1 // Copyright 2012 the V8 project authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #ifndef V8_GLOBALS_H_ 6 #define V8_GLOBALS_H_ 7 8 #include <stddef.h> 9 #include <stdint.h> 10 11 #include <ostream> 12 13 #include "src/base/build_config.h" 14 #include "src/base/logging.h" 15 #include "src/base/macros.h" 16 17 #ifdef V8_OS_WIN 18 19 // Setup for Windows shared library export. 20 #ifdef BUILDING_V8_SHARED 21 #define V8_EXPORT_PRIVATE __declspec(dllexport) 22 #elif USING_V8_SHARED 23 #define V8_EXPORT_PRIVATE __declspec(dllimport) 24 #else 25 #define V8_EXPORT_PRIVATE 26 #endif // BUILDING_V8_SHARED 27 28 #else // V8_OS_WIN 29 30 // Setup for Linux shared library export. 31 #if V8_HAS_ATTRIBUTE_VISIBILITY 32 #ifdef BUILDING_V8_SHARED 33 #define V8_EXPORT_PRIVATE __attribute__((visibility("default"))) 34 #else 35 #define V8_EXPORT_PRIVATE 36 #endif 37 #else 38 #define V8_EXPORT_PRIVATE 39 #endif 40 41 #endif // V8_OS_WIN 42 43 // Unfortunately, the INFINITY macro cannot be used with the '-pedantic' 44 // warning flag and certain versions of GCC due to a bug: 45 // http://gcc.gnu.org/bugzilla/show_bug.cgi?id=11931 46 // For now, we use the more involved template-based version from <limits>, but 47 // only when compiling with GCC versions affected by the bug (2.96.x - 4.0.x) 48 #if V8_CC_GNU && V8_GNUC_PREREQ(2, 96, 0) && !V8_GNUC_PREREQ(4, 1, 0) 49 # include <limits> // NOLINT 50 # define V8_INFINITY std::numeric_limits<double>::infinity() 51 #elif V8_LIBC_MSVCRT 52 # define V8_INFINITY HUGE_VAL 53 #elif V8_OS_AIX 54 #define V8_INFINITY (__builtin_inff()) 55 #else 56 # define V8_INFINITY INFINITY 57 #endif 58 59 namespace v8 { 60 61 namespace base { 62 class Mutex; 63 class RecursiveMutex; 64 class VirtualMemory; 65 } 66 67 namespace internal { 68 69 // Determine whether we are running in a simulated environment. 70 // Setting USE_SIMULATOR explicitly from the build script will force 71 // the use of a simulated environment. 72 #if !defined(USE_SIMULATOR) 73 #if (V8_TARGET_ARCH_ARM64 && !V8_HOST_ARCH_ARM64) 74 #define USE_SIMULATOR 1 75 #endif 76 #if (V8_TARGET_ARCH_ARM && !V8_HOST_ARCH_ARM) 77 #define USE_SIMULATOR 1 78 #endif 79 #if (V8_TARGET_ARCH_PPC && !V8_HOST_ARCH_PPC) 80 #define USE_SIMULATOR 1 81 #endif 82 #if (V8_TARGET_ARCH_MIPS && !V8_HOST_ARCH_MIPS) 83 #define USE_SIMULATOR 1 84 #endif 85 #if (V8_TARGET_ARCH_MIPS64 && !V8_HOST_ARCH_MIPS64) 86 #define USE_SIMULATOR 1 87 #endif 88 #if (V8_TARGET_ARCH_S390 && !V8_HOST_ARCH_S390) 89 #define USE_SIMULATOR 1 90 #endif 91 #endif 92 93 // Determine whether the architecture uses an embedded constant pool 94 // (contiguous constant pool embedded in code object). 95 #if V8_TARGET_ARCH_PPC 96 #define V8_EMBEDDED_CONSTANT_POOL 1 97 #else 98 #define V8_EMBEDDED_CONSTANT_POOL 0 99 #endif 100 101 #ifdef V8_TARGET_ARCH_ARM 102 // Set stack limit lower for ARM than for other architectures because 103 // stack allocating MacroAssembler takes 120K bytes. 104 // See issue crbug.com/405338 105 #define V8_DEFAULT_STACK_SIZE_KB 864 106 #else 107 // Slightly less than 1MB, since Windows' default stack size for 108 // the main execution thread is 1MB for both 32 and 64-bit. 109 #define V8_DEFAULT_STACK_SIZE_KB 984 110 #endif 111 112 113 // Determine whether double field unboxing feature is enabled. 114 #if V8_TARGET_ARCH_64_BIT 115 #define V8_DOUBLE_FIELDS_UNBOXING 1 116 #else 117 #define V8_DOUBLE_FIELDS_UNBOXING 0 118 #endif 119 120 121 typedef uint8_t byte; 122 typedef byte* Address; 123 124 // ----------------------------------------------------------------------------- 125 // Constants 126 127 const int KB = 1024; 128 const int MB = KB * KB; 129 const int GB = KB * KB * KB; 130 const int kMaxInt = 0x7FFFFFFF; 131 const int kMinInt = -kMaxInt - 1; 132 const int kMaxInt8 = (1 << 7) - 1; 133 const int kMinInt8 = -(1 << 7); 134 const int kMaxUInt8 = (1 << 8) - 1; 135 const int kMinUInt8 = 0; 136 const int kMaxInt16 = (1 << 15) - 1; 137 const int kMinInt16 = -(1 << 15); 138 const int kMaxUInt16 = (1 << 16) - 1; 139 const int kMinUInt16 = 0; 140 141 const uint32_t kMaxUInt32 = 0xFFFFFFFFu; 142 const int kMinUInt32 = 0; 143 144 const int kCharSize = sizeof(char); 145 const int kShortSize = sizeof(short); // NOLINT 146 const int kIntSize = sizeof(int); 147 const int kInt32Size = sizeof(int32_t); 148 const int kInt64Size = sizeof(int64_t); 149 const int kSizetSize = sizeof(size_t); 150 const int kFloatSize = sizeof(float); 151 const int kDoubleSize = sizeof(double); 152 const int kIntptrSize = sizeof(intptr_t); 153 const int kPointerSize = sizeof(void*); 154 #if V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_32_BIT 155 const int kRegisterSize = kPointerSize + kPointerSize; 156 #else 157 const int kRegisterSize = kPointerSize; 158 #endif 159 const int kPCOnStackSize = kRegisterSize; 160 const int kFPOnStackSize = kRegisterSize; 161 162 #if V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87 163 const int kElidedFrameSlots = kPCOnStackSize / kPointerSize; 164 #else 165 const int kElidedFrameSlots = 0; 166 #endif 167 168 const int kDoubleSizeLog2 = 3; 169 170 #if V8_HOST_ARCH_64_BIT 171 const int kPointerSizeLog2 = 3; 172 const intptr_t kIntptrSignBit = V8_INT64_C(0x8000000000000000); 173 const uintptr_t kUintptrAllBitsSet = V8_UINT64_C(0xFFFFFFFFFFFFFFFF); 174 const bool kRequiresCodeRange = true; 175 #if V8_TARGET_ARCH_MIPS64 176 // To use pseudo-relative jumps such as j/jal instructions which have 28-bit 177 // encoded immediate, the addresses have to be in range of 256MB aligned 178 // region. Used only for large object space. 179 const size_t kMaximalCodeRangeSize = 256 * MB; 180 const size_t kCodeRangeAreaAlignment = 256 * MB; 181 #elif V8_HOST_ARCH_PPC && V8_TARGET_ARCH_PPC && V8_OS_LINUX 182 const size_t kMaximalCodeRangeSize = 512 * MB; 183 const size_t kCodeRangeAreaAlignment = 64 * KB; // OS page on PPC Linux 184 #else 185 const size_t kMaximalCodeRangeSize = 512 * MB; 186 const size_t kCodeRangeAreaAlignment = 4 * KB; // OS page. 187 #endif 188 #if V8_OS_WIN 189 const size_t kMinimumCodeRangeSize = 4 * MB; 190 const size_t kReservedCodeRangePages = 1; 191 #else 192 const size_t kMinimumCodeRangeSize = 3 * MB; 193 const size_t kReservedCodeRangePages = 0; 194 #endif 195 #else 196 const int kPointerSizeLog2 = 2; 197 const intptr_t kIntptrSignBit = 0x80000000; 198 const uintptr_t kUintptrAllBitsSet = 0xFFFFFFFFu; 199 #if V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_32_BIT 200 // x32 port also requires code range. 201 const bool kRequiresCodeRange = true; 202 const size_t kMaximalCodeRangeSize = 256 * MB; 203 const size_t kMinimumCodeRangeSize = 3 * MB; 204 const size_t kCodeRangeAreaAlignment = 4 * KB; // OS page. 205 #elif V8_HOST_ARCH_PPC && V8_TARGET_ARCH_PPC && V8_OS_LINUX 206 const bool kRequiresCodeRange = false; 207 const size_t kMaximalCodeRangeSize = 0 * MB; 208 const size_t kMinimumCodeRangeSize = 0 * MB; 209 const size_t kCodeRangeAreaAlignment = 64 * KB; // OS page on PPC Linux 210 #else 211 const bool kRequiresCodeRange = false; 212 const size_t kMaximalCodeRangeSize = 0 * MB; 213 const size_t kMinimumCodeRangeSize = 0 * MB; 214 const size_t kCodeRangeAreaAlignment = 4 * KB; // OS page. 215 #endif 216 const size_t kReservedCodeRangePages = 0; 217 #endif 218 219 // Trigger an incremental GCs once the external memory reaches this limit. 220 const int kExternalAllocationSoftLimit = 64 * MB; 221 222 // Maximum object size that gets allocated into regular pages. Objects larger 223 // than that size are allocated in large object space and are never moved in 224 // memory. This also applies to new space allocation, since objects are never 225 // migrated from new space to large object space. Takes double alignment into 226 // account. 227 // 228 // Current value: Page::kAllocatableMemory (on 32-bit arch) - 512 (slack). 229 const int kMaxRegularHeapObjectSize = 507136; 230 231 STATIC_ASSERT(kPointerSize == (1 << kPointerSizeLog2)); 232 233 const int kBitsPerByte = 8; 234 const int kBitsPerByteLog2 = 3; 235 const int kBitsPerPointer = kPointerSize * kBitsPerByte; 236 const int kBitsPerInt = kIntSize * kBitsPerByte; 237 238 // IEEE 754 single precision floating point number bit layout. 239 const uint32_t kBinary32SignMask = 0x80000000u; 240 const uint32_t kBinary32ExponentMask = 0x7f800000u; 241 const uint32_t kBinary32MantissaMask = 0x007fffffu; 242 const int kBinary32ExponentBias = 127; 243 const int kBinary32MaxExponent = 0xFE; 244 const int kBinary32MinExponent = 0x01; 245 const int kBinary32MantissaBits = 23; 246 const int kBinary32ExponentShift = 23; 247 248 // Quiet NaNs have bits 51 to 62 set, possibly the sign bit, and no 249 // other bits set. 250 const uint64_t kQuietNaNMask = static_cast<uint64_t>(0xfff) << 51; 251 252 // Latin1/UTF-16 constants 253 // Code-point values in Unicode 4.0 are 21 bits wide. 254 // Code units in UTF-16 are 16 bits wide. 255 typedef uint16_t uc16; 256 typedef int32_t uc32; 257 const int kOneByteSize = kCharSize; 258 const int kUC16Size = sizeof(uc16); // NOLINT 259 260 // 128 bit SIMD value size. 261 const int kSimd128Size = 16; 262 263 // Round up n to be a multiple of sz, where sz is a power of 2. 264 #define ROUND_UP(n, sz) (((n) + ((sz) - 1)) & ~((sz) - 1)) 265 266 267 // FUNCTION_ADDR(f) gets the address of a C function f. 268 #define FUNCTION_ADDR(f) \ 269 (reinterpret_cast<v8::internal::Address>(reinterpret_cast<intptr_t>(f))) 270 271 272 // FUNCTION_CAST<F>(addr) casts an address into a function 273 // of type F. Used to invoke generated code from within C. 274 template <typename F> 275 F FUNCTION_CAST(Address addr) { 276 return reinterpret_cast<F>(reinterpret_cast<intptr_t>(addr)); 277 } 278 279 280 // Determine whether the architecture uses function descriptors 281 // which provide a level of indirection between the function pointer 282 // and the function entrypoint. 283 #if V8_HOST_ARCH_PPC && \ 284 (V8_OS_AIX || (V8_TARGET_ARCH_PPC64 && V8_TARGET_BIG_ENDIAN)) 285 #define USES_FUNCTION_DESCRIPTORS 1 286 #define FUNCTION_ENTRYPOINT_ADDRESS(f) \ 287 (reinterpret_cast<v8::internal::Address*>( \ 288 &(reinterpret_cast<intptr_t*>(f)[0]))) 289 #else 290 #define USES_FUNCTION_DESCRIPTORS 0 291 #endif 292 293 294 // ----------------------------------------------------------------------------- 295 // Forward declarations for frequently used classes 296 // (sorted alphabetically) 297 298 class FreeStoreAllocationPolicy; 299 template <typename T, class P = FreeStoreAllocationPolicy> class List; 300 301 // ----------------------------------------------------------------------------- 302 // Declarations for use in both the preparser and the rest of V8. 303 304 // The Strict Mode (ECMA-262 5th edition, 4.2.2). 305 306 enum LanguageMode : uint32_t { SLOPPY, STRICT, LANGUAGE_END }; 307 308 inline std::ostream& operator<<(std::ostream& os, const LanguageMode& mode) { 309 switch (mode) { 310 case SLOPPY: return os << "sloppy"; 311 case STRICT: return os << "strict"; 312 default: UNREACHABLE(); 313 } 314 return os; 315 } 316 317 318 inline bool is_sloppy(LanguageMode language_mode) { 319 return language_mode == SLOPPY; 320 } 321 322 323 inline bool is_strict(LanguageMode language_mode) { 324 return language_mode != SLOPPY; 325 } 326 327 328 inline bool is_valid_language_mode(int language_mode) { 329 return language_mode == SLOPPY || language_mode == STRICT; 330 } 331 332 333 inline LanguageMode construct_language_mode(bool strict_bit) { 334 return static_cast<LanguageMode>(strict_bit); 335 } 336 337 // This constant is used as an undefined value when passing source positions. 338 const int kNoSourcePosition = -1; 339 340 // This constant is used to indicate missing deoptimization information. 341 const int kNoDeoptimizationId = -1; 342 343 // Mask for the sign bit in a smi. 344 const intptr_t kSmiSignMask = kIntptrSignBit; 345 346 const int kObjectAlignmentBits = kPointerSizeLog2; 347 const intptr_t kObjectAlignment = 1 << kObjectAlignmentBits; 348 const intptr_t kObjectAlignmentMask = kObjectAlignment - 1; 349 350 // Desired alignment for pointers. 351 const intptr_t kPointerAlignment = (1 << kPointerSizeLog2); 352 const intptr_t kPointerAlignmentMask = kPointerAlignment - 1; 353 354 // Desired alignment for double values. 355 const intptr_t kDoubleAlignment = 8; 356 const intptr_t kDoubleAlignmentMask = kDoubleAlignment - 1; 357 358 // Desired alignment for 128 bit SIMD values. 359 const intptr_t kSimd128Alignment = 16; 360 const intptr_t kSimd128AlignmentMask = kSimd128Alignment - 1; 361 362 // Desired alignment for generated code is 32 bytes (to improve cache line 363 // utilization). 364 const int kCodeAlignmentBits = 5; 365 const intptr_t kCodeAlignment = 1 << kCodeAlignmentBits; 366 const intptr_t kCodeAlignmentMask = kCodeAlignment - 1; 367 368 // The owner field of a page is tagged with the page header tag. We need that 369 // to find out if a slot is part of a large object. If we mask out the lower 370 // 0xfffff bits (1M pages), go to the owner offset, and see that this field 371 // is tagged with the page header tag, we can just look up the owner. 372 // Otherwise, we know that we are somewhere (not within the first 1M) in a 373 // large object. 374 const int kPageHeaderTag = 3; 375 const int kPageHeaderTagSize = 2; 376 const intptr_t kPageHeaderTagMask = (1 << kPageHeaderTagSize) - 1; 377 378 379 // Zap-value: The value used for zapping dead objects. 380 // Should be a recognizable hex value tagged as a failure. 381 #ifdef V8_HOST_ARCH_64_BIT 382 const Address kZapValue = 383 reinterpret_cast<Address>(V8_UINT64_C(0xdeadbeedbeadbeef)); 384 const Address kHandleZapValue = 385 reinterpret_cast<Address>(V8_UINT64_C(0x1baddead0baddeaf)); 386 const Address kGlobalHandleZapValue = 387 reinterpret_cast<Address>(V8_UINT64_C(0x1baffed00baffedf)); 388 const Address kFromSpaceZapValue = 389 reinterpret_cast<Address>(V8_UINT64_C(0x1beefdad0beefdaf)); 390 const uint64_t kDebugZapValue = V8_UINT64_C(0xbadbaddbbadbaddb); 391 const uint64_t kSlotsZapValue = V8_UINT64_C(0xbeefdeadbeefdeef); 392 const uint64_t kFreeListZapValue = 0xfeed1eaffeed1eaf; 393 #else 394 const Address kZapValue = reinterpret_cast<Address>(0xdeadbeef); 395 const Address kHandleZapValue = reinterpret_cast<Address>(0xbaddeaf); 396 const Address kGlobalHandleZapValue = reinterpret_cast<Address>(0xbaffedf); 397 const Address kFromSpaceZapValue = reinterpret_cast<Address>(0xbeefdaf); 398 const uint32_t kSlotsZapValue = 0xbeefdeef; 399 const uint32_t kDebugZapValue = 0xbadbaddb; 400 const uint32_t kFreeListZapValue = 0xfeed1eaf; 401 #endif 402 403 const int kCodeZapValue = 0xbadc0de; 404 const uint32_t kPhantomReferenceZap = 0xca11bac; 405 406 // On Intel architecture, cache line size is 64 bytes. 407 // On ARM it may be less (32 bytes), but as far this constant is 408 // used for aligning data, it doesn't hurt to align on a greater value. 409 #define PROCESSOR_CACHE_LINE_SIZE 64 410 411 // Constants relevant to double precision floating point numbers. 412 // If looking only at the top 32 bits, the QNaN mask is bits 19 to 30. 413 const uint32_t kQuietNaNHighBitsMask = 0xfff << (51 - 32); 414 415 416 // ----------------------------------------------------------------------------- 417 // Forward declarations for frequently used classes 418 419 class AccessorInfo; 420 class Allocation; 421 class Arguments; 422 class Assembler; 423 class Code; 424 class CodeGenerator; 425 class CodeStub; 426 class Context; 427 class Debug; 428 class DebugInfo; 429 class Descriptor; 430 class DescriptorArray; 431 class TransitionArray; 432 class ExternalReference; 433 class FixedArray; 434 class FunctionTemplateInfo; 435 class MemoryChunk; 436 class SeededNumberDictionary; 437 class UnseededNumberDictionary; 438 class NameDictionary; 439 class GlobalDictionary; 440 template <typename T> class MaybeHandle; 441 template <typename T> class Handle; 442 class Heap; 443 class HeapObject; 444 class IC; 445 class InterceptorInfo; 446 class Isolate; 447 class JSReceiver; 448 class JSArray; 449 class JSFunction; 450 class JSObject; 451 class LargeObjectSpace; 452 class MacroAssembler; 453 class Map; 454 class MapSpace; 455 class MarkCompactCollector; 456 class NewSpace; 457 class Object; 458 class OldSpace; 459 class ParameterCount; 460 class Foreign; 461 class Scope; 462 class DeclarationScope; 463 class ModuleScope; 464 class ScopeInfo; 465 class Script; 466 class Smi; 467 template <typename Config, class Allocator = FreeStoreAllocationPolicy> 468 class SplayTree; 469 class String; 470 class Symbol; 471 class Name; 472 class Struct; 473 class TypeFeedbackVector; 474 class Variable; 475 class RelocInfo; 476 class Deserializer; 477 class MessageLocation; 478 479 typedef bool (*WeakSlotCallback)(Object** pointer); 480 481 typedef bool (*WeakSlotCallbackWithHeap)(Heap* heap, Object** pointer); 482 483 // ----------------------------------------------------------------------------- 484 // Miscellaneous 485 486 // NOTE: SpaceIterator depends on AllocationSpace enumeration values being 487 // consecutive. 488 // Keep this enum in sync with the ObjectSpace enum in v8.h 489 enum AllocationSpace { 490 NEW_SPACE, // Semispaces collected with copying collector. 491 OLD_SPACE, // May contain pointers to new space. 492 CODE_SPACE, // No pointers to new space, marked executable. 493 MAP_SPACE, // Only and all map objects. 494 LO_SPACE, // Promoted large objects. 495 496 FIRST_SPACE = NEW_SPACE, 497 LAST_SPACE = LO_SPACE, 498 FIRST_PAGED_SPACE = OLD_SPACE, 499 LAST_PAGED_SPACE = MAP_SPACE 500 }; 501 const int kSpaceTagSize = 3; 502 const int kSpaceTagMask = (1 << kSpaceTagSize) - 1; 503 504 enum AllocationAlignment { 505 kWordAligned, 506 kDoubleAligned, 507 kDoubleUnaligned, 508 kSimd128Unaligned 509 }; 510 511 // Possible outcomes for decisions. 512 enum class Decision : uint8_t { kUnknown, kTrue, kFalse }; 513 514 inline size_t hash_value(Decision decision) { 515 return static_cast<uint8_t>(decision); 516 } 517 518 inline std::ostream& operator<<(std::ostream& os, Decision decision) { 519 switch (decision) { 520 case Decision::kUnknown: 521 return os << "Unknown"; 522 case Decision::kTrue: 523 return os << "True"; 524 case Decision::kFalse: 525 return os << "False"; 526 } 527 UNREACHABLE(); 528 return os; 529 } 530 531 // Supported write barrier modes. 532 enum WriteBarrierKind : uint8_t { 533 kNoWriteBarrier, 534 kMapWriteBarrier, 535 kPointerWriteBarrier, 536 kFullWriteBarrier 537 }; 538 539 inline size_t hash_value(WriteBarrierKind kind) { 540 return static_cast<uint8_t>(kind); 541 } 542 543 inline std::ostream& operator<<(std::ostream& os, WriteBarrierKind kind) { 544 switch (kind) { 545 case kNoWriteBarrier: 546 return os << "NoWriteBarrier"; 547 case kMapWriteBarrier: 548 return os << "MapWriteBarrier"; 549 case kPointerWriteBarrier: 550 return os << "PointerWriteBarrier"; 551 case kFullWriteBarrier: 552 return os << "FullWriteBarrier"; 553 } 554 UNREACHABLE(); 555 return os; 556 } 557 558 // A flag that indicates whether objects should be pretenured when 559 // allocated (allocated directly into the old generation) or not 560 // (allocated in the young generation if the object size and type 561 // allows). 562 enum PretenureFlag { NOT_TENURED, TENURED }; 563 564 inline std::ostream& operator<<(std::ostream& os, const PretenureFlag& flag) { 565 switch (flag) { 566 case NOT_TENURED: 567 return os << "NotTenured"; 568 case TENURED: 569 return os << "Tenured"; 570 } 571 UNREACHABLE(); 572 return os; 573 } 574 575 enum MinimumCapacity { 576 USE_DEFAULT_MINIMUM_CAPACITY, 577 USE_CUSTOM_MINIMUM_CAPACITY 578 }; 579 580 enum GarbageCollector { SCAVENGER, MARK_COMPACTOR, MINOR_MARK_COMPACTOR }; 581 582 enum Executability { NOT_EXECUTABLE, EXECUTABLE }; 583 584 enum VisitMode { 585 VISIT_ALL, 586 VISIT_ALL_IN_SCAVENGE, 587 VISIT_ALL_IN_SWEEP_NEWSPACE, 588 VISIT_ONLY_STRONG, 589 VISIT_ONLY_STRONG_FOR_SERIALIZATION, 590 VISIT_ONLY_STRONG_ROOT_LIST, 591 }; 592 593 // Flag indicating whether code is built into the VM (one of the natives files). 594 enum NativesFlag { NOT_NATIVES_CODE, EXTENSION_CODE, NATIVES_CODE }; 595 596 // JavaScript defines two kinds of 'nil'. 597 enum NilValue { kNullValue, kUndefinedValue }; 598 599 // ParseRestriction is used to restrict the set of valid statements in a 600 // unit of compilation. Restriction violations cause a syntax error. 601 enum ParseRestriction { 602 NO_PARSE_RESTRICTION, // All expressions are allowed. 603 ONLY_SINGLE_FUNCTION_LITERAL // Only a single FunctionLiteral expression. 604 }; 605 606 // TODO(gsathya): Move this to JSPromise once we create it. 607 // This should be in sync with the constants in promise.js 608 enum PromiseStatus { 609 kPromisePending, 610 kPromiseFulfilled, 611 kPromiseRejected, 612 }; 613 614 // A CodeDesc describes a buffer holding instructions and relocation 615 // information. The instructions start at the beginning of the buffer 616 // and grow forward, the relocation information starts at the end of 617 // the buffer and grows backward. A constant pool may exist at the 618 // end of the instructions. 619 // 620 // |<--------------- buffer_size ----------------------------------->| 621 // |<------------- instr_size ---------->| |<-- reloc_size -->| 622 // | |<- const_pool_size ->| | 623 // +=====================================+========+==================+ 624 // | instructions | data | free | reloc info | 625 // +=====================================+========+==================+ 626 // ^ 627 // | 628 // buffer 629 630 struct CodeDesc { 631 byte* buffer; 632 int buffer_size; 633 int instr_size; 634 int reloc_size; 635 int constant_pool_size; 636 byte* unwinding_info; 637 int unwinding_info_size; 638 Assembler* origin; 639 }; 640 641 642 // Callback function used for checking constraints when copying/relocating 643 // objects. Returns true if an object can be copied/relocated from its 644 // old_addr to a new_addr. 645 typedef bool (*ConstraintCallback)(Address new_addr, Address old_addr); 646 647 648 // Callback function on inline caches, used for iterating over inline caches 649 // in compiled code. 650 typedef void (*InlineCacheCallback)(Code* code, Address ic); 651 652 653 // State for inline cache call sites. Aliased as IC::State. 654 enum InlineCacheState { 655 // Has never been executed. 656 UNINITIALIZED, 657 // Has been executed but monomorhic state has been delayed. 658 PREMONOMORPHIC, 659 // Has been executed and only one receiver type has been seen. 660 MONOMORPHIC, 661 // Check failed due to prototype (or map deprecation). 662 RECOMPUTE_HANDLER, 663 // Multiple receiver types have been seen. 664 POLYMORPHIC, 665 // Many receiver types have been seen. 666 MEGAMORPHIC, 667 // A generic handler is installed and no extra typefeedback is recorded. 668 GENERIC, 669 }; 670 671 enum CacheHolderFlag { 672 kCacheOnPrototype, 673 kCacheOnPrototypeReceiverIsDictionary, 674 kCacheOnPrototypeReceiverIsPrimitive, 675 kCacheOnReceiver 676 }; 677 678 enum WhereToStart { kStartAtReceiver, kStartAtPrototype }; 679 680 // The Store Buffer (GC). 681 typedef enum { 682 kStoreBufferFullEvent, 683 kStoreBufferStartScanningPagesEvent, 684 kStoreBufferScanningPageEvent 685 } StoreBufferEvent; 686 687 688 typedef void (*StoreBufferCallback)(Heap* heap, 689 MemoryChunk* page, 690 StoreBufferEvent event); 691 692 // Union used for customized checking of the IEEE double types 693 // inlined within v8 runtime, rather than going to the underlying 694 // platform headers and libraries 695 union IeeeDoubleLittleEndianArchType { 696 double d; 697 struct { 698 unsigned int man_low :32; 699 unsigned int man_high :20; 700 unsigned int exp :11; 701 unsigned int sign :1; 702 } bits; 703 }; 704 705 706 union IeeeDoubleBigEndianArchType { 707 double d; 708 struct { 709 unsigned int sign :1; 710 unsigned int exp :11; 711 unsigned int man_high :20; 712 unsigned int man_low :32; 713 } bits; 714 }; 715 716 #if V8_TARGET_LITTLE_ENDIAN 717 typedef IeeeDoubleLittleEndianArchType IeeeDoubleArchType; 718 const int kIeeeDoubleMantissaWordOffset = 0; 719 const int kIeeeDoubleExponentWordOffset = 4; 720 #else 721 typedef IeeeDoubleBigEndianArchType IeeeDoubleArchType; 722 const int kIeeeDoubleMantissaWordOffset = 4; 723 const int kIeeeDoubleExponentWordOffset = 0; 724 #endif 725 726 // AccessorCallback 727 struct AccessorDescriptor { 728 Object* (*getter)(Isolate* isolate, Object* object, void* data); 729 Object* (*setter)( 730 Isolate* isolate, JSObject* object, Object* value, void* data); 731 void* data; 732 }; 733 734 735 // ----------------------------------------------------------------------------- 736 // Macros 737 738 // Testers for test. 739 740 #define HAS_SMI_TAG(value) \ 741 ((reinterpret_cast<intptr_t>(value) & kSmiTagMask) == kSmiTag) 742 743 // OBJECT_POINTER_ALIGN returns the value aligned as a HeapObject pointer 744 #define OBJECT_POINTER_ALIGN(value) \ 745 (((value) + kObjectAlignmentMask) & ~kObjectAlignmentMask) 746 747 // POINTER_SIZE_ALIGN returns the value aligned as a pointer. 748 #define POINTER_SIZE_ALIGN(value) \ 749 (((value) + kPointerAlignmentMask) & ~kPointerAlignmentMask) 750 751 // CODE_POINTER_ALIGN returns the value aligned as a generated code segment. 752 #define CODE_POINTER_ALIGN(value) \ 753 (((value) + kCodeAlignmentMask) & ~kCodeAlignmentMask) 754 755 // DOUBLE_POINTER_ALIGN returns the value algined for double pointers. 756 #define DOUBLE_POINTER_ALIGN(value) \ 757 (((value) + kDoubleAlignmentMask) & ~kDoubleAlignmentMask) 758 759 760 // CPU feature flags. 761 enum CpuFeature { 762 // x86 763 SSE4_1, 764 SSSE3, 765 SSE3, 766 SAHF, 767 AVX, 768 FMA3, 769 BMI1, 770 BMI2, 771 LZCNT, 772 POPCNT, 773 ATOM, 774 // ARM 775 // - Standard configurations. The baseline is ARMv6+VFPv2. 776 ARMv7, // ARMv7-A + VFPv3-D32 + NEON 777 ARMv7_SUDIV, // ARMv7-A + VFPv4-D32 + NEON + SUDIV 778 ARMv8, // ARMv8-A (+ all of the above) 779 // MIPS, MIPS64 780 FPU, 781 FP64FPU, 782 MIPSr1, 783 MIPSr2, 784 MIPSr6, 785 // ARM64 786 ALWAYS_ALIGN_CSP, 787 // PPC 788 FPR_GPR_MOV, 789 LWSYNC, 790 ISELECT, 791 // S390 792 DISTINCT_OPS, 793 GENERAL_INSTR_EXT, 794 FLOATING_POINT_EXT, 795 796 NUMBER_OF_CPU_FEATURES, 797 798 // ARM feature aliases (based on the standard configurations above). 799 VFPv3 = ARMv7, 800 NEON = ARMv7, 801 VFP32DREGS = ARMv7, 802 SUDIV = ARMv7_SUDIV 803 }; 804 805 // Defines hints about receiver values based on structural knowledge. 806 enum class ConvertReceiverMode : unsigned { 807 kNullOrUndefined, // Guaranteed to be null or undefined. 808 kNotNullOrUndefined, // Guaranteed to never be null or undefined. 809 kAny // No specific knowledge about receiver. 810 }; 811 812 inline size_t hash_value(ConvertReceiverMode mode) { 813 return bit_cast<unsigned>(mode); 814 } 815 816 inline std::ostream& operator<<(std::ostream& os, ConvertReceiverMode mode) { 817 switch (mode) { 818 case ConvertReceiverMode::kNullOrUndefined: 819 return os << "NULL_OR_UNDEFINED"; 820 case ConvertReceiverMode::kNotNullOrUndefined: 821 return os << "NOT_NULL_OR_UNDEFINED"; 822 case ConvertReceiverMode::kAny: 823 return os << "ANY"; 824 } 825 UNREACHABLE(); 826 return os; 827 } 828 829 // Defines whether tail call optimization is allowed. 830 enum class TailCallMode : unsigned { kAllow, kDisallow }; 831 832 inline size_t hash_value(TailCallMode mode) { return bit_cast<unsigned>(mode); } 833 834 inline std::ostream& operator<<(std::ostream& os, TailCallMode mode) { 835 switch (mode) { 836 case TailCallMode::kAllow: 837 return os << "ALLOW_TAIL_CALLS"; 838 case TailCallMode::kDisallow: 839 return os << "DISALLOW_TAIL_CALLS"; 840 } 841 UNREACHABLE(); 842 return os; 843 } 844 845 // Valid hints for the abstract operation OrdinaryToPrimitive, 846 // implemented according to ES6, section 7.1.1. 847 enum class OrdinaryToPrimitiveHint { kNumber, kString }; 848 849 // Valid hints for the abstract operation ToPrimitive, 850 // implemented according to ES6, section 7.1.1. 851 enum class ToPrimitiveHint { kDefault, kNumber, kString }; 852 853 // Defines specifics about arguments object or rest parameter creation. 854 enum class CreateArgumentsType : uint8_t { 855 kMappedArguments, 856 kUnmappedArguments, 857 kRestParameter 858 }; 859 860 inline size_t hash_value(CreateArgumentsType type) { 861 return bit_cast<uint8_t>(type); 862 } 863 864 inline std::ostream& operator<<(std::ostream& os, CreateArgumentsType type) { 865 switch (type) { 866 case CreateArgumentsType::kMappedArguments: 867 return os << "MAPPED_ARGUMENTS"; 868 case CreateArgumentsType::kUnmappedArguments: 869 return os << "UNMAPPED_ARGUMENTS"; 870 case CreateArgumentsType::kRestParameter: 871 return os << "REST_PARAMETER"; 872 } 873 UNREACHABLE(); 874 return os; 875 } 876 877 // Used to specify if a macro instruction must perform a smi check on tagged 878 // values. 879 enum SmiCheckType { 880 DONT_DO_SMI_CHECK, 881 DO_SMI_CHECK 882 }; 883 884 enum ScopeType : uint8_t { 885 EVAL_SCOPE, // The top-level scope for an eval source. 886 FUNCTION_SCOPE, // The top-level scope for a function. 887 MODULE_SCOPE, // The scope introduced by a module literal 888 SCRIPT_SCOPE, // The top-level scope for a script or a top-level eval. 889 CATCH_SCOPE, // The scope introduced by catch. 890 BLOCK_SCOPE, // The scope introduced by a new block. 891 WITH_SCOPE // The scope introduced by with. 892 }; 893 894 // The mips architecture prior to revision 5 has inverted encoding for sNaN. 895 // The x87 FPU convert the sNaN to qNaN automatically when loading sNaN from 896 // memmory. 897 // Use mips sNaN which is a not used qNaN in x87 port as sNaN to workaround this 898 // issue 899 // for some test cases. 900 #if (V8_TARGET_ARCH_MIPS && !defined(_MIPS_ARCH_MIPS32R6) && \ 901 (!defined(USE_SIMULATOR) || !defined(_MIPS_TARGET_SIMULATOR))) || \ 902 (V8_TARGET_ARCH_MIPS64 && !defined(_MIPS_ARCH_MIPS64R6) && \ 903 (!defined(USE_SIMULATOR) || !defined(_MIPS_TARGET_SIMULATOR))) || \ 904 (V8_TARGET_ARCH_X87) 905 const uint32_t kHoleNanUpper32 = 0xFFFF7FFF; 906 const uint32_t kHoleNanLower32 = 0xFFFF7FFF; 907 #else 908 const uint32_t kHoleNanUpper32 = 0xFFF7FFFF; 909 const uint32_t kHoleNanLower32 = 0xFFF7FFFF; 910 #endif 911 912 const uint64_t kHoleNanInt64 = 913 (static_cast<uint64_t>(kHoleNanUpper32) << 32) | kHoleNanLower32; 914 915 916 // ES6 section 20.1.2.6 Number.MAX_SAFE_INTEGER 917 const double kMaxSafeInteger = 9007199254740991.0; // 2^53-1 918 919 920 // The order of this enum has to be kept in sync with the predicates below. 921 enum VariableMode : uint8_t { 922 // User declared variables: 923 VAR, // declared via 'var', and 'function' declarations 924 925 LET, // declared via 'let' declarations (first lexical) 926 927 CONST, // declared via 'const' declarations (last lexical) 928 929 // Variables introduced by the compiler: 930 TEMPORARY, // temporary variables (not user-visible), stack-allocated 931 // unless the scope as a whole has forced context allocation 932 933 DYNAMIC, // always require dynamic lookup (we don't know 934 // the declaration) 935 936 DYNAMIC_GLOBAL, // requires dynamic lookup, but we know that the 937 // variable is global unless it has been shadowed 938 // by an eval-introduced variable 939 940 DYNAMIC_LOCAL, // requires dynamic lookup, but we know that the 941 // variable is local and where it is unless it 942 // has been shadowed by an eval-introduced 943 // variable 944 945 kLastVariableMode = DYNAMIC_LOCAL 946 }; 947 948 // Printing support 949 #ifdef DEBUG 950 inline const char* VariableMode2String(VariableMode mode) { 951 switch (mode) { 952 case VAR: 953 return "VAR"; 954 case LET: 955 return "LET"; 956 case CONST: 957 return "CONST"; 958 case DYNAMIC: 959 return "DYNAMIC"; 960 case DYNAMIC_GLOBAL: 961 return "DYNAMIC_GLOBAL"; 962 case DYNAMIC_LOCAL: 963 return "DYNAMIC_LOCAL"; 964 case TEMPORARY: 965 return "TEMPORARY"; 966 } 967 UNREACHABLE(); 968 return NULL; 969 } 970 #endif 971 972 enum VariableKind : uint8_t { 973 NORMAL_VARIABLE, 974 FUNCTION_VARIABLE, 975 THIS_VARIABLE, 976 SLOPPY_FUNCTION_NAME_VARIABLE, 977 kLastKind = SLOPPY_FUNCTION_NAME_VARIABLE 978 }; 979 980 inline bool IsDynamicVariableMode(VariableMode mode) { 981 return mode >= DYNAMIC && mode <= DYNAMIC_LOCAL; 982 } 983 984 985 inline bool IsDeclaredVariableMode(VariableMode mode) { 986 STATIC_ASSERT(VAR == 0); // Implies that mode >= VAR. 987 return mode <= CONST; 988 } 989 990 991 inline bool IsLexicalVariableMode(VariableMode mode) { 992 return mode >= LET && mode <= CONST; 993 } 994 995 enum VariableLocation : uint8_t { 996 // Before and during variable allocation, a variable whose location is 997 // not yet determined. After allocation, a variable looked up as a 998 // property on the global object (and possibly absent). name() is the 999 // variable name, index() is invalid. 1000 UNALLOCATED, 1001 1002 // A slot in the parameter section on the stack. index() is the 1003 // parameter index, counting left-to-right. The receiver is index -1; 1004 // the first parameter is index 0. 1005 PARAMETER, 1006 1007 // A slot in the local section on the stack. index() is the variable 1008 // index in the stack frame, starting at 0. 1009 LOCAL, 1010 1011 // An indexed slot in a heap context. index() is the variable index in 1012 // the context object on the heap, starting at 0. scope() is the 1013 // corresponding scope. 1014 CONTEXT, 1015 1016 // A named slot in a heap context. name() is the variable name in the 1017 // context object on the heap, with lookup starting at the current 1018 // context. index() is invalid. 1019 LOOKUP, 1020 1021 // A named slot in a module's export table. 1022 MODULE, 1023 1024 kLastVariableLocation = MODULE 1025 }; 1026 1027 // ES6 Draft Rev3 10.2 specifies declarative environment records with mutable 1028 // and immutable bindings that can be in two states: initialized and 1029 // uninitialized. In ES5 only immutable bindings have these two states. When 1030 // accessing a binding, it needs to be checked for initialization. However in 1031 // the following cases the binding is initialized immediately after creation 1032 // so the initialization check can always be skipped: 1033 // 1. Var declared local variables. 1034 // var foo; 1035 // 2. A local variable introduced by a function declaration. 1036 // function foo() {} 1037 // 3. Parameters 1038 // function x(foo) {} 1039 // 4. Catch bound variables. 1040 // try {} catch (foo) {} 1041 // 6. Function variables of named function expressions. 1042 // var x = function foo() {} 1043 // 7. Implicit binding of 'this'. 1044 // 8. Implicit binding of 'arguments' in functions. 1045 // 1046 // ES5 specified object environment records which are introduced by ES elements 1047 // such as Program and WithStatement that associate identifier bindings with the 1048 // properties of some object. In the specification only mutable bindings exist 1049 // (which may be non-writable) and have no distinct initialization step. However 1050 // V8 allows const declarations in global code with distinct creation and 1051 // initialization steps which are represented by non-writable properties in the 1052 // global object. As a result also these bindings need to be checked for 1053 // initialization. 1054 // 1055 // The following enum specifies a flag that indicates if the binding needs a 1056 // distinct initialization step (kNeedsInitialization) or if the binding is 1057 // immediately initialized upon creation (kCreatedInitialized). 1058 enum InitializationFlag : uint8_t { kNeedsInitialization, kCreatedInitialized }; 1059 1060 enum class HoleCheckMode { kRequired, kElided }; 1061 1062 enum MaybeAssignedFlag : uint8_t { kNotAssigned, kMaybeAssigned }; 1063 1064 // Serialized in PreparseData, so numeric values should not be changed. 1065 enum ParseErrorType { kSyntaxError = 0, kReferenceError = 1 }; 1066 1067 1068 enum MinusZeroMode { 1069 TREAT_MINUS_ZERO_AS_ZERO, 1070 FAIL_ON_MINUS_ZERO 1071 }; 1072 1073 1074 enum Signedness { kSigned, kUnsigned }; 1075 1076 enum FunctionKind : uint16_t { 1077 kNormalFunction = 0, 1078 kArrowFunction = 1 << 0, 1079 kGeneratorFunction = 1 << 1, 1080 kConciseMethod = 1 << 2, 1081 kConciseGeneratorMethod = kGeneratorFunction | kConciseMethod, 1082 kDefaultConstructor = 1 << 3, 1083 kSubclassConstructor = 1 << 4, 1084 kBaseConstructor = 1 << 5, 1085 kGetterFunction = 1 << 6, 1086 kSetterFunction = 1 << 7, 1087 kAsyncFunction = 1 << 8, 1088 kModule = 1 << 9, 1089 kAccessorFunction = kGetterFunction | kSetterFunction, 1090 kDefaultBaseConstructor = kDefaultConstructor | kBaseConstructor, 1091 kDefaultSubclassConstructor = kDefaultConstructor | kSubclassConstructor, 1092 kClassConstructor = 1093 kBaseConstructor | kSubclassConstructor | kDefaultConstructor, 1094 kAsyncArrowFunction = kArrowFunction | kAsyncFunction, 1095 kAsyncConciseMethod = kAsyncFunction | kConciseMethod 1096 }; 1097 1098 inline bool IsValidFunctionKind(FunctionKind kind) { 1099 return kind == FunctionKind::kNormalFunction || 1100 kind == FunctionKind::kArrowFunction || 1101 kind == FunctionKind::kGeneratorFunction || 1102 kind == FunctionKind::kModule || 1103 kind == FunctionKind::kConciseMethod || 1104 kind == FunctionKind::kConciseGeneratorMethod || 1105 kind == FunctionKind::kGetterFunction || 1106 kind == FunctionKind::kSetterFunction || 1107 kind == FunctionKind::kAccessorFunction || 1108 kind == FunctionKind::kDefaultBaseConstructor || 1109 kind == FunctionKind::kDefaultSubclassConstructor || 1110 kind == FunctionKind::kBaseConstructor || 1111 kind == FunctionKind::kSubclassConstructor || 1112 kind == FunctionKind::kAsyncFunction || 1113 kind == FunctionKind::kAsyncArrowFunction || 1114 kind == FunctionKind::kAsyncConciseMethod; 1115 } 1116 1117 1118 inline bool IsArrowFunction(FunctionKind kind) { 1119 DCHECK(IsValidFunctionKind(kind)); 1120 return kind & FunctionKind::kArrowFunction; 1121 } 1122 1123 1124 inline bool IsGeneratorFunction(FunctionKind kind) { 1125 DCHECK(IsValidFunctionKind(kind)); 1126 return kind & FunctionKind::kGeneratorFunction; 1127 } 1128 1129 inline bool IsModule(FunctionKind kind) { 1130 DCHECK(IsValidFunctionKind(kind)); 1131 return kind & FunctionKind::kModule; 1132 } 1133 1134 inline bool IsAsyncFunction(FunctionKind kind) { 1135 DCHECK(IsValidFunctionKind(kind)); 1136 return kind & FunctionKind::kAsyncFunction; 1137 } 1138 1139 inline bool IsResumableFunction(FunctionKind kind) { 1140 return IsGeneratorFunction(kind) || IsAsyncFunction(kind) || IsModule(kind); 1141 } 1142 1143 inline bool IsConciseMethod(FunctionKind kind) { 1144 DCHECK(IsValidFunctionKind(kind)); 1145 return kind & FunctionKind::kConciseMethod; 1146 } 1147 1148 inline bool IsGetterFunction(FunctionKind kind) { 1149 DCHECK(IsValidFunctionKind(kind)); 1150 return kind & FunctionKind::kGetterFunction; 1151 } 1152 1153 inline bool IsSetterFunction(FunctionKind kind) { 1154 DCHECK(IsValidFunctionKind(kind)); 1155 return kind & FunctionKind::kSetterFunction; 1156 } 1157 1158 inline bool IsAccessorFunction(FunctionKind kind) { 1159 DCHECK(IsValidFunctionKind(kind)); 1160 return kind & FunctionKind::kAccessorFunction; 1161 } 1162 1163 1164 inline bool IsDefaultConstructor(FunctionKind kind) { 1165 DCHECK(IsValidFunctionKind(kind)); 1166 return kind & FunctionKind::kDefaultConstructor; 1167 } 1168 1169 1170 inline bool IsBaseConstructor(FunctionKind kind) { 1171 DCHECK(IsValidFunctionKind(kind)); 1172 return kind & FunctionKind::kBaseConstructor; 1173 } 1174 1175 1176 inline bool IsSubclassConstructor(FunctionKind kind) { 1177 DCHECK(IsValidFunctionKind(kind)); 1178 return kind & FunctionKind::kSubclassConstructor; 1179 } 1180 1181 1182 inline bool IsClassConstructor(FunctionKind kind) { 1183 DCHECK(IsValidFunctionKind(kind)); 1184 return kind & FunctionKind::kClassConstructor; 1185 } 1186 1187 1188 inline bool IsConstructable(FunctionKind kind, LanguageMode mode) { 1189 if (IsAccessorFunction(kind)) return false; 1190 if (IsConciseMethod(kind)) return false; 1191 if (IsArrowFunction(kind)) return false; 1192 if (IsGeneratorFunction(kind)) return false; 1193 if (IsAsyncFunction(kind)) return false; 1194 return true; 1195 } 1196 1197 enum class CallableType : unsigned { kJSFunction, kAny }; 1198 1199 inline size_t hash_value(CallableType type) { return bit_cast<unsigned>(type); } 1200 1201 inline std::ostream& operator<<(std::ostream& os, CallableType function_type) { 1202 switch (function_type) { 1203 case CallableType::kJSFunction: 1204 return os << "JSFunction"; 1205 case CallableType::kAny: 1206 return os << "Any"; 1207 } 1208 UNREACHABLE(); 1209 return os; 1210 } 1211 1212 inline uint32_t ObjectHash(Address address) { 1213 // All objects are at least pointer aligned, so we can remove the trailing 1214 // zeros. 1215 return static_cast<uint32_t>(bit_cast<uintptr_t>(address) >> 1216 kPointerSizeLog2); 1217 } 1218 1219 // Type feedback is encoded in such a way that, we can combine the feedback 1220 // at different points by performing an 'OR' operation. Type feedback moves 1221 // to a more generic type when we combine feedback. 1222 // kSignedSmall -> kNumber -> kNumberOrOddball -> kAny 1223 // kString -> kAny 1224 // TODO(mythria): Remove kNumber type when crankshaft can handle Oddballs 1225 // similar to Numbers. We don't need kNumber feedback for Turbofan. Extra 1226 // information about Number might reduce few instructions but causes more 1227 // deopts. We collect Number only because crankshaft does not handle all 1228 // cases of oddballs. 1229 class BinaryOperationFeedback { 1230 public: 1231 enum { 1232 kNone = 0x0, 1233 kSignedSmall = 0x1, 1234 kNumber = 0x3, 1235 kNumberOrOddball = 0x7, 1236 kString = 0x8, 1237 kAny = 0x1F 1238 }; 1239 }; 1240 1241 // TODO(epertoso): consider unifying this with BinaryOperationFeedback. 1242 class CompareOperationFeedback { 1243 public: 1244 enum { kNone = 0x00, kSignedSmall = 0x01, kNumber = 0x3, kAny = 0x7 }; 1245 }; 1246 1247 // Describes how exactly a frame has been dropped from stack. 1248 enum LiveEditFrameDropMode { 1249 // No frame has been dropped. 1250 LIVE_EDIT_FRAMES_UNTOUCHED, 1251 // The top JS frame had been calling debug break slot stub. Patch the 1252 // address this stub jumps to in the end. 1253 LIVE_EDIT_FRAME_DROPPED_IN_DEBUG_SLOT_CALL, 1254 // The top JS frame had been calling some C++ function. The return address 1255 // gets patched automatically. 1256 LIVE_EDIT_FRAME_DROPPED_IN_DIRECT_CALL, 1257 LIVE_EDIT_FRAME_DROPPED_IN_RETURN_CALL, 1258 LIVE_EDIT_CURRENTLY_SET_MODE 1259 }; 1260 1261 enum class UnicodeEncoding : uint8_t { 1262 // Different unicode encodings in a |word32|: 1263 UTF16, // hi 16bits -> trailing surrogate or 0, low 16bits -> lead surrogate 1264 UTF32, // full UTF32 code unit / Unicode codepoint 1265 }; 1266 1267 inline size_t hash_value(UnicodeEncoding encoding) { 1268 return static_cast<uint8_t>(encoding); 1269 } 1270 1271 inline std::ostream& operator<<(std::ostream& os, UnicodeEncoding encoding) { 1272 switch (encoding) { 1273 case UnicodeEncoding::UTF16: 1274 return os << "UTF16"; 1275 case UnicodeEncoding::UTF32: 1276 return os << "UTF32"; 1277 } 1278 UNREACHABLE(); 1279 return os; 1280 } 1281 1282 enum class IterationKind { kKeys, kValues, kEntries }; 1283 1284 inline std::ostream& operator<<(std::ostream& os, IterationKind kind) { 1285 switch (kind) { 1286 case IterationKind::kKeys: 1287 return os << "IterationKind::kKeys"; 1288 case IterationKind::kValues: 1289 return os << "IterationKind::kValues"; 1290 case IterationKind::kEntries: 1291 return os << "IterationKind::kEntries"; 1292 } 1293 UNREACHABLE(); 1294 return os; 1295 } 1296 1297 } // namespace internal 1298 } // namespace v8 1299 1300 // Used by js-builtin-reducer to identify whether ReduceArrayIterator() is 1301 // reducing a JSArray method, or a JSTypedArray method. 1302 enum class ArrayIteratorKind { kArray, kTypedArray }; 1303 1304 namespace i = v8::internal; 1305 1306 #endif // V8_GLOBALS_H_ 1307