta::get(FileIndex, Delta); 209 ++NumValuesUsed; 210 return false; 211 } 212 213 // Otherwise, if this is leaf is full, split the node at its median, insert 214 // the value into one of the children, and return the result. 215 assert(InsertRes && "No result location specified"); 216 DoSplit(*InsertRes); 217 218 if (InsertRes->Split.FileLoc > FileIndex) 219 InsertRes->LHS->DoInsertion(FileIndex, Delta, nullptr /*can't fail*/); 220 else 221 InsertRes->RHS->DoInsertion(FileIndex, Delta, nullptr /*can't fail*/); 222 return true; 223 } 224 225 // Otherwise, this is an interior node. Send the request down the tree. 226 DeltaTreeInteriorNode *IN = cast<DeltaTreeInteriorNode>(this); 227 if (!IN->Children[i]->DoInsertion(FileIndex, Delta, InsertRes)) 228 return false; // If there was space in the child, just return. 229 230 // Okay, this split the subtree, producing a new value and two children to 231 // insert here. If this node is non-full, we can just insert it directly. 232 if (!isFull()) { 233 // Now that we have two nodes and a new element, insert the perclated value 234 // into ourself by moving all the later values/children down, then inserting 235 // the new one. 236 if (i != e) 237 memmove(&IN->Children[i+2], &IN->Children[i+1], 238 (e-i)*sizeof(IN->Children[0])); 239 IN->Children[i] = InsertRes->LHS; 240 IN->Children[i+1] = InsertRes->RHS; 241 242 if (e != i) 243 memmove(&Values[i+1], &Values[i], (e-i)*sizeof(Values[0])); 244 Values[i] = InsertRes->Split; 245 ++NumValuesUsed; 246 return false; 247 } 248 249 // Finally, if this interior node was full and a node is percolated up, split 250 // ourself and return that up the chain. Start by saving all our info to 251 // avoid having the split clobber it. 252 IN->Children[i] = InsertRes->LHS; 253 DeltaTreeNode *SubRHS = InsertRes->RHS; 254 SourceDelta SubSplit = InsertRes->Split; 255 256 // Do the split. 257 DoSplit(*InsertRes); 258 259 // Figure out where to insert SubRHS/NewSplit. 260 DeltaTreeInteriorNode *InsertSide; 261 if (SubSplit.FileLoc < InsertRes->Split.FileLoc) 262 InsertSide = cast<DeltaTreeInteriorNode>(InsertRes->LHS); 263 else 264 InsertSide = cast<DeltaTreeInteriorNode>(InsertRes->RHS); 265 266 // We now have a non-empty interior node 'InsertSide' to insert 267 // SubRHS/SubSplit into. Find out where to insert SubSplit. 268 269 // Find the insertion point, the first delta whose index is >SubSplit.FileLoc. 270 i = 0; e = InsertSide->getNumValuesUsed(); 271 while (i != e && SubSplit.FileLoc > InsertSide->getValue(i).FileLoc) 272 ++i; 273 274 // Now we know that i is the place to insert the split value into. Insert it 275 // and the child right after it. 276 if (i != e) 277 memmove(&InsertSide->Children[i+2], &InsertSide->Children[i+1], 278 (e-i)*sizeof(IN->Children[0])); 279 InsertSide->Children[i+1] = SubRHS; 280 281 if (e != i) 282 memmove(&InsertSide->Values[i+1], &InsertSide->Values[i], 283 (e-i)*sizeof(Values[0])); 284 InsertSide->Values[i] = SubSplit; 285 ++InsertSide->NumValuesUsed; 286 InsertSide->FullDelta += SubSplit.Delta + SubRHS->getFullDelta(); 287 return true; 288 } 289 290 /// DoSplit - Split the currently full node (which has 2*WidthFactor-1 values) 291 /// into two subtrees each with "WidthFactor-1" values and a pivot value. 292 /// Return the pieces in InsertRes. 293 void DeltaTreeNode::DoSplit(InsertResult &InsertRes) { 294 assert(isFull() && "Why split a non-full node?"); 295 296 // Since this node is full, it contains 2*WidthFactor-1 values. We move 297 // the first 'WidthFactor-1' values to the LHS child (which we leave in this 298 // node), propagate one value up, and move the last 'WidthFactor-1' values 299 // into the RHS child. 300 301 // Create the new child node. 302 DeltaTreeNode *NewNode; 303 if (DeltaTreeInteriorNode *IN = dyn_cast<DeltaTreeInteriorNode>(this)) { 304 // If this is an interior node, also move over 'WidthFactor' children 305 // into the new node. 306 DeltaTreeInteriorNode *New = new DeltaTreeInteriorNode(); 307 memcpy(&New->Children[0], &IN->Children[WidthFactor], 308 WidthFactor*sizeof(IN->Children[0])); 309 NewNode = New; 310 } else { 311 // Just create the new leaf node. 312 NewNode = new DeltaTreeNode(); 313 } 314 315 // Move over the last 'WidthFactor-1' values from here to NewNode. 316 memcpy(&NewNode->Values[0], &Values[WidthFactor], 317 (WidthFactor-1)*sizeof(Values[0])); 318 319 // Decrease the number of values in the two nodes. 320 NewNode->NumValuesUsed = NumValuesUsed = WidthFactor-1; 321 322 // Recompute the two nodes' full delta. 323 NewNode->RecomputeFullDeltaLocally(); 324 RecomputeFullDeltaLocally(); 325 326 InsertRes.LHS = this; 327 InsertRes.RHS = NewNode; 328 InsertRes.Split = Values[WidthFactor-1]; 329 } 330 331 332 333 //===----------------------------------------------------------------------===// 334 // DeltaTree Implementation 335 //===----------------------------------------------------------------------===// 336 337 //#define VERIFY_TREE 338 339 #ifdef VERIFY_TREE 340 /// VerifyTree - Walk the btree performing assertions on various properties to 341 /// verify consistency. This is useful for debugging new changes to the tree. 342 static void VerifyTree(const DeltaTreeNode *N) { 343 const DeltaTreeInteriorNode *IN = dyn_cast<DeltaTreeInteriorNode>(N); 344 if (IN == 0) { 345 // Verify leaves, just ensure that FullDelta matches up and the elements 346 // are in proper order. 347 int FullDelta = 0; 348 for (unsigned i = 0, e = N->getNumValuesUsed(); i != e; ++i) { 349 if (i) 350 assert(N->getValue(i-1).FileLoc < N->getValue(i).FileLoc); 351 FullDelta += N->getValue(i).Delta; 352 } 353 assert(FullDelta == N->getFullDelta()); 354 return; 355 } 356 357 // Verify interior nodes: Ensure that FullDelta matches up and the 358 // elements are in proper order and the children are in proper order. 359 int FullDelta = 0; 360 for (unsigned i = 0, e = IN->getNumValuesUsed(); i != e; ++i) { 361 const SourceDelta &IVal = N->getValue(i); 362 const DeltaTreeNode *IChild = IN->getChild(i); 363 if (i) 364 assert(IN->getValue(i-1).FileLoc < IVal.FileLoc); 365 FullDelta += IVal.Delta; 366 FullDelta += IChild->getFullDelta(); 367 368 // The largest value in child #i should be smaller than FileLoc. 369 assert(IChild->getValue(IChild->getNumValuesUsed()-1).FileLoc < 370 IVal.FileLoc); 371 372 // The smallest value in child #i+1 should be larger than FileLoc. 373 assert(IN->getChild(i+1)->getValue(0).FileLoc > IVal.FileLoc); 374 VerifyTree(IChild); 375 } 376 377 FullDelta += IN->getChild(IN->getNumValuesUsed())->getFullDelta(); 378 379 assert(FullDelta == N->getFullDelta()); 380 } 381 #endif // VERIFY_TREE 382 383 static DeltaTreeNode *getRoot(void *Root) { 384 return (DeltaTreeNode*)Root; 385 } 386 387 DeltaTree::DeltaTree() { 388 Root = new DeltaTreeNode(); 389 } 390 DeltaTree::DeltaTree(const DeltaTree &RHS) { 391 // Currently we only support copying when the RHS is empty. 392 assert(getRoot(RHS.Root)->getNumValuesUsed() == 0 && 393 "Can only copy empty tree"); 394 Root = new DeltaTreeNode(); 395 } 396 397 DeltaTree::~DeltaTree() { 398 getRoot(Root)->Destroy(); 399 } 400 401 /// getDeltaAt - Return the accumulated delta at the specified file offset. 402 /// This includes all insertions or delections that occurred *before* the 403 /// specified file index. 404 int DeltaTree::getDeltaAt(unsigned FileIndex) const { 405 const DeltaTreeNode *Node = getRoot(Root); 406 407 int Result = 0; 408 409 // Walk down the tree. 410 while (1) { 411 // For all nodes, include any local deltas before the specified file 412 // index by summing them up directly. Keep track of how many were 413 // included. 414 unsigned NumValsGreater = 0; 415 for (unsigned e = Node->getNumValuesUsed(); NumValsGreater != e; 416 ++NumValsGreater) { 417 const SourceDelta &Val = Node->getValue(NumValsGreater); 418 419 if (Val.FileLoc >= FileIndex) 420 break; 421 Result += Val.Delta; 422 } 423 424 // If we have an interior node, include information about children and 425 // recurse. Otherwise, if we have a leaf, we're done. 426 const DeltaTreeInteriorNode *IN = dyn_cast<DeltaTreeInteriorNode>(Node); 427 if (!IN) return Result; 428 429 // Include any children to the left of the values we skipped, all of 430 // their deltas should be included as well. 431 for (unsigned i = 0; i != NumValsGreater; ++i) 432 Result += IN->getChild(i)->getFullDelta(); 433 434 // If we found exactly the value we were looking for, break off the 435 // search early. There is no need to search the RHS of the value for 436 // partial results. 437 if (NumValsGreater != Node->getNumValuesUsed() && 438 Node->getValue(NumValsGreater).FileLoc == FileIndex) 439 return Result+IN->getChild(NumValsGreater)->getFullDelta(); 440 441 // Otherwise, traverse down the tree. The selected subtree may be 442 // partially included in the range. 443 Node = IN->getChild(NumValsGreater); 444 } 445 // NOT REACHED. 446 } 447 448 /// AddDelta - When a change is made that shifts around the text buffer, 449 /// this method is used to record that info. It inserts a delta of 'Delta' 450 /// into the current DeltaTree at offset FileIndex. 451 void DeltaTree::AddDelta(unsigned FileIndex, int Delta) { 452 assert(Delta && "Adding a noop?"); 453 DeltaTreeNode *MyRoot = getRoot(Root); 454 455 DeltaTreeNode::InsertResult InsertRes; 456 if (MyRoot->DoInsertion(FileIndex, Delta, &InsertRes)) { 457 Root = MyRoot = new DeltaTreeInteriorNode(InsertRes); 458 } 459 460 #ifdef VERIFY_TREE 461 VerifyTree(MyRoot); 462 #endif 463 } 464 465