1 // Copyright (c) 2011 The Chromium Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 // The original file was copied from sqlite, and was in the public domain. 6 7 /* 8 * This code implements the MD5 message-digest algorithm. 9 * The algorithm is due to Ron Rivest. This code was 10 * written by Colin Plumb in 1993, no copyright is claimed. 11 * This code is in the public domain; do with it what you wish. 12 * 13 * Equivalent code is available from RSA Data Security, Inc. 14 * This code has been tested against that, and is equivalent, 15 * except that you don't need to include two pages of legalese 16 * with every copy. 17 * 18 * To compute the message digest of a chunk of bytes, declare an 19 * MD5Context structure, pass it to MD5Init, call MD5Update as 20 * needed on buffers full of bytes, and then call MD5Final, which 21 * will fill a supplied 16-byte array with the digest. 22 */ 23 24 #include "base/md5.h" 25 26 #include <stddef.h> 27 28 namespace { 29 30 struct Context { 31 uint32_t buf[4]; 32 uint32_t bits[2]; 33 uint8_t in[64]; 34 }; 35 36 /* 37 * Note: this code is harmless on little-endian machines. 38 */ 39 void byteReverse(uint8_t* buf, unsigned longs) { 40 do { 41 uint32_t temp = static_cast<uint32_t>( 42 static_cast<unsigned>(buf[3]) << 8 | 43 buf[2]) << 16 | 44 (static_cast<unsigned>(buf[1]) << 8 | buf[0]); 45 *reinterpret_cast<uint32_t*>(buf) = temp; 46 buf += 4; 47 } while (--longs); 48 } 49 50 /* The four core functions - F1 is optimized somewhat */ 51 52 /* #define F1(x, y, z) (x & y | ~x & z) */ 53 #define F1(x, y, z) (z ^ (x & (y ^ z))) 54 #define F2(x, y, z) F1(z, x, y) 55 #define F3(x, y, z) (x ^ y ^ z) 56 #define F4(x, y, z) (y ^ (x | ~z)) 57 58 /* This is the central step in the MD5 algorithm. */ 59 #define MD5STEP(f, w, x, y, z, data, s) \ 60 (w += f(x, y, z) + data, w = w << s | w >> (32 - s), w += x) 61 62 /* 63 * The core of the MD5 algorithm, this alters an existing MD5 hash to 64 * reflect the addition of 16 longwords of new data. MD5Update blocks 65 * the data and converts bytes into longwords for this routine. 66 */ 67 void MD5Transform(uint32_t buf[4], const uint32_t in[16]) { 68 uint32_t a, b, c, d; 69 70 a = buf[0]; 71 b = buf[1]; 72 c = buf[2]; 73 d = buf[3]; 74 75 MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7); 76 MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12); 77 MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17); 78 MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22); 79 MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7); 80 MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12); 81 MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17); 82 MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22); 83 MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7); 84 MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12); 85 MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17); 86 MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22); 87 MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7); 88 MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12); 89 MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17); 90 MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22); 91 92 MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5); 93 MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9); 94 MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14); 95 MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20); 96 MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5); 97 MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9); 98 MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14); 99 MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20); 100 MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5); 101 MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9); 102 MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14); 103 MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20); 104 MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5); 105 MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9); 106 MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14); 107 MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20); 108 109 MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4); 110 MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11); 111 MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16); 112 MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23); 113 MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4); 114 MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11); 115 MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16); 116 MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23); 117 MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4); 118 MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11); 119 MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16); 120 MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23); 121 MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4); 122 MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11); 123 MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16); 124 MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23); 125 126 MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6); 127 MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10); 128 MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15); 129 MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21); 130 MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6); 131 MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10); 132 MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15); 133 MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21); 134 MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6); 135 MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10); 136 MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15); 137 MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21); 138 MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6); 139 MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10); 140 MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15); 141 MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21); 142 143 buf[0] += a; 144 buf[1] += b; 145 buf[2] += c; 146 buf[3] += d; 147 } 148 149 } // namespace 150 151 namespace base { 152 153 /* 154 * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious 155 * initialization constants. 156 */ 157 void MD5Init(MD5Context* context) { 158 struct Context* ctx = reinterpret_cast<struct Context*>(context); 159 ctx->buf[0] = 0x67452301; 160 ctx->buf[1] = 0xefcdab89; 161 ctx->buf[2] = 0x98badcfe; 162 ctx->buf[3] = 0x10325476; 163 ctx->bits[0] = 0; 164 ctx->bits[1] = 0; 165 } 166 167 /* 168 * Update context to reflect the concatenation of another buffer full 169 * of bytes. 170 */ 171 void MD5Update(MD5Context* context, const StringPiece& data) { 172 struct Context* ctx = reinterpret_cast<struct Context*>(context); 173 const uint8_t* buf = reinterpret_cast<const uint8_t*>(data.data()); 174 size_t len = data.size(); 175 176 /* Update bitcount */ 177 178 uint32_t t = ctx->bits[0]; 179 if ((ctx->bits[0] = t + (static_cast<uint32_t>(len) << 3)) < t) 180 ctx->bits[1]++; /* Carry from low to high */ 181 ctx->bits[1] += static_cast<uint32_t>(len >> 29); 182 183 t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */ 184 185 /* Handle any leading odd-sized chunks */ 186 187 if (t) { 188 uint8_t* p = static_cast<uint8_t*>(ctx->in + t); 189 190 t = 64 - t; 191 if (len < t) { 192 memcpy(p, buf, len); 193 return; 194 } 195 memcpy(p, buf, t); 196 byteReverse(ctx->in, 16); 197 MD5Transform(ctx->buf, reinterpret_cast<uint32_t*>(ctx->in)); 198 buf += t; 199 len -= t; 200 } 201 202 /* Process data in 64-byte chunks */ 203 204 while (len >= 64) { 205 memcpy(ctx->in, buf, 64); 206 byteReverse(ctx->in, 16); 207 MD5Transform(ctx->buf, reinterpret_cast<uint32_t*>(ctx->in)); 208 buf += 64; 209 len -= 64; 210 } 211 212 /* Handle any remaining bytes of data. */ 213 214 memcpy(ctx->in, buf, len); 215 } 216 217 /* 218 * Final wrapup - pad to 64-byte boundary with the bit pattern 219 * 1 0* (64-bit count of bits processed, MSB-first) 220 */ 221 void MD5Final(MD5Digest* digest, MD5Context* context) { 222 struct Context* ctx = reinterpret_cast<struct Context*>(context); 223 unsigned count; 224 uint8_t* p; 225 226 /* Compute number of bytes mod 64 */ 227 count = (ctx->bits[0] >> 3) & 0x3F; 228 229 /* Set the first char of padding to 0x80. This is safe since there is 230 always at least one byte free */ 231 p = ctx->in + count; 232 *p++ = 0x80; 233 234 /* Bytes of padding needed to make 64 bytes */ 235 count = 64 - 1 - count; 236 237 /* Pad out to 56 mod 64 */ 238 if (count < 8) { 239 /* Two lots of padding: Pad the first block to 64 bytes */ 240 memset(p, 0, count); 241 byteReverse(ctx->in, 16); 242 MD5Transform(ctx->buf, reinterpret_cast<uint32_t*>(ctx->in)); 243 244 /* Now fill the next block with 56 bytes */ 245 memset(ctx->in, 0, 56); 246 } else { 247 /* Pad block to 56 bytes */ 248 memset(p, 0, count - 8); 249 } 250 byteReverse(ctx->in, 14); 251 252 /* Append length in bits and transform */ 253 memcpy(&ctx->in[14 * sizeof(ctx->bits[0])], &ctx->bits[0], 254 sizeof(ctx->bits[0])); 255 memcpy(&ctx->in[15 * sizeof(ctx->bits[1])], &ctx->bits[1], 256 sizeof(ctx->bits[1])); 257 258 MD5Transform(ctx->buf, reinterpret_cast<uint32_t*>(ctx->in)); 259 byteReverse(reinterpret_cast<uint8_t*>(ctx->buf), 4); 260 memcpy(digest->a, ctx->buf, 16); 261 memset(ctx, 0, sizeof(*ctx)); /* In case it's sensitive */ 262 } 263 264 void MD5IntermediateFinal(MD5Digest* digest, const MD5Context* context) { 265 /* MD5Final mutates the MD5Context*. Make a copy for generating the 266 intermediate value. */ 267 MD5Context context_copy; 268 memcpy(&context_copy, context, sizeof(context_copy)); 269 MD5Final(digest, &context_copy); 270 } 271 272 std::string MD5DigestToBase16(const MD5Digest& digest) { 273 static char const zEncode[] = "0123456789abcdef"; 274 275 std::string ret; 276 ret.resize(32); 277 278 for (int i = 0, j = 0; i < 16; i++, j += 2) { 279 uint8_t a = digest.a[i]; 280 ret[j] = zEncode[(a >> 4) & 0xf]; 281 ret[j + 1] = zEncode[a & 0xf]; 282 } 283 return ret; 284 } 285 286 void MD5Sum(const void* data, size_t length, MD5Digest* digest) { 287 MD5Context ctx; 288 MD5Init(&ctx); 289 MD5Update(&ctx, StringPiece(reinterpret_cast<const char*>(data), length)); 290 MD5Final(digest, &ctx); 291 } 292 293 std::string MD5String(const StringPiece& str) { 294 MD5Digest digest; 295 MD5Sum(str.data(), str.length(), &digest); 296 return MD5DigestToBase16(digest); 297 } 298 299 } // namespace base 300