Home | History | Annotate | Download | only in CodeGen
      1 //===- llvm/CodeGen/SlotIndexes.h - Slot indexes representation -*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements SlotIndex and related classes. The purpose of SlotIndex
     11 // is to describe a position at which a register can become live, or cease to
     12 // be live.
     13 //
     14 // SlotIndex is mostly a proxy for entries of the SlotIndexList, a class which
     15 // is held is LiveIntervals and provides the real numbering. This allows
     16 // LiveIntervals to perform largely transparent renumbering.
     17 //===----------------------------------------------------------------------===//
     18 
     19 #ifndef LLVM_CODEGEN_SLOTINDEXES_H
     20 #define LLVM_CODEGEN_SLOTINDEXES_H
     21 
     22 #include "llvm/ADT/DenseMap.h"
     23 #include "llvm/ADT/IntervalMap.h"
     24 #include "llvm/ADT/PointerIntPair.h"
     25 #include "llvm/ADT/SmallVector.h"
     26 #include "llvm/ADT/ilist.h"
     27 #include "llvm/CodeGen/MachineFunction.h"
     28 #include "llvm/CodeGen/MachineFunctionPass.h"
     29 #include "llvm/CodeGen/MachineInstrBundle.h"
     30 #include "llvm/Support/Allocator.h"
     31 
     32 namespace llvm {
     33 
     34   /// This class represents an entry in the slot index list held in the
     35   /// SlotIndexes pass. It should not be used directly. See the
     36   /// SlotIndex & SlotIndexes classes for the public interface to this
     37   /// information.
     38   class IndexListEntry : public ilist_node<IndexListEntry> {
     39     MachineInstr *mi;
     40     unsigned index;
     41 
     42   public:
     43 
     44     IndexListEntry(MachineInstr *mi, unsigned index) : mi(mi), index(index) {}
     45 
     46     MachineInstr* getInstr() const { return mi; }
     47     void setInstr(MachineInstr *mi) {
     48       this->mi = mi;
     49     }
     50 
     51     unsigned getIndex() const { return index; }
     52     void setIndex(unsigned index) {
     53       this->index = index;
     54     }
     55 
     56 #ifdef EXPENSIVE_CHECKS
     57     // When EXPENSIVE_CHECKS is defined, "erased" index list entries will
     58     // actually be moved to a "graveyard" list, and have their pointers
     59     // poisoned, so that dangling SlotIndex access can be reliably detected.
     60     void setPoison() {
     61       intptr_t tmp = reinterpret_cast<intptr_t>(mi);
     62       assert(((tmp & 0x1) == 0x0) && "Pointer already poisoned?");
     63       tmp |= 0x1;
     64       mi = reinterpret_cast<MachineInstr*>(tmp);
     65     }
     66 
     67     bool isPoisoned() const { return (reinterpret_cast<intptr_t>(mi) & 0x1) == 0x1; }
     68 #endif // EXPENSIVE_CHECKS
     69   };
     70 
     71   template <>
     72   struct ilist_traits<IndexListEntry> : public ilist_default_traits<IndexListEntry> {
     73   private:
     74     mutable ilist_half_node<IndexListEntry> Sentinel;
     75   public:
     76     IndexListEntry *createSentinel() const {
     77       return static_cast<IndexListEntry*>(&Sentinel);
     78     }
     79     void destroySentinel(IndexListEntry *) const {}
     80 
     81     IndexListEntry *provideInitialHead() const { return createSentinel(); }
     82     IndexListEntry *ensureHead(IndexListEntry*) const { return createSentinel(); }
     83     static void noteHead(IndexListEntry*, IndexListEntry*) {}
     84     void deleteNode(IndexListEntry *N) {}
     85 
     86   private:
     87     void createNode(const IndexListEntry &);
     88   };
     89 
     90   /// SlotIndex - An opaque wrapper around machine indexes.
     91   class SlotIndex {
     92     friend class SlotIndexes;
     93 
     94     enum Slot {
     95       /// Basic block boundary.  Used for live ranges entering and leaving a
     96       /// block without being live in the layout neighbor.  Also used as the
     97       /// def slot of PHI-defs.
     98       Slot_Block,
     99 
    100       /// Early-clobber register use/def slot.  A live range defined at
    101       /// Slot_EarlyClobber interferes with normal live ranges killed at
    102       /// Slot_Register.  Also used as the kill slot for live ranges tied to an
    103       /// early-clobber def.
    104       Slot_EarlyClobber,
    105 
    106       /// Normal register use/def slot.  Normal instructions kill and define
    107       /// register live ranges at this slot.
    108       Slot_Register,
    109 
    110       /// Dead def kill point.  Kill slot for a live range that is defined by
    111       /// the same instruction (Slot_Register or Slot_EarlyClobber), but isn't
    112       /// used anywhere.
    113       Slot_Dead,
    114 
    115       Slot_Count
    116     };
    117 
    118     PointerIntPair<IndexListEntry*, 2, unsigned> lie;
    119 
    120     SlotIndex(IndexListEntry *entry, unsigned slot)
    121       : lie(entry, slot) {}
    122 
    123     IndexListEntry* listEntry() const {
    124       assert(isValid() && "Attempt to compare reserved index.");
    125 #ifdef EXPENSIVE_CHECKS
    126       assert(!lie.getPointer()->isPoisoned() &&
    127              "Attempt to access deleted list-entry.");
    128 #endif // EXPENSIVE_CHECKS
    129       return lie.getPointer();
    130     }
    131 
    132     unsigned getIndex() const {
    133       return listEntry()->getIndex() | getSlot();
    134     }
    135 
    136     /// Returns the slot for this SlotIndex.
    137     Slot getSlot() const {
    138       return static_cast<Slot>(lie.getInt());
    139     }
    140 
    141   public:
    142     enum {
    143       /// The default distance between instructions as returned by distance().
    144       /// This may vary as instructions are inserted and removed.
    145       InstrDist = 4 * Slot_Count
    146     };
    147 
    148     /// Construct an invalid index.
    149     SlotIndex() : lie(nullptr, 0) {}
    150 
    151     // Construct a new slot index from the given one, and set the slot.
    152     SlotIndex(const SlotIndex &li, Slot s) : lie(li.listEntry(), unsigned(s)) {
    153       assert(lie.getPointer() != nullptr &&
    154              "Attempt to construct index with 0 pointer.");
    155     }
    156 
    157     /// Returns true if this is a valid index. Invalid indices do
    158     /// not point into an index table, and cannot be compared.
    159     bool isValid() const {
    160       return lie.getPointer();
    161     }
    162 
    163     /// Return true for a valid index.
    164     explicit operator bool() const { return isValid(); }
    165 
    166     /// Print this index to the given raw_ostream.
    167     void print(raw_ostream &os) const;
    168 
    169     /// Dump this index to stderr.
    170     void dump() const;
    171 
    172     /// Compare two SlotIndex objects for equality.
    173     bool operator==(SlotIndex other) const {
    174       return lie == other.lie;
    175     }
    176     /// Compare two SlotIndex objects for inequality.
    177     bool operator!=(SlotIndex other) const {
    178       return lie != other.lie;
    179     }
    180 
    181     /// Compare two SlotIndex objects. Return true if the first index
    182     /// is strictly lower than the second.
    183     bool operator<(SlotIndex other) const {
    184       return getIndex() < other.getIndex();
    185     }
    186     /// Compare two SlotIndex objects. Return true if the first index
    187     /// is lower than, or equal to, the second.
    188     bool operator<=(SlotIndex other) const {
    189       return getIndex() <= other.getIndex();
    190     }
    191 
    192     /// Compare two SlotIndex objects. Return true if the first index
    193     /// is greater than the second.
    194     bool operator>(SlotIndex other) const {
    195       return getIndex() > other.getIndex();
    196     }
    197 
    198     /// Compare two SlotIndex objects. Return true if the first index
    199     /// is greater than, or equal to, the second.
    200     bool operator>=(SlotIndex other) const {
    201       return getIndex() >= other.getIndex();
    202     }
    203 
    204     /// isSameInstr - Return true if A and B refer to the same instruction.
    205     static bool isSameInstr(SlotIndex A, SlotIndex B) {
    206       return A.lie.getPointer() == B.lie.getPointer();
    207     }
    208 
    209     /// isEarlierInstr - Return true if A refers to an instruction earlier than
    210     /// B. This is equivalent to A < B && !isSameInstr(A, B).
    211     static bool isEarlierInstr(SlotIndex A, SlotIndex B) {
    212       return A.listEntry()->getIndex() < B.listEntry()->getIndex();
    213     }
    214 
    215     /// Return true if A refers to the same instruction as B or an earlier one.
    216     /// This is equivalent to !isEarlierInstr(B, A).
    217     static bool isEarlierEqualInstr(SlotIndex A, SlotIndex B) {
    218       return !isEarlierInstr(B, A);
    219     }
    220 
    221     /// Return the distance from this index to the given one.
    222     int distance(SlotIndex other) const {
    223       return other.getIndex() - getIndex();
    224     }
    225 
    226     /// Return the scaled distance from this index to the given one, where all
    227     /// slots on the same instruction have zero distance.
    228     int getInstrDistance(SlotIndex other) const {
    229       return (other.listEntry()->getIndex() - listEntry()->getIndex())
    230         / Slot_Count;
    231     }
    232 
    233     /// isBlock - Returns true if this is a block boundary slot.
    234     bool isBlock() const { return getSlot() == Slot_Block; }
    235 
    236     /// isEarlyClobber - Returns true if this is an early-clobber slot.
    237     bool isEarlyClobber() const { return getSlot() == Slot_EarlyClobber; }
    238 
    239     /// isRegister - Returns true if this is a normal register use/def slot.
    240     /// Note that early-clobber slots may also be used for uses and defs.
    241     bool isRegister() const { return getSlot() == Slot_Register; }
    242 
    243     /// isDead - Returns true if this is a dead def kill slot.
    244     bool isDead() const { return getSlot() == Slot_Dead; }
    245 
    246     /// Returns the base index for associated with this index. The base index
    247     /// is the one associated with the Slot_Block slot for the instruction
    248     /// pointed to by this index.
    249     SlotIndex getBaseIndex() const {
    250       return SlotIndex(listEntry(), Slot_Block);
    251     }
    252 
    253     /// Returns the boundary index for associated with this index. The boundary
    254     /// index is the one associated with the Slot_Block slot for the instruction
    255     /// pointed to by this index.
    256     SlotIndex getBoundaryIndex() const {
    257       return SlotIndex(listEntry(), Slot_Dead);
    258     }
    259 
    260     /// Returns the register use/def slot in the current instruction for a
    261     /// normal or early-clobber def.
    262     SlotIndex getRegSlot(bool EC = false) const {
    263       return SlotIndex(listEntry(), EC ? Slot_EarlyClobber : Slot_Register);
    264     }
    265 
    266     /// Returns the dead def kill slot for the current instruction.
    267     SlotIndex getDeadSlot() const {
    268       return SlotIndex(listEntry(), Slot_Dead);
    269     }
    270 
    271     /// Returns the next slot in the index list. This could be either the
    272     /// next slot for the instruction pointed to by this index or, if this
    273     /// index is a STORE, the first slot for the next instruction.
    274     /// WARNING: This method is considerably more expensive than the methods
    275     /// that return specific slots (getUseIndex(), etc). If you can - please
    276     /// use one of those methods.
    277     SlotIndex getNextSlot() const {
    278       Slot s = getSlot();
    279       if (s == Slot_Dead) {
    280         return SlotIndex(&*++listEntry()->getIterator(), Slot_Block);
    281       }
    282       return SlotIndex(listEntry(), s + 1);
    283     }
    284 
    285     /// Returns the next index. This is the index corresponding to the this
    286     /// index's slot, but for the next instruction.
    287     SlotIndex getNextIndex() const {
    288       return SlotIndex(&*++listEntry()->getIterator(), getSlot());
    289     }
    290 
    291     /// Returns the previous slot in the index list. This could be either the
    292     /// previous slot for the instruction pointed to by this index or, if this
    293     /// index is a Slot_Block, the last slot for the previous instruction.
    294     /// WARNING: This method is considerably more expensive than the methods
    295     /// that return specific slots (getUseIndex(), etc). If you can - please
    296     /// use one of those methods.
    297     SlotIndex getPrevSlot() const {
    298       Slot s = getSlot();
    299       if (s == Slot_Block) {
    300         return SlotIndex(&*--listEntry()->getIterator(), Slot_Dead);
    301       }
    302       return SlotIndex(listEntry(), s - 1);
    303     }
    304 
    305     /// Returns the previous index. This is the index corresponding to this
    306     /// index's slot, but for the previous instruction.
    307     SlotIndex getPrevIndex() const {
    308       return SlotIndex(&*--listEntry()->getIterator(), getSlot());
    309     }
    310   };
    311 
    312   template <> struct isPodLike<SlotIndex> { static const bool value = true; };
    313 
    314   inline raw_ostream& operator<<(raw_ostream &os, SlotIndex li) {
    315     li.print(os);
    316     return os;
    317   }
    318 
    319   typedef std::pair<SlotIndex, MachineBasicBlock*> IdxMBBPair;
    320 
    321   inline bool operator<(SlotIndex V, const IdxMBBPair &IM) {
    322     return V < IM.first;
    323   }
    324 
    325   inline bool operator<(const IdxMBBPair &IM, SlotIndex V) {
    326     return IM.first < V;
    327   }
    328 
    329   struct Idx2MBBCompare {
    330     bool operator()(const IdxMBBPair &LHS, const IdxMBBPair &RHS) const {
    331       return LHS.first < RHS.first;
    332     }
    333   };
    334 
    335   /// SlotIndexes pass.
    336   ///
    337   /// This pass assigns indexes to each instruction.
    338   class SlotIndexes : public MachineFunctionPass {
    339   private:
    340     // IndexListEntry allocator.
    341     BumpPtrAllocator ileAllocator;
    342 
    343     typedef ilist<IndexListEntry> IndexList;
    344     IndexList indexList;
    345 
    346 #ifdef EXPENSIVE_CHECKS
    347     IndexList graveyardList;
    348 #endif // EXPENSIVE_CHECKS
    349 
    350     MachineFunction *mf;
    351 
    352     typedef DenseMap<const MachineInstr*, SlotIndex> Mi2IndexMap;
    353     Mi2IndexMap mi2iMap;
    354 
    355     /// MBBRanges - Map MBB number to (start, stop) indexes.
    356     SmallVector<std::pair<SlotIndex, SlotIndex>, 8> MBBRanges;
    357 
    358     /// Idx2MBBMap - Sorted list of pairs of index of first instruction
    359     /// and MBB id.
    360     SmallVector<IdxMBBPair, 8> idx2MBBMap;
    361 
    362     IndexListEntry* createEntry(MachineInstr *mi, unsigned index) {
    363       IndexListEntry *entry =
    364         static_cast<IndexListEntry*>(
    365           ileAllocator.Allocate(sizeof(IndexListEntry),
    366           alignOf<IndexListEntry>()));
    367 
    368       new (entry) IndexListEntry(mi, index);
    369 
    370       return entry;
    371     }
    372 
    373     /// Renumber locally after inserting curItr.
    374     void renumberIndexes(IndexList::iterator curItr);
    375 
    376   public:
    377     static char ID;
    378 
    379     SlotIndexes() : MachineFunctionPass(ID) {
    380       initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
    381     }
    382 
    383     ~SlotIndexes() override {
    384       // The indexList's nodes are all allocated in the BumpPtrAllocator.
    385       indexList.clearAndLeakNodesUnsafely();
    386     }
    387 
    388     void getAnalysisUsage(AnalysisUsage &au) const override;
    389     void releaseMemory() override;
    390 
    391     bool runOnMachineFunction(MachineFunction &fn) override;
    392 
    393     /// Dump the indexes.
    394     void dump() const;
    395 
    396     /// Renumber the index list, providing space for new instructions.
    397     void renumberIndexes();
    398 
    399     /// Repair indexes after adding and removing instructions.
    400     void repairIndexesInRange(MachineBasicBlock *MBB,
    401                               MachineBasicBlock::iterator Begin,
    402                               MachineBasicBlock::iterator End);
    403 
    404     /// Returns the zero index for this analysis.
    405     SlotIndex getZeroIndex() {
    406       assert(indexList.front().getIndex() == 0 && "First index is not 0?");
    407       return SlotIndex(&indexList.front(), 0);
    408     }
    409 
    410     /// Returns the base index of the last slot in this analysis.
    411     SlotIndex getLastIndex() {
    412       return SlotIndex(&indexList.back(), 0);
    413     }
    414 
    415     /// Returns true if the given machine instr is mapped to an index,
    416     /// otherwise returns false.
    417     bool hasIndex(const MachineInstr &instr) const {
    418       return mi2iMap.count(&instr);
    419     }
    420 
    421     /// Returns the base index for the given instruction.
    422     SlotIndex getInstructionIndex(const MachineInstr &MI) const {
    423       // Instructions inside a bundle have the same number as the bundle itself.
    424       Mi2IndexMap::const_iterator itr = mi2iMap.find(&getBundleStart(MI));
    425       assert(itr != mi2iMap.end() && "Instruction not found in maps.");
    426       return itr->second;
    427     }
    428 
    429     /// Returns the instruction for the given index, or null if the given
    430     /// index has no instruction associated with it.
    431     MachineInstr* getInstructionFromIndex(SlotIndex index) const {
    432       return index.isValid() ? index.listEntry()->getInstr() : nullptr;
    433     }
    434 
    435     /// Returns the next non-null index, if one exists.
    436     /// Otherwise returns getLastIndex().
    437     SlotIndex getNextNonNullIndex(SlotIndex Index) {
    438       IndexList::iterator I = Index.listEntry()->getIterator();
    439       IndexList::iterator E = indexList.end();
    440       while (++I != E)
    441         if (I->getInstr())
    442           return SlotIndex(&*I, Index.getSlot());
    443       // We reached the end of the function.
    444       return getLastIndex();
    445     }
    446 
    447     /// getIndexBefore - Returns the index of the last indexed instruction
    448     /// before MI, or the start index of its basic block.
    449     /// MI is not required to have an index.
    450     SlotIndex getIndexBefore(const MachineInstr &MI) const {
    451       const MachineBasicBlock *MBB = MI.getParent();
    452       assert(MBB && "MI must be inserted inna basic block");
    453       MachineBasicBlock::const_iterator I = MI, B = MBB->begin();
    454       for (;;) {
    455         if (I == B)
    456           return getMBBStartIdx(MBB);
    457         --I;
    458         Mi2IndexMap::const_iterator MapItr = mi2iMap.find(&*I);
    459         if (MapItr != mi2iMap.end())
    460           return MapItr->second;
    461       }
    462     }
    463 
    464     /// getIndexAfter - Returns the index of the first indexed instruction
    465     /// after MI, or the end index of its basic block.
    466     /// MI is not required to have an index.
    467     SlotIndex getIndexAfter(const MachineInstr &MI) const {
    468       const MachineBasicBlock *MBB = MI.getParent();
    469       assert(MBB && "MI must be inserted inna basic block");
    470       MachineBasicBlock::const_iterator I = MI, E = MBB->end();
    471       for (;;) {
    472         ++I;
    473         if (I == E)
    474           return getMBBEndIdx(MBB);
    475         Mi2IndexMap::const_iterator MapItr = mi2iMap.find(&*I);
    476         if (MapItr != mi2iMap.end())
    477           return MapItr->second;
    478       }
    479     }
    480 
    481     /// Return the (start,end) range of the given basic block number.
    482     const std::pair<SlotIndex, SlotIndex> &
    483     getMBBRange(unsigned Num) const {
    484       return MBBRanges[Num];
    485     }
    486 
    487     /// Return the (start,end) range of the given basic block.
    488     const std::pair<SlotIndex, SlotIndex> &
    489     getMBBRange(const MachineBasicBlock *MBB) const {
    490       return getMBBRange(MBB->getNumber());
    491     }
    492 
    493     /// Returns the first index in the given basic block number.
    494     SlotIndex getMBBStartIdx(unsigned Num) const {
    495       return getMBBRange(Num).first;
    496     }
    497 
    498     /// Returns the first index in the given basic block.
    499     SlotIndex getMBBStartIdx(const MachineBasicBlock *mbb) const {
    500       return getMBBRange(mbb).first;
    501     }
    502 
    503     /// Returns the last index in the given basic block number.
    504     SlotIndex getMBBEndIdx(unsigned Num) const {
    505       return getMBBRange(Num).second;
    506     }
    507 
    508     /// Returns the last index in the given basic block.
    509     SlotIndex getMBBEndIdx(const MachineBasicBlock *mbb) const {
    510       return getMBBRange(mbb).second;
    511     }
    512 
    513     /// Iterator over the idx2MBBMap (sorted pairs of slot index of basic block
    514     /// begin and basic block)
    515     typedef SmallVectorImpl<IdxMBBPair>::const_iterator MBBIndexIterator;
    516     /// Move iterator to the next IdxMBBPair where the SlotIndex is greater or
    517     /// equal to \p To.
    518     MBBIndexIterator advanceMBBIndex(MBBIndexIterator I, SlotIndex To) const {
    519       return std::lower_bound(I, idx2MBBMap.end(), To);
    520     }
    521     /// Get an iterator pointing to the IdxMBBPair with the biggest SlotIndex
    522     /// that is greater or equal to \p Idx.
    523     MBBIndexIterator findMBBIndex(SlotIndex Idx) const {
    524       return advanceMBBIndex(idx2MBBMap.begin(), Idx);
    525     }
    526     /// Returns an iterator for the begin of the idx2MBBMap.
    527     MBBIndexIterator MBBIndexBegin() const {
    528       return idx2MBBMap.begin();
    529     }
    530     /// Return an iterator for the end of the idx2MBBMap.
    531     MBBIndexIterator MBBIndexEnd() const {
    532       return idx2MBBMap.end();
    533     }
    534 
    535     /// Returns the basic block which the given index falls in.
    536     MachineBasicBlock* getMBBFromIndex(SlotIndex index) const {
    537       if (MachineInstr *MI = getInstructionFromIndex(index))
    538         return MI->getParent();
    539 
    540       MBBIndexIterator I = findMBBIndex(index);
    541       // Take the pair containing the index
    542       MBBIndexIterator J =
    543         ((I != MBBIndexEnd() && I->first > index) ||
    544          (I == MBBIndexEnd() && !idx2MBBMap.empty())) ? std::prev(I) : I;
    545 
    546       assert(J != MBBIndexEnd() && J->first <= index &&
    547              index < getMBBEndIdx(J->second) &&
    548              "index does not correspond to an MBB");
    549       return J->second;
    550     }
    551 
    552     /// Returns the MBB covering the given range, or null if the range covers
    553     /// more than one basic block.
    554     MachineBasicBlock* getMBBCoveringRange(SlotIndex start, SlotIndex end) const {
    555 
    556       assert(start < end && "Backwards ranges not allowed.");
    557       MBBIndexIterator itr = findMBBIndex(start);
    558       if (itr == MBBIndexEnd()) {
    559         itr = std::prev(itr);
    560         return itr->second;
    561       }
    562 
    563       // Check that we don't cross the boundary into this block.
    564       if (itr->first < end)
    565         return nullptr;
    566 
    567       itr = std::prev(itr);
    568 
    569       if (itr->first <= start)
    570         return itr->second;
    571 
    572       return nullptr;
    573     }
    574 
    575     /// Insert the given machine instruction into the mapping. Returns the
    576     /// assigned index.
    577     /// If Late is set and there are null indexes between mi's neighboring
    578     /// instructions, create the new index after the null indexes instead of
    579     /// before them.
    580     SlotIndex insertMachineInstrInMaps(MachineInstr &MI, bool Late = false) {
    581       assert(!MI.isInsideBundle() &&
    582              "Instructions inside bundles should use bundle start's slot.");
    583       assert(mi2iMap.find(&MI) == mi2iMap.end() && "Instr already indexed.");
    584       // Numbering DBG_VALUE instructions could cause code generation to be
    585       // affected by debug information.
    586       assert(!MI.isDebugValue() && "Cannot number DBG_VALUE instructions.");
    587 
    588       assert(MI.getParent() != nullptr && "Instr must be added to function.");
    589 
    590       // Get the entries where MI should be inserted.
    591       IndexList::iterator prevItr, nextItr;
    592       if (Late) {
    593         // Insert MI's index immediately before the following instruction.
    594         nextItr = getIndexAfter(MI).listEntry()->getIterator();
    595         prevItr = std::prev(nextItr);
    596       } else {
    597         // Insert MI's index immediately after the preceding instruction.
    598         prevItr = getIndexBefore(MI).listEntry()->getIterator();
    599         nextItr = std::next(prevItr);
    600       }
    601 
    602       // Get a number for the new instr, or 0 if there's no room currently.
    603       // In the latter case we'll force a renumber later.
    604       unsigned dist = ((nextItr->getIndex() - prevItr->getIndex())/2) & ~3u;
    605       unsigned newNumber = prevItr->getIndex() + dist;
    606 
    607       // Insert a new list entry for MI.
    608       IndexList::iterator newItr =
    609           indexList.insert(nextItr, createEntry(&MI, newNumber));
    610 
    611       // Renumber locally if we need to.
    612       if (dist == 0)
    613         renumberIndexes(newItr);
    614 
    615       SlotIndex newIndex(&*newItr, SlotIndex::Slot_Block);
    616       mi2iMap.insert(std::make_pair(&MI, newIndex));
    617       return newIndex;
    618     }
    619 
    620     /// Remove the given machine instruction from the mapping.
    621     void removeMachineInstrFromMaps(MachineInstr &MI) {
    622       // remove index -> MachineInstr and
    623       // MachineInstr -> index mappings
    624       Mi2IndexMap::iterator mi2iItr = mi2iMap.find(&MI);
    625       if (mi2iItr != mi2iMap.end()) {
    626         IndexListEntry *miEntry(mi2iItr->second.listEntry());
    627         assert(miEntry->getInstr() == &MI && "Instruction indexes broken.");
    628         // FIXME: Eventually we want to actually delete these indexes.
    629         miEntry->setInstr(nullptr);
    630         mi2iMap.erase(mi2iItr);
    631       }
    632     }
    633 
    634     /// ReplaceMachineInstrInMaps - Replacing a machine instr with a new one in
    635     /// maps used by register allocator.
    636     void replaceMachineInstrInMaps(MachineInstr &MI, MachineInstr &NewMI) {
    637       Mi2IndexMap::iterator mi2iItr = mi2iMap.find(&MI);
    638       if (mi2iItr == mi2iMap.end())
    639         return;
    640       SlotIndex replaceBaseIndex = mi2iItr->second;
    641       IndexListEntry *miEntry(replaceBaseIndex.listEntry());
    642       assert(miEntry->getInstr() == &MI &&
    643              "Mismatched instruction in index tables.");
    644       miEntry->setInstr(&NewMI);
    645       mi2iMap.erase(mi2iItr);
    646       mi2iMap.insert(std::make_pair(&NewMI, replaceBaseIndex));
    647     }
    648 
    649     /// Add the given MachineBasicBlock into the maps.
    650     void insertMBBInMaps(MachineBasicBlock *mbb) {
    651       MachineFunction::iterator nextMBB =
    652         std::next(MachineFunction::iterator(mbb));
    653 
    654       IndexListEntry *startEntry = nullptr;
    655       IndexListEntry *endEntry = nullptr;
    656       IndexList::iterator newItr;
    657       if (nextMBB == mbb->getParent()->end()) {
    658         startEntry = &indexList.back();
    659         endEntry = createEntry(nullptr, 0);
    660         newItr = indexList.insertAfter(startEntry->getIterator(), endEntry);
    661       } else {
    662         startEntry = createEntry(nullptr, 0);
    663         endEntry = getMBBStartIdx(&*nextMBB).listEntry();
    664         newItr = indexList.insert(endEntry->getIterator(), startEntry);
    665       }
    666 
    667       SlotIndex startIdx(startEntry, SlotIndex::Slot_Block);
    668       SlotIndex endIdx(endEntry, SlotIndex::Slot_Block);
    669 
    670       MachineFunction::iterator prevMBB(mbb);
    671       assert(prevMBB != mbb->getParent()->end() &&
    672              "Can't insert a new block at the beginning of a function.");
    673       --prevMBB;
    674       MBBRanges[prevMBB->getNumber()].second = startIdx;
    675 
    676       assert(unsigned(mbb->getNumber()) == MBBRanges.size() &&
    677              "Blocks must be added in order");
    678       MBBRanges.push_back(std::make_pair(startIdx, endIdx));
    679       idx2MBBMap.push_back(IdxMBBPair(startIdx, mbb));
    680 
    681       renumberIndexes(newItr);
    682       std::sort(idx2MBBMap.begin(), idx2MBBMap.end(), Idx2MBBCompare());
    683     }
    684 
    685     /// \brief Free the resources that were required to maintain a SlotIndex.
    686     ///
    687     /// Once an index is no longer needed (for instance because the instruction
    688     /// at that index has been moved), the resources required to maintain the
    689     /// index can be relinquished to reduce memory use and improve renumbering
    690     /// performance. Any remaining SlotIndex objects that point to the same
    691     /// index are left 'dangling' (much the same as a dangling pointer to a
    692     /// freed object) and should not be accessed, except to destruct them.
    693     ///
    694     /// Like dangling pointers, access to dangling SlotIndexes can cause
    695     /// painful-to-track-down bugs, especially if the memory for the index
    696     /// previously pointed to has been re-used. To detect dangling SlotIndex
    697     /// bugs, build with EXPENSIVE_CHECKS=1. This will cause "erased" indexes to
    698     /// be retained in a graveyard instead of being freed. Operations on indexes
    699     /// in the graveyard will trigger an assertion.
    700     void eraseIndex(SlotIndex index) {
    701       IndexListEntry *entry = index.listEntry();
    702 #ifdef EXPENSIVE_CHECKS
    703       indexList.remove(entry);
    704       graveyardList.push_back(entry);
    705       entry->setPoison();
    706 #else
    707       indexList.erase(entry);
    708 #endif
    709     }
    710   };
    711 
    712   // Specialize IntervalMapInfo for half-open slot index intervals.
    713   template <>
    714   struct IntervalMapInfo<SlotIndex> : IntervalMapHalfOpenInfo<SlotIndex> {
    715   };
    716 
    717 } // end namespace llvm
    718 
    719 #endif // LLVM_CODEGEN_SLOTINDEXES_H
    720