Home | History | Annotate | Download | only in ADT
      1 //===- llvm/ADT/APFloat.h - Arbitrary Precision Floating Point ---*- C++ -*-==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 ///
     10 /// \file
     11 /// \brief
     12 /// This file declares a class to represent arbitrary precision floating point
     13 /// values and provide a variety of arithmetic operations on them.
     14 ///
     15 //===----------------------------------------------------------------------===//
     16 
     17 #ifndef LLVM_ADT_APFLOAT_H
     18 #define LLVM_ADT_APFLOAT_H
     19 
     20 #include "llvm/ADT/APInt.h"
     21 
     22 namespace llvm {
     23 
     24 struct fltSemantics;
     25 class APSInt;
     26 class StringRef;
     27 
     28 template <typename T> class SmallVectorImpl;
     29 
     30 /// Enum that represents what fraction of the LSB truncated bits of an fp number
     31 /// represent.
     32 ///
     33 /// This essentially combines the roles of guard and sticky bits.
     34 enum lostFraction { // Example of truncated bits:
     35   lfExactlyZero,    // 000000
     36   lfLessThanHalf,   // 0xxxxx  x's not all zero
     37   lfExactlyHalf,    // 100000
     38   lfMoreThanHalf    // 1xxxxx  x's not all zero
     39 };
     40 
     41 /// \brief A self-contained host- and target-independent arbitrary-precision
     42 /// floating-point software implementation.
     43 ///
     44 /// APFloat uses bignum integer arithmetic as provided by static functions in
     45 /// the APInt class.  The library will work with bignum integers whose parts are
     46 /// any unsigned type at least 16 bits wide, but 64 bits is recommended.
     47 ///
     48 /// Written for clarity rather than speed, in particular with a view to use in
     49 /// the front-end of a cross compiler so that target arithmetic can be correctly
     50 /// performed on the host.  Performance should nonetheless be reasonable,
     51 /// particularly for its intended use.  It may be useful as a base
     52 /// implementation for a run-time library during development of a faster
     53 /// target-specific one.
     54 ///
     55 /// All 5 rounding modes in the IEEE-754R draft are handled correctly for all
     56 /// implemented operations.  Currently implemented operations are add, subtract,
     57 /// multiply, divide, fused-multiply-add, conversion-to-float,
     58 /// conversion-to-integer and conversion-from-integer.  New rounding modes
     59 /// (e.g. away from zero) can be added with three or four lines of code.
     60 ///
     61 /// Four formats are built-in: IEEE single precision, double precision,
     62 /// quadruple precision, and x87 80-bit extended double (when operating with
     63 /// full extended precision).  Adding a new format that obeys IEEE semantics
     64 /// only requires adding two lines of code: a declaration and definition of the
     65 /// format.
     66 ///
     67 /// All operations return the status of that operation as an exception bit-mask,
     68 /// so multiple operations can be done consecutively with their results or-ed
     69 /// together.  The returned status can be useful for compiler diagnostics; e.g.,
     70 /// inexact, underflow and overflow can be easily diagnosed on constant folding,
     71 /// and compiler optimizers can determine what exceptions would be raised by
     72 /// folding operations and optimize, or perhaps not optimize, accordingly.
     73 ///
     74 /// At present, underflow tininess is detected after rounding; it should be
     75 /// straight forward to add support for the before-rounding case too.
     76 ///
     77 /// The library reads hexadecimal floating point numbers as per C99, and
     78 /// correctly rounds if necessary according to the specified rounding mode.
     79 /// Syntax is required to have been validated by the caller.  It also converts
     80 /// floating point numbers to hexadecimal text as per the C99 %a and %A
     81 /// conversions.  The output precision (or alternatively the natural minimal
     82 /// precision) can be specified; if the requested precision is less than the
     83 /// natural precision the output is correctly rounded for the specified rounding
     84 /// mode.
     85 ///
     86 /// It also reads decimal floating point numbers and correctly rounds according
     87 /// to the specified rounding mode.
     88 ///
     89 /// Conversion to decimal text is not currently implemented.
     90 ///
     91 /// Non-zero finite numbers are represented internally as a sign bit, a 16-bit
     92 /// signed exponent, and the significand as an array of integer parts.  After
     93 /// normalization of a number of precision P the exponent is within the range of
     94 /// the format, and if the number is not denormal the P-th bit of the
     95 /// significand is set as an explicit integer bit.  For denormals the most
     96 /// significant bit is shifted right so that the exponent is maintained at the
     97 /// format's minimum, so that the smallest denormal has just the least
     98 /// significant bit of the significand set.  The sign of zeroes and infinities
     99 /// is significant; the exponent and significand of such numbers is not stored,
    100 /// but has a known implicit (deterministic) value: 0 for the significands, 0
    101 /// for zero exponent, all 1 bits for infinity exponent.  For NaNs the sign and
    102 /// significand are deterministic, although not really meaningful, and preserved
    103 /// in non-conversion operations.  The exponent is implicitly all 1 bits.
    104 ///
    105 /// APFloat does not provide any exception handling beyond default exception
    106 /// handling. We represent Signaling NaNs via IEEE-754R 2008 6.2.1 should clause
    107 /// by encoding Signaling NaNs with the first bit of its trailing significand as
    108 /// 0.
    109 ///
    110 /// TODO
    111 /// ====
    112 ///
    113 /// Some features that may or may not be worth adding:
    114 ///
    115 /// Binary to decimal conversion (hard).
    116 ///
    117 /// Optional ability to detect underflow tininess before rounding.
    118 ///
    119 /// New formats: x87 in single and double precision mode (IEEE apart from
    120 /// extended exponent range) (hard).
    121 ///
    122 /// New operations: sqrt, IEEE remainder, C90 fmod, nexttoward.
    123 ///
    124 class APFloat {
    125 public:
    126 
    127   /// A signed type to represent a floating point numbers unbiased exponent.
    128   typedef signed short ExponentType;
    129 
    130   /// \name Floating Point Semantics.
    131   /// @{
    132 
    133   static const fltSemantics IEEEhalf;
    134   static const fltSemantics IEEEsingle;
    135   static const fltSemantics IEEEdouble;
    136   static const fltSemantics IEEEquad;
    137   static const fltSemantics PPCDoubleDouble;
    138   static const fltSemantics x87DoubleExtended;
    139 
    140   /// A Pseudo fltsemantic used to construct APFloats that cannot conflict with
    141   /// anything real.
    142   static const fltSemantics Bogus;
    143 
    144   /// @}
    145 
    146   static unsigned int semanticsPrecision(const fltSemantics &);
    147   static ExponentType semanticsMinExponent(const fltSemantics &);
    148   static ExponentType semanticsMaxExponent(const fltSemantics &);
    149   static unsigned int semanticsSizeInBits(const fltSemantics &);
    150 
    151   /// IEEE-754R 5.11: Floating Point Comparison Relations.
    152   enum cmpResult {
    153     cmpLessThan,
    154     cmpEqual,
    155     cmpGreaterThan,
    156     cmpUnordered
    157   };
    158 
    159   /// IEEE-754R 4.3: Rounding-direction attributes.
    160   enum roundingMode {
    161     rmNearestTiesToEven,
    162     rmTowardPositive,
    163     rmTowardNegative,
    164     rmTowardZero,
    165     rmNearestTiesToAway
    166   };
    167 
    168   /// IEEE-754R 7: Default exception handling.
    169   ///
    170   /// opUnderflow or opOverflow are always returned or-ed with opInexact.
    171   enum opStatus {
    172     opOK = 0x00,
    173     opInvalidOp = 0x01,
    174     opDivByZero = 0x02,
    175     opOverflow = 0x04,
    176     opUnderflow = 0x08,
    177     opInexact = 0x10
    178   };
    179 
    180   /// Category of internally-represented number.
    181   enum fltCategory {
    182     fcInfinity,
    183     fcNaN,
    184     fcNormal,
    185     fcZero
    186   };
    187 
    188   /// Convenience enum used to construct an uninitialized APFloat.
    189   enum uninitializedTag {
    190     uninitialized
    191   };
    192 
    193   /// \name Constructors
    194   /// @{
    195 
    196   APFloat(const fltSemantics &); // Default construct to 0.0
    197   APFloat(const fltSemantics &, StringRef);
    198   APFloat(const fltSemantics &, integerPart);
    199   APFloat(const fltSemantics &, uninitializedTag);
    200   APFloat(const fltSemantics &, const APInt &);
    201   explicit APFloat(double d);
    202   explicit APFloat(float f);
    203   APFloat(const APFloat &);
    204   APFloat(APFloat &&);
    205   ~APFloat();
    206 
    207   /// @}
    208 
    209   /// \brief Returns whether this instance allocated memory.
    210   bool needsCleanup() const { return partCount() > 1; }
    211 
    212   /// \name Convenience "constructors"
    213   /// @{
    214 
    215   /// Factory for Positive and Negative Zero.
    216   ///
    217   /// \param Negative True iff the number should be negative.
    218   static APFloat getZero(const fltSemantics &Sem, bool Negative = false) {
    219     APFloat Val(Sem, uninitialized);
    220     Val.makeZero(Negative);
    221     return Val;
    222   }
    223 
    224   /// Factory for Positive and Negative Infinity.
    225   ///
    226   /// \param Negative True iff the number should be negative.
    227   static APFloat getInf(const fltSemantics &Sem, bool Negative = false) {
    228     APFloat Val(Sem, uninitialized);
    229     Val.makeInf(Negative);
    230     return Val;
    231   }
    232 
    233   /// Factory for QNaN values.
    234   ///
    235   /// \param Negative - True iff the NaN generated should be negative.
    236   /// \param type - The unspecified fill bits for creating the NaN, 0 by
    237   /// default.  The value is truncated as necessary.
    238   static APFloat getNaN(const fltSemantics &Sem, bool Negative = false,
    239                         unsigned type = 0) {
    240     if (type) {
    241       APInt fill(64, type);
    242       return getQNaN(Sem, Negative, &fill);
    243     } else {
    244       return getQNaN(Sem, Negative, nullptr);
    245     }
    246   }
    247 
    248   /// Factory for QNaN values.
    249   static APFloat getQNaN(const fltSemantics &Sem, bool Negative = false,
    250                          const APInt *payload = nullptr) {
    251     return makeNaN(Sem, false, Negative, payload);
    252   }
    253 
    254   /// Factory for SNaN values.
    255   static APFloat getSNaN(const fltSemantics &Sem, bool Negative = false,
    256                          const APInt *payload = nullptr) {
    257     return makeNaN(Sem, true, Negative, payload);
    258   }
    259 
    260   /// Returns the largest finite number in the given semantics.
    261   ///
    262   /// \param Negative - True iff the number should be negative
    263   static APFloat getLargest(const fltSemantics &Sem, bool Negative = false);
    264 
    265   /// Returns the smallest (by magnitude) finite number in the given semantics.
    266   /// Might be denormalized, which implies a relative loss of precision.
    267   ///
    268   /// \param Negative - True iff the number should be negative
    269   static APFloat getSmallest(const fltSemantics &Sem, bool Negative = false);
    270 
    271   /// Returns the smallest (by magnitude) normalized finite number in the given
    272   /// semantics.
    273   ///
    274   /// \param Negative - True iff the number should be negative
    275   static APFloat getSmallestNormalized(const fltSemantics &Sem,
    276                                        bool Negative = false);
    277 
    278   /// Returns a float which is bitcasted from an all one value int.
    279   ///
    280   /// \param BitWidth - Select float type
    281   /// \param isIEEE   - If 128 bit number, select between PPC and IEEE
    282   static APFloat getAllOnesValue(unsigned BitWidth, bool isIEEE = false);
    283 
    284   /// Returns the size of the floating point number (in bits) in the given
    285   /// semantics.
    286   static unsigned getSizeInBits(const fltSemantics &Sem);
    287 
    288   /// @}
    289 
    290   /// Used to insert APFloat objects, or objects that contain APFloat objects,
    291   /// into FoldingSets.
    292   void Profile(FoldingSetNodeID &NID) const;
    293 
    294   /// \name Arithmetic
    295   /// @{
    296 
    297   opStatus add(const APFloat &, roundingMode);
    298   opStatus subtract(const APFloat &, roundingMode);
    299   opStatus multiply(const APFloat &, roundingMode);
    300   opStatus divide(const APFloat &, roundingMode);
    301   /// IEEE remainder.
    302   opStatus remainder(const APFloat &);
    303   /// C fmod, or llvm frem.
    304   opStatus mod(const APFloat &);
    305   opStatus fusedMultiplyAdd(const APFloat &, const APFloat &, roundingMode);
    306   opStatus roundToIntegral(roundingMode);
    307   /// IEEE-754R 5.3.1: nextUp/nextDown.
    308   opStatus next(bool nextDown);
    309 
    310   /// \brief Operator+ overload which provides the default
    311   /// \c nmNearestTiesToEven rounding mode and *no* error checking.
    312   APFloat operator+(const APFloat &RHS) const {
    313     APFloat Result = *this;
    314     Result.add(RHS, rmNearestTiesToEven);
    315     return Result;
    316   }
    317 
    318   /// \brief Operator- overload which provides the default
    319   /// \c nmNearestTiesToEven rounding mode and *no* error checking.
    320   APFloat operator-(const APFloat &RHS) const {
    321     APFloat Result = *this;
    322     Result.subtract(RHS, rmNearestTiesToEven);
    323     return Result;
    324   }
    325 
    326   /// \brief Operator* overload which provides the default
    327   /// \c nmNearestTiesToEven rounding mode and *no* error checking.
    328   APFloat operator*(const APFloat &RHS) const {
    329     APFloat Result = *this;
    330     Result.multiply(RHS, rmNearestTiesToEven);
    331     return Result;
    332   }
    333 
    334   /// \brief Operator/ overload which provides the default
    335   /// \c nmNearestTiesToEven rounding mode and *no* error checking.
    336   APFloat operator/(const APFloat &RHS) const {
    337     APFloat Result = *this;
    338     Result.divide(RHS, rmNearestTiesToEven);
    339     return Result;
    340   }
    341 
    342   /// @}
    343 
    344   /// \name Sign operations.
    345   /// @{
    346 
    347   void changeSign();
    348   void clearSign();
    349   void copySign(const APFloat &);
    350 
    351   /// \brief A static helper to produce a copy of an APFloat value with its sign
    352   /// copied from some other APFloat.
    353   static APFloat copySign(APFloat Value, const APFloat &Sign) {
    354     Value.copySign(Sign);
    355     return Value;
    356   }
    357 
    358   /// @}
    359 
    360   /// \name Conversions
    361   /// @{
    362 
    363   opStatus convert(const fltSemantics &, roundingMode, bool *);
    364   opStatus convertToInteger(integerPart *, unsigned int, bool, roundingMode,
    365                             bool *) const;
    366   opStatus convertToInteger(APSInt &, roundingMode, bool *) const;
    367   opStatus convertFromAPInt(const APInt &, bool, roundingMode);
    368   opStatus convertFromSignExtendedInteger(const integerPart *, unsigned int,
    369                                           bool, roundingMode);
    370   opStatus convertFromZeroExtendedInteger(const integerPart *, unsigned int,
    371                                           bool, roundingMode);
    372   opStatus convertFromString(StringRef, roundingMode);
    373   APInt bitcastToAPInt() const;
    374   double convertToDouble() const;
    375   float convertToFloat() const;
    376 
    377   /// @}
    378 
    379   /// The definition of equality is not straightforward for floating point, so
    380   /// we won't use operator==.  Use one of the following, or write whatever it
    381   /// is you really mean.
    382   bool operator==(const APFloat &) const = delete;
    383 
    384   /// IEEE comparison with another floating point number (NaNs compare
    385   /// unordered, 0==-0).
    386   cmpResult compare(const APFloat &) const;
    387 
    388   /// Bitwise comparison for equality (QNaNs compare equal, 0!=-0).
    389   bool bitwiseIsEqual(const APFloat &) const;
    390 
    391   /// Write out a hexadecimal representation of the floating point value to DST,
    392   /// which must be of sufficient size, in the C99 form [-]0xh.hhhhp[+-]d.
    393   /// Return the number of characters written, excluding the terminating NUL.
    394   unsigned int convertToHexString(char *dst, unsigned int hexDigits,
    395                                   bool upperCase, roundingMode) const;
    396 
    397   /// \name IEEE-754R 5.7.2 General operations.
    398   /// @{
    399 
    400   /// IEEE-754R isSignMinus: Returns true if and only if the current value is
    401   /// negative.
    402   ///
    403   /// This applies to zeros and NaNs as well.
    404   bool isNegative() const { return sign; }
    405 
    406   /// IEEE-754R isNormal: Returns true if and only if the current value is normal.
    407   ///
    408   /// This implies that the current value of the float is not zero, subnormal,
    409   /// infinite, or NaN following the definition of normality from IEEE-754R.
    410   bool isNormal() const { return !isDenormal() && isFiniteNonZero(); }
    411 
    412   /// Returns true if and only if the current value is zero, subnormal, or
    413   /// normal.
    414   ///
    415   /// This means that the value is not infinite or NaN.
    416   bool isFinite() const { return !isNaN() && !isInfinity(); }
    417 
    418   /// Returns true if and only if the float is plus or minus zero.
    419   bool isZero() const { return category == fcZero; }
    420 
    421   /// IEEE-754R isSubnormal(): Returns true if and only if the float is a
    422   /// denormal.
    423   bool isDenormal() const;
    424 
    425   /// IEEE-754R isInfinite(): Returns true if and only if the float is infinity.
    426   bool isInfinity() const { return category == fcInfinity; }
    427 
    428   /// Returns true if and only if the float is a quiet or signaling NaN.
    429   bool isNaN() const { return category == fcNaN; }
    430 
    431   /// Returns true if and only if the float is a signaling NaN.
    432   bool isSignaling() const;
    433 
    434   /// @}
    435 
    436   /// \name Simple Queries
    437   /// @{
    438 
    439   fltCategory getCategory() const { return category; }
    440   const fltSemantics &getSemantics() const { return *semantics; }
    441   bool isNonZero() const { return category != fcZero; }
    442   bool isFiniteNonZero() const { return isFinite() && !isZero(); }
    443   bool isPosZero() const { return isZero() && !isNegative(); }
    444   bool isNegZero() const { return isZero() && isNegative(); }
    445 
    446   /// Returns true if and only if the number has the smallest possible non-zero
    447   /// magnitude in the current semantics.
    448   bool isSmallest() const;
    449 
    450   /// Returns true if and only if the number has the largest possible finite
    451   /// magnitude in the current semantics.
    452   bool isLargest() const;
    453 
    454   /// Returns true if and only if the number is an exact integer.
    455   bool isInteger() const;
    456 
    457   /// @}
    458 
    459   APFloat &operator=(const APFloat &);
    460   APFloat &operator=(APFloat &&);
    461 
    462   /// \brief Overload to compute a hash code for an APFloat value.
    463   ///
    464   /// Note that the use of hash codes for floating point values is in general
    465   /// frought with peril. Equality is hard to define for these values. For
    466   /// example, should negative and positive zero hash to different codes? Are
    467   /// they equal or not? This hash value implementation specifically
    468   /// emphasizes producing different codes for different inputs in order to
    469   /// be used in canonicalization and memoization. As such, equality is
    470   /// bitwiseIsEqual, and 0 != -0.
    471   friend hash_code hash_value(const APFloat &Arg);
    472 
    473   /// Converts this value into a decimal string.
    474   ///
    475   /// \param FormatPrecision The maximum number of digits of
    476   ///   precision to output.  If there are fewer digits available,
    477   ///   zero padding will not be used unless the value is
    478   ///   integral and small enough to be expressed in
    479   ///   FormatPrecision digits.  0 means to use the natural
    480   ///   precision of the number.
    481   /// \param FormatMaxPadding The maximum number of zeros to
    482   ///   consider inserting before falling back to scientific
    483   ///   notation.  0 means to always use scientific notation.
    484   ///
    485   /// Number       Precision    MaxPadding      Result
    486   /// ------       ---------    ----------      ------
    487   /// 1.01E+4              5             2       10100
    488   /// 1.01E+4              4             2       1.01E+4
    489   /// 1.01E+4              5             1       1.01E+4
    490   /// 1.01E-2              5             2       0.0101
    491   /// 1.01E-2              4             2       0.0101
    492   /// 1.01E-2              4             1       1.01E-2
    493   void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision = 0,
    494                 unsigned FormatMaxPadding = 3) const;
    495 
    496   /// If this value has an exact multiplicative inverse, store it in inv and
    497   /// return true.
    498   bool getExactInverse(APFloat *inv) const;
    499 
    500   /// \brief Enumeration of \c ilogb error results.
    501   enum IlogbErrorKinds {
    502     IEK_Zero = INT_MIN+1,
    503     IEK_NaN = INT_MIN,
    504     IEK_Inf = INT_MAX
    505   };
    506 
    507   /// \brief Returns the exponent of the internal representation of the APFloat.
    508   ///
    509   /// Because the radix of APFloat is 2, this is equivalent to floor(log2(x)).
    510   /// For special APFloat values, this returns special error codes:
    511   ///
    512   ///   NaN -> \c IEK_NaN
    513   ///   0   -> \c IEK_Zero
    514   ///   Inf -> \c IEK_Inf
    515   ///
    516   friend int ilogb(const APFloat &Arg);
    517 
    518   /// \brief Returns: X * 2^Exp for integral exponents.
    519   friend APFloat scalbn(APFloat X, int Exp, roundingMode);
    520 
    521   friend APFloat frexp(const APFloat &X, int &Exp, roundingMode);
    522 
    523 private:
    524 
    525   /// \name Simple Queries
    526   /// @{
    527 
    528   integerPart *significandParts();
    529   const integerPart *significandParts() const;
    530   unsigned int partCount() const;
    531 
    532   /// @}
    533 
    534   /// \name Significand operations.
    535   /// @{
    536 
    537   integerPart addSignificand(const APFloat &);
    538   integerPart subtractSignificand(const APFloat &, integerPart);
    539   lostFraction addOrSubtractSignificand(const APFloat &, bool subtract);
    540   lostFraction multiplySignificand(const APFloat &, const APFloat *);
    541   lostFraction divideSignificand(const APFloat &);
    542   void incrementSignificand();
    543   void initialize(const fltSemantics *);
    544   void shiftSignificandLeft(unsigned int);
    545   lostFraction shiftSignificandRight(unsigned int);
    546   unsigned int significandLSB() const;
    547   unsigned int significandMSB() const;
    548   void zeroSignificand();
    549   /// Return true if the significand excluding the integral bit is all ones.
    550   bool isSignificandAllOnes() const;
    551   /// Return true if the significand excluding the integral bit is all zeros.
    552   bool isSignificandAllZeros() const;
    553 
    554   /// @}
    555 
    556   /// \name Arithmetic on special values.
    557   /// @{
    558 
    559   opStatus addOrSubtractSpecials(const APFloat &, bool subtract);
    560   opStatus divideSpecials(const APFloat &);
    561   opStatus multiplySpecials(const APFloat &);
    562   opStatus modSpecials(const APFloat &);
    563 
    564   /// @}
    565 
    566   /// \name Special value setters.
    567   /// @{
    568 
    569   void makeLargest(bool Neg = false);
    570   void makeSmallest(bool Neg = false);
    571   void makeNaN(bool SNaN = false, bool Neg = false,
    572                const APInt *fill = nullptr);
    573   static APFloat makeNaN(const fltSemantics &Sem, bool SNaN, bool Negative,
    574                          const APInt *fill);
    575   void makeInf(bool Neg = false);
    576   void makeZero(bool Neg = false);
    577   void makeQuiet();
    578 
    579   /// @}
    580 
    581   /// \name Miscellany
    582   /// @{
    583 
    584   bool convertFromStringSpecials(StringRef str);
    585   opStatus normalize(roundingMode, lostFraction);
    586   opStatus addOrSubtract(const APFloat &, roundingMode, bool subtract);
    587   cmpResult compareAbsoluteValue(const APFloat &) const;
    588   opStatus handleOverflow(roundingMode);
    589   bool roundAwayFromZero(roundingMode, lostFraction, unsigned int) const;
    590   opStatus convertToSignExtendedInteger(integerPart *, unsigned int, bool,
    591                                         roundingMode, bool *) const;
    592   opStatus convertFromUnsignedParts(const integerPart *, unsigned int,
    593                                     roundingMode);
    594   opStatus convertFromHexadecimalString(StringRef, roundingMode);
    595   opStatus convertFromDecimalString(StringRef, roundingMode);
    596   char *convertNormalToHexString(char *, unsigned int, bool,
    597                                  roundingMode) const;
    598   opStatus roundSignificandWithExponent(const integerPart *, unsigned int, int,
    599                                         roundingMode);
    600 
    601   /// @}
    602 
    603   APInt convertHalfAPFloatToAPInt() const;
    604   APInt convertFloatAPFloatToAPInt() const;
    605   APInt convertDoubleAPFloatToAPInt() const;
    606   APInt convertQuadrupleAPFloatToAPInt() const;
    607   APInt convertF80LongDoubleAPFloatToAPInt() const;
    608   APInt convertPPCDoubleDoubleAPFloatToAPInt() const;
    609   void initFromAPInt(const fltSemantics *Sem, const APInt &api);
    610   void initFromHalfAPInt(const APInt &api);
    611   void initFromFloatAPInt(const APInt &api);
    612   void initFromDoubleAPInt(const APInt &api);
    613   void initFromQuadrupleAPInt(const APInt &api);
    614   void initFromF80LongDoubleAPInt(const APInt &api);
    615   void initFromPPCDoubleDoubleAPInt(const APInt &api);
    616 
    617   void assign(const APFloat &);
    618   void copySignificand(const APFloat &);
    619   void freeSignificand();
    620 
    621   /// The semantics that this value obeys.
    622   const fltSemantics *semantics;
    623 
    624   /// A binary fraction with an explicit integer bit.
    625   ///
    626   /// The significand must be at least one bit wider than the target precision.
    627   union Significand {
    628     integerPart part;
    629     integerPart *parts;
    630   } significand;
    631 
    632   /// The signed unbiased exponent of the value.
    633   ExponentType exponent;
    634 
    635   /// What kind of floating point number this is.
    636   ///
    637   /// Only 2 bits are required, but VisualStudio incorrectly sign extends it.
    638   /// Using the extra bit keeps it from failing under VisualStudio.
    639   fltCategory category : 3;
    640 
    641   /// Sign bit of the number.
    642   unsigned int sign : 1;
    643 };
    644 
    645 /// See friend declarations above.
    646 ///
    647 /// These additional declarations are required in order to compile LLVM with IBM
    648 /// xlC compiler.
    649 hash_code hash_value(const APFloat &Arg);
    650 int ilogb(const APFloat &Arg);
    651 APFloat scalbn(APFloat X, int Exp, APFloat::roundingMode);
    652 
    653 /// \brief Equivalent of C standard library function.
    654 ///
    655 /// While the C standard says Exp is an unspecified value for infinity and nan,
    656 /// this returns INT_MAX for infinities, and INT_MIN for NaNs.
    657 APFloat frexp(const APFloat &Val, int &Exp, APFloat::roundingMode RM);
    658 
    659 /// \brief Returns the absolute value of the argument.
    660 inline APFloat abs(APFloat X) {
    661   X.clearSign();
    662   return X;
    663 }
    664 
    665 /// Implements IEEE minNum semantics. Returns the smaller of the 2 arguments if
    666 /// both are not NaN. If either argument is a NaN, returns the other argument.
    667 LLVM_READONLY
    668 inline APFloat minnum(const APFloat &A, const APFloat &B) {
    669   if (A.isNaN())
    670     return B;
    671   if (B.isNaN())
    672     return A;
    673   return (B.compare(A) == APFloat::cmpLessThan) ? B : A;
    674 }
    675 
    676 /// Implements IEEE maxNum semantics. Returns the larger of the 2 arguments if
    677 /// both are not NaN. If either argument is a NaN, returns the other argument.
    678 LLVM_READONLY
    679 inline APFloat maxnum(const APFloat &A, const APFloat &B) {
    680   if (A.isNaN())
    681     return B;
    682   if (B.isNaN())
    683     return A;
    684   return (A.compare(B) == APFloat::cmpLessThan) ? B : A;
    685 }
    686 
    687 } // namespace llvm
    688 
    689 #endif // LLVM_ADT_APFLOAT_H
    690