1 // Protocol Buffers - Google's data interchange format 2 // Copyright 2014 Google Inc. All rights reserved. 3 // https://developers.google.com/protocol-buffers/ 4 // 5 // Redistribution and use in source and binary forms, with or without 6 // modification, are permitted provided that the following conditions are 7 // met: 8 // 9 // * Redistributions of source code must retain the above copyright 10 // notice, this list of conditions and the following disclaimer. 11 // * Redistributions in binary form must reproduce the above 12 // copyright notice, this list of conditions and the following disclaimer 13 // in the documentation and/or other materials provided with the 14 // distribution. 15 // * Neither the name of Google Inc. nor the names of its 16 // contributors may be used to endorse or promote products derived from 17 // this software without specific prior written permission. 18 // 19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 30 31 #include "protobuf.h" 32 33 // This function is equivalent to rb_str_cat(), but unlike the real 34 // rb_str_cat(), it doesn't leak memory in some versions of Ruby. 35 // For more information, see: 36 // https://bugs.ruby-lang.org/issues/11328 37 VALUE noleak_rb_str_cat(VALUE rb_str, const char *str, long len) { 38 char *p; 39 size_t oldlen = RSTRING_LEN(rb_str); 40 rb_str_modify_expand(rb_str, len); 41 p = RSTRING_PTR(rb_str); 42 memcpy(p + oldlen, str, len); 43 rb_str_set_len(rb_str, oldlen + len); 44 return rb_str; 45 } 46 47 // ----------------------------------------------------------------------------- 48 // Parsing. 49 // ----------------------------------------------------------------------------- 50 51 #define DEREF(msg, ofs, type) *(type*)(((uint8_t *)msg) + ofs) 52 53 // Creates a handlerdata that simply contains the offset for this field. 54 static const void* newhandlerdata(upb_handlers* h, uint32_t ofs) { 55 size_t* hd_ofs = ALLOC(size_t); 56 *hd_ofs = ofs; 57 upb_handlers_addcleanup(h, hd_ofs, free); 58 return hd_ofs; 59 } 60 61 typedef struct { 62 size_t ofs; 63 const upb_msgdef *md; 64 } submsg_handlerdata_t; 65 66 // Creates a handlerdata that contains offset and submessage type information. 67 static const void *newsubmsghandlerdata(upb_handlers* h, uint32_t ofs, 68 const upb_fielddef* f) { 69 submsg_handlerdata_t *hd = ALLOC(submsg_handlerdata_t); 70 hd->ofs = ofs; 71 hd->md = upb_fielddef_msgsubdef(f); 72 upb_handlers_addcleanup(h, hd, free); 73 return hd; 74 } 75 76 typedef struct { 77 size_t ofs; // union data slot 78 size_t case_ofs; // oneof_case field 79 uint32_t oneof_case_num; // oneof-case number to place in oneof_case field 80 const upb_msgdef *md; // msgdef, for oneof submessage handler 81 } oneof_handlerdata_t; 82 83 static const void *newoneofhandlerdata(upb_handlers *h, 84 uint32_t ofs, 85 uint32_t case_ofs, 86 const upb_fielddef *f) { 87 oneof_handlerdata_t *hd = ALLOC(oneof_handlerdata_t); 88 hd->ofs = ofs; 89 hd->case_ofs = case_ofs; 90 // We reuse the field tag number as a oneof union discriminant tag. Note that 91 // we don't expose these numbers to the user, so the only requirement is that 92 // we have some unique ID for each union case/possibility. The field tag 93 // numbers are already present and are easy to use so there's no reason to 94 // create a separate ID space. In addition, using the field tag number here 95 // lets us easily look up the field in the oneof accessor. 96 hd->oneof_case_num = upb_fielddef_number(f); 97 if (upb_fielddef_type(f) == UPB_TYPE_MESSAGE) { 98 hd->md = upb_fielddef_msgsubdef(f); 99 } else { 100 hd->md = NULL; 101 } 102 upb_handlers_addcleanup(h, hd, free); 103 return hd; 104 } 105 106 // A handler that starts a repeated field. Gets the Repeated*Field instance for 107 // this field (such an instance always exists even in an empty message). 108 static void *startseq_handler(void* closure, const void* hd) { 109 MessageHeader* msg = closure; 110 const size_t *ofs = hd; 111 return (void*)DEREF(msg, *ofs, VALUE); 112 } 113 114 // Handlers that append primitive values to a repeated field. 115 #define DEFINE_APPEND_HANDLER(type, ctype) \ 116 static bool append##type##_handler(void *closure, const void *hd, \ 117 ctype val) { \ 118 VALUE ary = (VALUE)closure; \ 119 RepeatedField_push_native(ary, &val); \ 120 return true; \ 121 } 122 123 DEFINE_APPEND_HANDLER(bool, bool) 124 DEFINE_APPEND_HANDLER(int32, int32_t) 125 DEFINE_APPEND_HANDLER(uint32, uint32_t) 126 DEFINE_APPEND_HANDLER(float, float) 127 DEFINE_APPEND_HANDLER(int64, int64_t) 128 DEFINE_APPEND_HANDLER(uint64, uint64_t) 129 DEFINE_APPEND_HANDLER(double, double) 130 131 // Appends a string to a repeated field. 132 static void* appendstr_handler(void *closure, 133 const void *hd, 134 size_t size_hint) { 135 VALUE ary = (VALUE)closure; 136 VALUE str = rb_str_new2(""); 137 rb_enc_associate(str, kRubyStringUtf8Encoding); 138 RepeatedField_push(ary, str); 139 return (void*)str; 140 } 141 142 // Appends a 'bytes' string to a repeated field. 143 static void* appendbytes_handler(void *closure, 144 const void *hd, 145 size_t size_hint) { 146 VALUE ary = (VALUE)closure; 147 VALUE str = rb_str_new2(""); 148 rb_enc_associate(str, kRubyString8bitEncoding); 149 RepeatedField_push(ary, str); 150 return (void*)str; 151 } 152 153 // Sets a non-repeated string field in a message. 154 static void* str_handler(void *closure, 155 const void *hd, 156 size_t size_hint) { 157 MessageHeader* msg = closure; 158 const size_t *ofs = hd; 159 VALUE str = rb_str_new2(""); 160 rb_enc_associate(str, kRubyStringUtf8Encoding); 161 DEREF(msg, *ofs, VALUE) = str; 162 return (void*)str; 163 } 164 165 // Sets a non-repeated 'bytes' field in a message. 166 static void* bytes_handler(void *closure, 167 const void *hd, 168 size_t size_hint) { 169 MessageHeader* msg = closure; 170 const size_t *ofs = hd; 171 VALUE str = rb_str_new2(""); 172 rb_enc_associate(str, kRubyString8bitEncoding); 173 DEREF(msg, *ofs, VALUE) = str; 174 return (void*)str; 175 } 176 177 static size_t stringdata_handler(void* closure, const void* hd, 178 const char* str, size_t len, 179 const upb_bufhandle* handle) { 180 VALUE rb_str = (VALUE)closure; 181 noleak_rb_str_cat(rb_str, str, len); 182 return len; 183 } 184 185 // Appends a submessage to a repeated field (a regular Ruby array for now). 186 static void *appendsubmsg_handler(void *closure, const void *hd) { 187 VALUE ary = (VALUE)closure; 188 const submsg_handlerdata_t *submsgdata = hd; 189 VALUE subdesc = 190 get_def_obj((void*)submsgdata->md); 191 VALUE subklass = Descriptor_msgclass(subdesc); 192 MessageHeader* submsg; 193 194 VALUE submsg_rb = rb_class_new_instance(0, NULL, subklass); 195 RepeatedField_push(ary, submsg_rb); 196 197 TypedData_Get_Struct(submsg_rb, MessageHeader, &Message_type, submsg); 198 return submsg; 199 } 200 201 // Sets a non-repeated submessage field in a message. 202 static void *submsg_handler(void *closure, const void *hd) { 203 MessageHeader* msg = closure; 204 const submsg_handlerdata_t* submsgdata = hd; 205 VALUE subdesc = 206 get_def_obj((void*)submsgdata->md); 207 VALUE subklass = Descriptor_msgclass(subdesc); 208 VALUE submsg_rb; 209 MessageHeader* submsg; 210 211 if (DEREF(msg, submsgdata->ofs, VALUE) == Qnil) { 212 DEREF(msg, submsgdata->ofs, VALUE) = 213 rb_class_new_instance(0, NULL, subklass); 214 } 215 216 submsg_rb = DEREF(msg, submsgdata->ofs, VALUE); 217 TypedData_Get_Struct(submsg_rb, MessageHeader, &Message_type, submsg); 218 return submsg; 219 } 220 221 // Handler data for startmap/endmap handlers. 222 typedef struct { 223 size_t ofs; 224 upb_fieldtype_t key_field_type; 225 upb_fieldtype_t value_field_type; 226 227 // We know that we can hold this reference because the handlerdata has the 228 // same lifetime as the upb_handlers struct, and the upb_handlers struct holds 229 // a reference to the upb_msgdef, which in turn has references to its subdefs. 230 const upb_def* value_field_subdef; 231 } map_handlerdata_t; 232 233 // Temporary frame for map parsing: at the beginning of a map entry message, a 234 // submsg handler allocates a frame to hold (i) a reference to the Map object 235 // into which this message will be inserted and (ii) storage slots to 236 // temporarily hold the key and value for this map entry until the end of the 237 // submessage. When the submessage ends, another handler is called to insert the 238 // value into the map. 239 typedef struct { 240 VALUE map; 241 char key_storage[NATIVE_SLOT_MAX_SIZE]; 242 char value_storage[NATIVE_SLOT_MAX_SIZE]; 243 } map_parse_frame_t; 244 245 // Handler to begin a map entry: allocates a temporary frame. This is the 246 // 'startsubmsg' handler on the msgdef that contains the map field. 247 static void *startmapentry_handler(void *closure, const void *hd) { 248 MessageHeader* msg = closure; 249 const map_handlerdata_t* mapdata = hd; 250 VALUE map_rb = DEREF(msg, mapdata->ofs, VALUE); 251 252 map_parse_frame_t* frame = ALLOC(map_parse_frame_t); 253 frame->map = map_rb; 254 255 native_slot_init(mapdata->key_field_type, &frame->key_storage); 256 native_slot_init(mapdata->value_field_type, &frame->value_storage); 257 258 return frame; 259 } 260 261 // Handler to end a map entry: inserts the value defined during the message into 262 // the map. This is the 'endmsg' handler on the map entry msgdef. 263 static bool endmap_handler(void *closure, const void *hd, upb_status* s) { 264 map_parse_frame_t* frame = closure; 265 const map_handlerdata_t* mapdata = hd; 266 267 VALUE key = native_slot_get( 268 mapdata->key_field_type, Qnil, 269 &frame->key_storage); 270 271 VALUE value_field_typeclass = Qnil; 272 VALUE value; 273 274 if (mapdata->value_field_type == UPB_TYPE_MESSAGE || 275 mapdata->value_field_type == UPB_TYPE_ENUM) { 276 value_field_typeclass = get_def_obj(mapdata->value_field_subdef); 277 } 278 279 value = native_slot_get( 280 mapdata->value_field_type, value_field_typeclass, 281 &frame->value_storage); 282 283 Map_index_set(frame->map, key, value); 284 free(frame); 285 286 return true; 287 } 288 289 // Allocates a new map_handlerdata_t given the map entry message definition. If 290 // the offset of the field within the parent message is also given, that is 291 // added to the handler data as well. Note that this is called *twice* per map 292 // field: once in the parent message handler setup when setting the startsubmsg 293 // handler and once in the map entry message handler setup when setting the 294 // key/value and endmsg handlers. The reason is that there is no easy way to 295 // pass the handlerdata down to the sub-message handler setup. 296 static map_handlerdata_t* new_map_handlerdata( 297 size_t ofs, 298 const upb_msgdef* mapentry_def, 299 Descriptor* desc) { 300 const upb_fielddef* key_field; 301 const upb_fielddef* value_field; 302 map_handlerdata_t* hd = ALLOC(map_handlerdata_t); 303 hd->ofs = ofs; 304 key_field = upb_msgdef_itof(mapentry_def, MAP_KEY_FIELD); 305 assert(key_field != NULL); 306 hd->key_field_type = upb_fielddef_type(key_field); 307 value_field = upb_msgdef_itof(mapentry_def, MAP_VALUE_FIELD); 308 assert(value_field != NULL); 309 hd->value_field_type = upb_fielddef_type(value_field); 310 hd->value_field_subdef = upb_fielddef_subdef(value_field); 311 312 return hd; 313 } 314 315 // Handlers that set primitive values in oneofs. 316 #define DEFINE_ONEOF_HANDLER(type, ctype) \ 317 static bool oneof##type##_handler(void *closure, const void *hd, \ 318 ctype val) { \ 319 const oneof_handlerdata_t *oneofdata = hd; \ 320 DEREF(closure, oneofdata->case_ofs, uint32_t) = \ 321 oneofdata->oneof_case_num; \ 322 DEREF(closure, oneofdata->ofs, ctype) = val; \ 323 return true; \ 324 } 325 326 DEFINE_ONEOF_HANDLER(bool, bool) 327 DEFINE_ONEOF_HANDLER(int32, int32_t) 328 DEFINE_ONEOF_HANDLER(uint32, uint32_t) 329 DEFINE_ONEOF_HANDLER(float, float) 330 DEFINE_ONEOF_HANDLER(int64, int64_t) 331 DEFINE_ONEOF_HANDLER(uint64, uint64_t) 332 DEFINE_ONEOF_HANDLER(double, double) 333 334 #undef DEFINE_ONEOF_HANDLER 335 336 // Handlers for strings in a oneof. 337 static void *oneofstr_handler(void *closure, 338 const void *hd, 339 size_t size_hint) { 340 MessageHeader* msg = closure; 341 const oneof_handlerdata_t *oneofdata = hd; 342 VALUE str = rb_str_new2(""); 343 rb_enc_associate(str, kRubyStringUtf8Encoding); 344 DEREF(msg, oneofdata->case_ofs, uint32_t) = 345 oneofdata->oneof_case_num; 346 DEREF(msg, oneofdata->ofs, VALUE) = str; 347 return (void*)str; 348 } 349 350 static void *oneofbytes_handler(void *closure, 351 const void *hd, 352 size_t size_hint) { 353 MessageHeader* msg = closure; 354 const oneof_handlerdata_t *oneofdata = hd; 355 VALUE str = rb_str_new2(""); 356 rb_enc_associate(str, kRubyString8bitEncoding); 357 DEREF(msg, oneofdata->case_ofs, uint32_t) = 358 oneofdata->oneof_case_num; 359 DEREF(msg, oneofdata->ofs, VALUE) = str; 360 return (void*)str; 361 } 362 363 // Handler for a submessage field in a oneof. 364 static void *oneofsubmsg_handler(void *closure, 365 const void *hd) { 366 MessageHeader* msg = closure; 367 const oneof_handlerdata_t *oneofdata = hd; 368 uint32_t oldcase = DEREF(msg, oneofdata->case_ofs, uint32_t); 369 370 VALUE subdesc = 371 get_def_obj((void*)oneofdata->md); 372 VALUE subklass = Descriptor_msgclass(subdesc); 373 VALUE submsg_rb; 374 MessageHeader* submsg; 375 376 if (oldcase != oneofdata->oneof_case_num || 377 DEREF(msg, oneofdata->ofs, VALUE) == Qnil) { 378 DEREF(msg, oneofdata->ofs, VALUE) = 379 rb_class_new_instance(0, NULL, subklass); 380 } 381 // Set the oneof case *after* allocating the new class instance -- otherwise, 382 // if the Ruby GC is invoked as part of a call into the VM, it might invoke 383 // our mark routines, and our mark routines might see the case value 384 // indicating a VALUE is present and expect a valid VALUE. See comment in 385 // layout_set() for more detail: basically, the change to the value and the 386 // case must be atomic w.r.t. the Ruby VM. 387 DEREF(msg, oneofdata->case_ofs, uint32_t) = 388 oneofdata->oneof_case_num; 389 390 submsg_rb = DEREF(msg, oneofdata->ofs, VALUE); 391 TypedData_Get_Struct(submsg_rb, MessageHeader, &Message_type, submsg); 392 return submsg; 393 } 394 395 // Set up handlers for a repeated field. 396 static void add_handlers_for_repeated_field(upb_handlers *h, 397 const upb_fielddef *f, 398 size_t offset) { 399 upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER; 400 upb_handlerattr_sethandlerdata(&attr, newhandlerdata(h, offset)); 401 upb_handlers_setstartseq(h, f, startseq_handler, &attr); 402 upb_handlerattr_uninit(&attr); 403 404 switch (upb_fielddef_type(f)) { 405 406 #define SET_HANDLER(utype, ltype) \ 407 case utype: \ 408 upb_handlers_set##ltype(h, f, append##ltype##_handler, NULL); \ 409 break; 410 411 SET_HANDLER(UPB_TYPE_BOOL, bool); 412 SET_HANDLER(UPB_TYPE_INT32, int32); 413 SET_HANDLER(UPB_TYPE_UINT32, uint32); 414 SET_HANDLER(UPB_TYPE_ENUM, int32); 415 SET_HANDLER(UPB_TYPE_FLOAT, float); 416 SET_HANDLER(UPB_TYPE_INT64, int64); 417 SET_HANDLER(UPB_TYPE_UINT64, uint64); 418 SET_HANDLER(UPB_TYPE_DOUBLE, double); 419 420 #undef SET_HANDLER 421 422 case UPB_TYPE_STRING: 423 case UPB_TYPE_BYTES: { 424 bool is_bytes = upb_fielddef_type(f) == UPB_TYPE_BYTES; 425 upb_handlers_setstartstr(h, f, is_bytes ? 426 appendbytes_handler : appendstr_handler, 427 NULL); 428 upb_handlers_setstring(h, f, stringdata_handler, NULL); 429 break; 430 } 431 case UPB_TYPE_MESSAGE: { 432 upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER; 433 upb_handlerattr_sethandlerdata(&attr, newsubmsghandlerdata(h, 0, f)); 434 upb_handlers_setstartsubmsg(h, f, appendsubmsg_handler, &attr); 435 upb_handlerattr_uninit(&attr); 436 break; 437 } 438 } 439 } 440 441 // Set up handlers for a singular field. 442 static void add_handlers_for_singular_field(upb_handlers *h, 443 const upb_fielddef *f, 444 size_t offset) { 445 switch (upb_fielddef_type(f)) { 446 case UPB_TYPE_BOOL: 447 case UPB_TYPE_INT32: 448 case UPB_TYPE_UINT32: 449 case UPB_TYPE_ENUM: 450 case UPB_TYPE_FLOAT: 451 case UPB_TYPE_INT64: 452 case UPB_TYPE_UINT64: 453 case UPB_TYPE_DOUBLE: 454 upb_shim_set(h, f, offset, -1); 455 break; 456 case UPB_TYPE_STRING: 457 case UPB_TYPE_BYTES: { 458 bool is_bytes = upb_fielddef_type(f) == UPB_TYPE_BYTES; 459 upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER; 460 upb_handlerattr_sethandlerdata(&attr, newhandlerdata(h, offset)); 461 upb_handlers_setstartstr(h, f, 462 is_bytes ? bytes_handler : str_handler, 463 &attr); 464 upb_handlers_setstring(h, f, stringdata_handler, &attr); 465 upb_handlerattr_uninit(&attr); 466 break; 467 } 468 case UPB_TYPE_MESSAGE: { 469 upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER; 470 upb_handlerattr_sethandlerdata(&attr, newsubmsghandlerdata(h, offset, f)); 471 upb_handlers_setstartsubmsg(h, f, submsg_handler, &attr); 472 upb_handlerattr_uninit(&attr); 473 break; 474 } 475 } 476 } 477 478 // Adds handlers to a map field. 479 static void add_handlers_for_mapfield(upb_handlers* h, 480 const upb_fielddef* fielddef, 481 size_t offset, 482 Descriptor* desc) { 483 const upb_msgdef* map_msgdef = upb_fielddef_msgsubdef(fielddef); 484 map_handlerdata_t* hd = new_map_handlerdata(offset, map_msgdef, desc); 485 upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER; 486 487 upb_handlers_addcleanup(h, hd, free); 488 upb_handlerattr_sethandlerdata(&attr, hd); 489 upb_handlers_setstartsubmsg(h, fielddef, startmapentry_handler, &attr); 490 upb_handlerattr_uninit(&attr); 491 } 492 493 // Adds handlers to a map-entry msgdef. 494 static void add_handlers_for_mapentry(const upb_msgdef* msgdef, 495 upb_handlers* h, 496 Descriptor* desc) { 497 const upb_fielddef* key_field = map_entry_key(msgdef); 498 const upb_fielddef* value_field = map_entry_value(msgdef); 499 map_handlerdata_t* hd = new_map_handlerdata(0, msgdef, desc); 500 upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER; 501 502 upb_handlers_addcleanup(h, hd, free); 503 upb_handlerattr_sethandlerdata(&attr, hd); 504 upb_handlers_setendmsg(h, endmap_handler, &attr); 505 506 add_handlers_for_singular_field( 507 h, key_field, 508 offsetof(map_parse_frame_t, key_storage)); 509 add_handlers_for_singular_field( 510 h, value_field, 511 offsetof(map_parse_frame_t, value_storage)); 512 } 513 514 // Set up handlers for a oneof field. 515 static void add_handlers_for_oneof_field(upb_handlers *h, 516 const upb_fielddef *f, 517 size_t offset, 518 size_t oneof_case_offset) { 519 520 upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER; 521 upb_handlerattr_sethandlerdata( 522 &attr, newoneofhandlerdata(h, offset, oneof_case_offset, f)); 523 524 switch (upb_fielddef_type(f)) { 525 526 #define SET_HANDLER(utype, ltype) \ 527 case utype: \ 528 upb_handlers_set##ltype(h, f, oneof##ltype##_handler, &attr); \ 529 break; 530 531 SET_HANDLER(UPB_TYPE_BOOL, bool); 532 SET_HANDLER(UPB_TYPE_INT32, int32); 533 SET_HANDLER(UPB_TYPE_UINT32, uint32); 534 SET_HANDLER(UPB_TYPE_ENUM, int32); 535 SET_HANDLER(UPB_TYPE_FLOAT, float); 536 SET_HANDLER(UPB_TYPE_INT64, int64); 537 SET_HANDLER(UPB_TYPE_UINT64, uint64); 538 SET_HANDLER(UPB_TYPE_DOUBLE, double); 539 540 #undef SET_HANDLER 541 542 case UPB_TYPE_STRING: 543 case UPB_TYPE_BYTES: { 544 bool is_bytes = upb_fielddef_type(f) == UPB_TYPE_BYTES; 545 upb_handlers_setstartstr(h, f, is_bytes ? 546 oneofbytes_handler : oneofstr_handler, 547 &attr); 548 upb_handlers_setstring(h, f, stringdata_handler, NULL); 549 break; 550 } 551 case UPB_TYPE_MESSAGE: { 552 upb_handlers_setstartsubmsg(h, f, oneofsubmsg_handler, &attr); 553 break; 554 } 555 } 556 557 upb_handlerattr_uninit(&attr); 558 } 559 560 561 static void add_handlers_for_message(const void *closure, upb_handlers *h) { 562 const upb_msgdef* msgdef = upb_handlers_msgdef(h); 563 Descriptor* desc = ruby_to_Descriptor(get_def_obj((void*)msgdef)); 564 upb_msg_field_iter i; 565 566 // If this is a mapentry message type, set up a special set of handlers and 567 // bail out of the normal (user-defined) message type handling. 568 if (upb_msgdef_mapentry(msgdef)) { 569 add_handlers_for_mapentry(msgdef, h, desc); 570 return; 571 } 572 573 // Ensure layout exists. We may be invoked to create handlers for a given 574 // message if we are included as a submsg of another message type before our 575 // class is actually built, so to work around this, we just create the layout 576 // (and handlers, in the class-building function) on-demand. 577 if (desc->layout == NULL) { 578 desc->layout = create_layout(desc->msgdef); 579 } 580 581 for (upb_msg_field_begin(&i, desc->msgdef); 582 !upb_msg_field_done(&i); 583 upb_msg_field_next(&i)) { 584 const upb_fielddef *f = upb_msg_iter_field(&i); 585 size_t offset = desc->layout->fields[upb_fielddef_index(f)].offset + 586 sizeof(MessageHeader); 587 588 if (upb_fielddef_containingoneof(f)) { 589 size_t oneof_case_offset = 590 desc->layout->fields[upb_fielddef_index(f)].case_offset + 591 sizeof(MessageHeader); 592 add_handlers_for_oneof_field(h, f, offset, oneof_case_offset); 593 } else if (is_map_field(f)) { 594 add_handlers_for_mapfield(h, f, offset, desc); 595 } else if (upb_fielddef_isseq(f)) { 596 add_handlers_for_repeated_field(h, f, offset); 597 } else { 598 add_handlers_for_singular_field(h, f, offset); 599 } 600 } 601 } 602 603 // Creates upb handlers for populating a message. 604 static const upb_handlers *new_fill_handlers(Descriptor* desc, 605 const void* owner) { 606 // TODO(cfallin, haberman): once upb gets a caching/memoization layer for 607 // handlers, reuse subdef handlers so that e.g. if we already parse 608 // B-with-field-of-type-C, we don't have to rebuild the whole hierarchy to 609 // parse A-with-field-of-type-B-with-field-of-type-C. 610 return upb_handlers_newfrozen(desc->msgdef, owner, 611 add_handlers_for_message, NULL); 612 } 613 614 // Constructs the handlers for filling a message's data into an in-memory 615 // object. 616 const upb_handlers* get_fill_handlers(Descriptor* desc) { 617 if (!desc->fill_handlers) { 618 desc->fill_handlers = 619 new_fill_handlers(desc, &desc->fill_handlers); 620 } 621 return desc->fill_handlers; 622 } 623 624 // Constructs the upb decoder method for parsing messages of this type. 625 // This is called from the message class creation code. 626 const upb_pbdecodermethod *new_fillmsg_decodermethod(Descriptor* desc, 627 const void* owner) { 628 const upb_handlers* handlers = get_fill_handlers(desc); 629 upb_pbdecodermethodopts opts; 630 upb_pbdecodermethodopts_init(&opts, handlers); 631 632 return upb_pbdecodermethod_new(&opts, owner); 633 } 634 635 static const upb_pbdecodermethod *msgdef_decodermethod(Descriptor* desc) { 636 if (desc->fill_method == NULL) { 637 desc->fill_method = new_fillmsg_decodermethod( 638 desc, &desc->fill_method); 639 } 640 return desc->fill_method; 641 } 642 643 static const upb_json_parsermethod *msgdef_jsonparsermethod(Descriptor* desc) { 644 if (desc->json_fill_method == NULL) { 645 desc->json_fill_method = 646 upb_json_parsermethod_new(desc->msgdef, &desc->json_fill_method); 647 } 648 return desc->json_fill_method; 649 } 650 651 652 // Stack-allocated context during an encode/decode operation. Contains the upb 653 // environment and its stack-based allocator, an initial buffer for allocations 654 // to avoid malloc() when possible, and a template for Ruby exception messages 655 // if any error occurs. 656 #define STACK_ENV_STACKBYTES 4096 657 typedef struct { 658 upb_env env; 659 const char* ruby_error_template; 660 char allocbuf[STACK_ENV_STACKBYTES]; 661 } stackenv; 662 663 static void stackenv_init(stackenv* se, const char* errmsg); 664 static void stackenv_uninit(stackenv* se); 665 666 // Callback invoked by upb if any error occurs during parsing or serialization. 667 static bool env_error_func(void* ud, const upb_status* status) { 668 stackenv* se = ud; 669 // Free the env -- rb_raise will longjmp up the stack past the encode/decode 670 // function so it would not otherwise have been freed. 671 stackenv_uninit(se); 672 673 // TODO(haberman): have a way to verify that this is actually a parse error, 674 // instead of just throwing "parse error" unconditionally. 675 rb_raise(cParseError, se->ruby_error_template, upb_status_errmsg(status)); 676 // Never reached: rb_raise() always longjmp()s up the stack, past all of our 677 // code, back to Ruby. 678 return false; 679 } 680 681 static void stackenv_init(stackenv* se, const char* errmsg) { 682 se->ruby_error_template = errmsg; 683 upb_env_init2(&se->env, se->allocbuf, sizeof(se->allocbuf), NULL); 684 upb_env_seterrorfunc(&se->env, env_error_func, se); 685 } 686 687 static void stackenv_uninit(stackenv* se) { 688 upb_env_uninit(&se->env); 689 } 690 691 /* 692 * call-seq: 693 * MessageClass.decode(data) => message 694 * 695 * Decodes the given data (as a string containing bytes in protocol buffers wire 696 * format) under the interpretration given by this message class's definition 697 * and returns a message object with the corresponding field values. 698 */ 699 VALUE Message_decode(VALUE klass, VALUE data) { 700 VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned); 701 Descriptor* desc = ruby_to_Descriptor(descriptor); 702 VALUE msgklass = Descriptor_msgclass(descriptor); 703 VALUE msg_rb; 704 MessageHeader* msg; 705 706 if (TYPE(data) != T_STRING) { 707 rb_raise(rb_eArgError, "Expected string for binary protobuf data."); 708 } 709 710 msg_rb = rb_class_new_instance(0, NULL, msgklass); 711 TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg); 712 713 { 714 const upb_pbdecodermethod* method = msgdef_decodermethod(desc); 715 const upb_handlers* h = upb_pbdecodermethod_desthandlers(method); 716 stackenv se; 717 upb_sink sink; 718 upb_pbdecoder* decoder; 719 stackenv_init(&se, "Error occurred during parsing: %s"); 720 721 upb_sink_reset(&sink, h, msg); 722 decoder = upb_pbdecoder_create(&se.env, method, &sink); 723 upb_bufsrc_putbuf(RSTRING_PTR(data), RSTRING_LEN(data), 724 upb_pbdecoder_input(decoder)); 725 726 stackenv_uninit(&se); 727 } 728 729 return msg_rb; 730 } 731 732 /* 733 * call-seq: 734 * MessageClass.decode_json(data) => message 735 * 736 * Decodes the given data (as a string containing bytes in protocol buffers wire 737 * format) under the interpretration given by this message class's definition 738 * and returns a message object with the corresponding field values. 739 */ 740 VALUE Message_decode_json(VALUE klass, VALUE data) { 741 VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned); 742 Descriptor* desc = ruby_to_Descriptor(descriptor); 743 VALUE msgklass = Descriptor_msgclass(descriptor); 744 VALUE msg_rb; 745 MessageHeader* msg; 746 747 if (TYPE(data) != T_STRING) { 748 rb_raise(rb_eArgError, "Expected string for JSON data."); 749 } 750 // TODO(cfallin): Check and respect string encoding. If not UTF-8, we need to 751 // convert, because string handlers pass data directly to message string 752 // fields. 753 754 msg_rb = rb_class_new_instance(0, NULL, msgklass); 755 TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg); 756 757 { 758 const upb_json_parsermethod* method = msgdef_jsonparsermethod(desc); 759 stackenv se; 760 upb_sink sink; 761 upb_json_parser* parser; 762 stackenv_init(&se, "Error occurred during parsing: %s"); 763 764 upb_sink_reset(&sink, get_fill_handlers(desc), msg); 765 parser = upb_json_parser_create(&se.env, method, &sink); 766 upb_bufsrc_putbuf(RSTRING_PTR(data), RSTRING_LEN(data), 767 upb_json_parser_input(parser)); 768 769 stackenv_uninit(&se); 770 } 771 772 return msg_rb; 773 } 774 775 // ----------------------------------------------------------------------------- 776 // Serializing. 777 // ----------------------------------------------------------------------------- 778 // 779 // The code below also comes from upb's prototype Ruby binding, developed by 780 // haberman@. 781 782 /* stringsink *****************************************************************/ 783 784 // This should probably be factored into a common upb component. 785 786 typedef struct { 787 upb_byteshandler handler; 788 upb_bytessink sink; 789 char *ptr; 790 size_t len, size; 791 } stringsink; 792 793 static void *stringsink_start(void *_sink, const void *hd, size_t size_hint) { 794 stringsink *sink = _sink; 795 sink->len = 0; 796 return sink; 797 } 798 799 static size_t stringsink_string(void *_sink, const void *hd, const char *ptr, 800 size_t len, const upb_bufhandle *handle) { 801 stringsink *sink = _sink; 802 size_t new_size = sink->size; 803 804 UPB_UNUSED(hd); 805 UPB_UNUSED(handle); 806 807 while (sink->len + len > new_size) { 808 new_size *= 2; 809 } 810 811 if (new_size != sink->size) { 812 sink->ptr = realloc(sink->ptr, new_size); 813 sink->size = new_size; 814 } 815 816 memcpy(sink->ptr + sink->len, ptr, len); 817 sink->len += len; 818 819 return len; 820 } 821 822 void stringsink_init(stringsink *sink) { 823 upb_byteshandler_init(&sink->handler); 824 upb_byteshandler_setstartstr(&sink->handler, stringsink_start, NULL); 825 upb_byteshandler_setstring(&sink->handler, stringsink_string, NULL); 826 827 upb_bytessink_reset(&sink->sink, &sink->handler, sink); 828 829 sink->size = 32; 830 sink->ptr = malloc(sink->size); 831 sink->len = 0; 832 } 833 834 void stringsink_uninit(stringsink *sink) { 835 free(sink->ptr); 836 } 837 838 /* msgvisitor *****************************************************************/ 839 840 // TODO: If/when we support proto2 semantics in addition to the current proto3 841 // semantics, which means that we have true field presence, we will want to 842 // modify msgvisitor so that it emits all present fields rather than all 843 // non-default-value fields. 844 // 845 // Likewise, when implementing JSON serialization, we may need to have a 846 // 'verbose' mode that outputs all fields and a 'concise' mode that outputs only 847 // those with non-default values. 848 849 static void putmsg(VALUE msg, const Descriptor* desc, 850 upb_sink *sink, int depth); 851 852 static upb_selector_t getsel(const upb_fielddef *f, upb_handlertype_t type) { 853 upb_selector_t ret; 854 bool ok = upb_handlers_getselector(f, type, &ret); 855 UPB_ASSERT_VAR(ok, ok); 856 return ret; 857 } 858 859 static void putstr(VALUE str, const upb_fielddef *f, upb_sink *sink) { 860 upb_sink subsink; 861 862 if (str == Qnil) return; 863 864 assert(BUILTIN_TYPE(str) == RUBY_T_STRING); 865 866 // Ensure that the string has the correct encoding. We also check at field-set 867 // time, but the user may have mutated the string object since then. 868 native_slot_validate_string_encoding(upb_fielddef_type(f), str); 869 870 upb_sink_startstr(sink, getsel(f, UPB_HANDLER_STARTSTR), RSTRING_LEN(str), 871 &subsink); 872 upb_sink_putstring(&subsink, getsel(f, UPB_HANDLER_STRING), RSTRING_PTR(str), 873 RSTRING_LEN(str), NULL); 874 upb_sink_endstr(sink, getsel(f, UPB_HANDLER_ENDSTR)); 875 } 876 877 static void putsubmsg(VALUE submsg, const upb_fielddef *f, upb_sink *sink, 878 int depth) { 879 upb_sink subsink; 880 VALUE descriptor; 881 Descriptor* subdesc; 882 883 if (submsg == Qnil) return; 884 885 descriptor = rb_ivar_get(submsg, descriptor_instancevar_interned); 886 subdesc = ruby_to_Descriptor(descriptor); 887 888 upb_sink_startsubmsg(sink, getsel(f, UPB_HANDLER_STARTSUBMSG), &subsink); 889 putmsg(submsg, subdesc, &subsink, depth + 1); 890 upb_sink_endsubmsg(sink, getsel(f, UPB_HANDLER_ENDSUBMSG)); 891 } 892 893 static void putary(VALUE ary, const upb_fielddef *f, upb_sink *sink, 894 int depth) { 895 upb_sink subsink; 896 upb_fieldtype_t type = upb_fielddef_type(f); 897 upb_selector_t sel = 0; 898 int size; 899 900 if (ary == Qnil) return; 901 902 upb_sink_startseq(sink, getsel(f, UPB_HANDLER_STARTSEQ), &subsink); 903 904 if (upb_fielddef_isprimitive(f)) { 905 sel = getsel(f, upb_handlers_getprimitivehandlertype(f)); 906 } 907 908 size = NUM2INT(RepeatedField_length(ary)); 909 for (int i = 0; i < size; i++) { 910 void* memory = RepeatedField_index_native(ary, i); 911 switch (type) { 912 #define T(upbtypeconst, upbtype, ctype) \ 913 case upbtypeconst: \ 914 upb_sink_put##upbtype(&subsink, sel, *((ctype *)memory)); \ 915 break; 916 917 T(UPB_TYPE_FLOAT, float, float) 918 T(UPB_TYPE_DOUBLE, double, double) 919 T(UPB_TYPE_BOOL, bool, int8_t) 920 case UPB_TYPE_ENUM: 921 T(UPB_TYPE_INT32, int32, int32_t) 922 T(UPB_TYPE_UINT32, uint32, uint32_t) 923 T(UPB_TYPE_INT64, int64, int64_t) 924 T(UPB_TYPE_UINT64, uint64, uint64_t) 925 926 case UPB_TYPE_STRING: 927 case UPB_TYPE_BYTES: 928 putstr(*((VALUE *)memory), f, &subsink); 929 break; 930 case UPB_TYPE_MESSAGE: 931 putsubmsg(*((VALUE *)memory), f, &subsink, depth); 932 break; 933 934 #undef T 935 936 } 937 } 938 upb_sink_endseq(sink, getsel(f, UPB_HANDLER_ENDSEQ)); 939 } 940 941 static void put_ruby_value(VALUE value, 942 const upb_fielddef *f, 943 VALUE type_class, 944 int depth, 945 upb_sink *sink) { 946 upb_selector_t sel = 0; 947 if (upb_fielddef_isprimitive(f)) { 948 sel = getsel(f, upb_handlers_getprimitivehandlertype(f)); 949 } 950 951 switch (upb_fielddef_type(f)) { 952 case UPB_TYPE_INT32: 953 upb_sink_putint32(sink, sel, NUM2INT(value)); 954 break; 955 case UPB_TYPE_INT64: 956 upb_sink_putint64(sink, sel, NUM2LL(value)); 957 break; 958 case UPB_TYPE_UINT32: 959 upb_sink_putuint32(sink, sel, NUM2UINT(value)); 960 break; 961 case UPB_TYPE_UINT64: 962 upb_sink_putuint64(sink, sel, NUM2ULL(value)); 963 break; 964 case UPB_TYPE_FLOAT: 965 upb_sink_putfloat(sink, sel, NUM2DBL(value)); 966 break; 967 case UPB_TYPE_DOUBLE: 968 upb_sink_putdouble(sink, sel, NUM2DBL(value)); 969 break; 970 case UPB_TYPE_ENUM: { 971 if (TYPE(value) == T_SYMBOL) { 972 value = rb_funcall(type_class, rb_intern("resolve"), 1, value); 973 } 974 upb_sink_putint32(sink, sel, NUM2INT(value)); 975 break; 976 } 977 case UPB_TYPE_BOOL: 978 upb_sink_putbool(sink, sel, value == Qtrue); 979 break; 980 case UPB_TYPE_STRING: 981 case UPB_TYPE_BYTES: 982 putstr(value, f, sink); 983 break; 984 case UPB_TYPE_MESSAGE: 985 putsubmsg(value, f, sink, depth); 986 } 987 } 988 989 static void putmap(VALUE map, const upb_fielddef *f, upb_sink *sink, 990 int depth) { 991 Map* self; 992 upb_sink subsink; 993 const upb_fielddef* key_field; 994 const upb_fielddef* value_field; 995 Map_iter it; 996 997 if (map == Qnil) return; 998 self = ruby_to_Map(map); 999 1000 upb_sink_startseq(sink, getsel(f, UPB_HANDLER_STARTSEQ), &subsink); 1001 1002 assert(upb_fielddef_type(f) == UPB_TYPE_MESSAGE); 1003 key_field = map_field_key(f); 1004 value_field = map_field_value(f); 1005 1006 for (Map_begin(map, &it); !Map_done(&it); Map_next(&it)) { 1007 VALUE key = Map_iter_key(&it); 1008 VALUE value = Map_iter_value(&it); 1009 upb_status status; 1010 1011 upb_sink entry_sink; 1012 upb_sink_startsubmsg(&subsink, getsel(f, UPB_HANDLER_STARTSUBMSG), 1013 &entry_sink); 1014 upb_sink_startmsg(&entry_sink); 1015 1016 put_ruby_value(key, key_field, Qnil, depth + 1, &entry_sink); 1017 put_ruby_value(value, value_field, self->value_type_class, depth + 1, 1018 &entry_sink); 1019 1020 upb_sink_endmsg(&entry_sink, &status); 1021 upb_sink_endsubmsg(&subsink, getsel(f, UPB_HANDLER_ENDSUBMSG)); 1022 } 1023 1024 upb_sink_endseq(sink, getsel(f, UPB_HANDLER_ENDSEQ)); 1025 } 1026 1027 static void putmsg(VALUE msg_rb, const Descriptor* desc, 1028 upb_sink *sink, int depth) { 1029 MessageHeader* msg; 1030 upb_msg_field_iter i; 1031 upb_status status; 1032 1033 upb_sink_startmsg(sink); 1034 1035 // Protect against cycles (possible because users may freely reassign message 1036 // and repeated fields) by imposing a maximum recursion depth. 1037 if (depth > ENCODE_MAX_NESTING) { 1038 rb_raise(rb_eRuntimeError, 1039 "Maximum recursion depth exceeded during encoding."); 1040 } 1041 1042 TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg); 1043 1044 for (upb_msg_field_begin(&i, desc->msgdef); 1045 !upb_msg_field_done(&i); 1046 upb_msg_field_next(&i)) { 1047 upb_fielddef *f = upb_msg_iter_field(&i); 1048 bool is_matching_oneof = false; 1049 uint32_t offset = 1050 desc->layout->fields[upb_fielddef_index(f)].offset + 1051 sizeof(MessageHeader); 1052 1053 if (upb_fielddef_containingoneof(f)) { 1054 uint32_t oneof_case_offset = 1055 desc->layout->fields[upb_fielddef_index(f)].case_offset + 1056 sizeof(MessageHeader); 1057 // For a oneof, check that this field is actually present -- skip all the 1058 // below if not. 1059 if (DEREF(msg, oneof_case_offset, uint32_t) != 1060 upb_fielddef_number(f)) { 1061 continue; 1062 } 1063 // Otherwise, fall through to the appropriate singular-field handler 1064 // below. 1065 is_matching_oneof = true; 1066 } 1067 1068 if (is_map_field(f)) { 1069 VALUE map = DEREF(msg, offset, VALUE); 1070 if (map != Qnil) { 1071 putmap(map, f, sink, depth); 1072 } 1073 } else if (upb_fielddef_isseq(f)) { 1074 VALUE ary = DEREF(msg, offset, VALUE); 1075 if (ary != Qnil) { 1076 putary(ary, f, sink, depth); 1077 } 1078 } else if (upb_fielddef_isstring(f)) { 1079 VALUE str = DEREF(msg, offset, VALUE); 1080 if (is_matching_oneof || RSTRING_LEN(str) > 0) { 1081 putstr(str, f, sink); 1082 } 1083 } else if (upb_fielddef_issubmsg(f)) { 1084 putsubmsg(DEREF(msg, offset, VALUE), f, sink, depth); 1085 } else { 1086 upb_selector_t sel = getsel(f, upb_handlers_getprimitivehandlertype(f)); 1087 1088 #define T(upbtypeconst, upbtype, ctype, default_value) \ 1089 case upbtypeconst: { \ 1090 ctype value = DEREF(msg, offset, ctype); \ 1091 if (is_matching_oneof || value != default_value) { \ 1092 upb_sink_put##upbtype(sink, sel, value); \ 1093 } \ 1094 } \ 1095 break; 1096 1097 switch (upb_fielddef_type(f)) { 1098 T(UPB_TYPE_FLOAT, float, float, 0.0) 1099 T(UPB_TYPE_DOUBLE, double, double, 0.0) 1100 T(UPB_TYPE_BOOL, bool, uint8_t, 0) 1101 case UPB_TYPE_ENUM: 1102 T(UPB_TYPE_INT32, int32, int32_t, 0) 1103 T(UPB_TYPE_UINT32, uint32, uint32_t, 0) 1104 T(UPB_TYPE_INT64, int64, int64_t, 0) 1105 T(UPB_TYPE_UINT64, uint64, uint64_t, 0) 1106 1107 case UPB_TYPE_STRING: 1108 case UPB_TYPE_BYTES: 1109 case UPB_TYPE_MESSAGE: rb_raise(rb_eRuntimeError, "Internal error."); 1110 } 1111 1112 #undef T 1113 1114 } 1115 } 1116 1117 upb_sink_endmsg(sink, &status); 1118 } 1119 1120 static const upb_handlers* msgdef_pb_serialize_handlers(Descriptor* desc) { 1121 if (desc->pb_serialize_handlers == NULL) { 1122 desc->pb_serialize_handlers = 1123 upb_pb_encoder_newhandlers(desc->msgdef, &desc->pb_serialize_handlers); 1124 } 1125 return desc->pb_serialize_handlers; 1126 } 1127 1128 static const upb_handlers* msgdef_json_serialize_handlers( 1129 Descriptor* desc, bool preserve_proto_fieldnames) { 1130 if (preserve_proto_fieldnames) { 1131 if (desc->json_serialize_handlers == NULL) { 1132 desc->json_serialize_handlers = 1133 upb_json_printer_newhandlers( 1134 desc->msgdef, true, &desc->json_serialize_handlers); 1135 } 1136 return desc->json_serialize_handlers; 1137 } else { 1138 if (desc->json_serialize_handlers_preserve == NULL) { 1139 desc->json_serialize_handlers_preserve = 1140 upb_json_printer_newhandlers( 1141 desc->msgdef, false, &desc->json_serialize_handlers_preserve); 1142 } 1143 return desc->json_serialize_handlers_preserve; 1144 } 1145 } 1146 1147 /* 1148 * call-seq: 1149 * MessageClass.encode(msg) => bytes 1150 * 1151 * Encodes the given message object to its serialized form in protocol buffers 1152 * wire format. 1153 */ 1154 VALUE Message_encode(VALUE klass, VALUE msg_rb) { 1155 VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned); 1156 Descriptor* desc = ruby_to_Descriptor(descriptor); 1157 1158 stringsink sink; 1159 stringsink_init(&sink); 1160 1161 { 1162 const upb_handlers* serialize_handlers = 1163 msgdef_pb_serialize_handlers(desc); 1164 1165 stackenv se; 1166 upb_pb_encoder* encoder; 1167 VALUE ret; 1168 1169 stackenv_init(&se, "Error occurred during encoding: %s"); 1170 encoder = upb_pb_encoder_create(&se.env, serialize_handlers, &sink.sink); 1171 1172 putmsg(msg_rb, desc, upb_pb_encoder_input(encoder), 0); 1173 1174 ret = rb_str_new(sink.ptr, sink.len); 1175 1176 stackenv_uninit(&se); 1177 stringsink_uninit(&sink); 1178 1179 return ret; 1180 } 1181 } 1182 1183 /* 1184 * call-seq: 1185 * MessageClass.encode_json(msg) => json_string 1186 * 1187 * Encodes the given message object into its serialized JSON representation. 1188 */ 1189 VALUE Message_encode_json(int argc, VALUE* argv, VALUE klass) { 1190 VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned); 1191 Descriptor* desc = ruby_to_Descriptor(descriptor); 1192 VALUE msg_rb; 1193 VALUE preserve_proto_fieldnames = Qfalse; 1194 stringsink sink; 1195 1196 if (argc < 1 || argc > 2) { 1197 rb_raise(rb_eArgError, "Expected 1 or 2 arguments."); 1198 } 1199 1200 msg_rb = argv[0]; 1201 1202 if (argc == 2) { 1203 VALUE hash_args = argv[1]; 1204 if (TYPE(hash_args) != T_HASH) { 1205 rb_raise(rb_eArgError, "Expected hash arguments."); 1206 } 1207 preserve_proto_fieldnames = rb_hash_lookup2( 1208 hash_args, ID2SYM(rb_intern("preserve_proto_fieldnames")), Qfalse); 1209 } 1210 1211 stringsink_init(&sink); 1212 1213 { 1214 const upb_handlers* serialize_handlers = 1215 msgdef_json_serialize_handlers(desc, RTEST(preserve_proto_fieldnames)); 1216 upb_json_printer* printer; 1217 stackenv se; 1218 VALUE ret; 1219 1220 stackenv_init(&se, "Error occurred during encoding: %s"); 1221 printer = upb_json_printer_create(&se.env, serialize_handlers, &sink.sink); 1222 1223 putmsg(msg_rb, desc, upb_json_printer_input(printer), 0); 1224 1225 ret = rb_enc_str_new(sink.ptr, sink.len, rb_utf8_encoding()); 1226 1227 stackenv_uninit(&se); 1228 stringsink_uninit(&sink); 1229 1230 return ret; 1231 } 1232 } 1233 1234