Home | History | Annotate | Download | only in crypto
      1 /* Copyright (C) 1995-1998 Eric Young (eay (at) cryptsoft.com)
      2  * All rights reserved.
      3  *
      4  * This package is an SSL implementation written
      5  * by Eric Young (eay (at) cryptsoft.com).
      6  * The implementation was written so as to conform with Netscapes SSL.
      7  *
      8  * This library is free for commercial and non-commercial use as long as
      9  * the following conditions are aheared to.  The following conditions
     10  * apply to all code found in this distribution, be it the RC4, RSA,
     11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
     12  * included with this distribution is covered by the same copyright terms
     13  * except that the holder is Tim Hudson (tjh (at) cryptsoft.com).
     14  *
     15  * Copyright remains Eric Young's, and as such any Copyright notices in
     16  * the code are not to be removed.
     17  * If this package is used in a product, Eric Young should be given attribution
     18  * as the author of the parts of the library used.
     19  * This can be in the form of a textual message at program startup or
     20  * in documentation (online or textual) provided with the package.
     21  *
     22  * Redistribution and use in source and binary forms, with or without
     23  * modification, are permitted provided that the following conditions
     24  * are met:
     25  * 1. Redistributions of source code must retain the copyright
     26  *    notice, this list of conditions and the following disclaimer.
     27  * 2. Redistributions in binary form must reproduce the above copyright
     28  *    notice, this list of conditions and the following disclaimer in the
     29  *    documentation and/or other materials provided with the distribution.
     30  * 3. All advertising materials mentioning features or use of this software
     31  *    must display the following acknowledgement:
     32  *    "This product includes cryptographic software written by
     33  *     Eric Young (eay (at) cryptsoft.com)"
     34  *    The word 'cryptographic' can be left out if the rouines from the library
     35  *    being used are not cryptographic related :-).
     36  * 4. If you include any Windows specific code (or a derivative thereof) from
     37  *    the apps directory (application code) you must include an acknowledgement:
     38  *    "This product includes software written by Tim Hudson (tjh (at) cryptsoft.com)"
     39  *
     40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
     41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     50  * SUCH DAMAGE.
     51  *
     52  * The licence and distribution terms for any publically available version or
     53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
     54  * copied and put under another distribution licence
     55  * [including the GNU Public Licence.]
     56  */
     57 /* ====================================================================
     58  * Copyright (c) 1998-2001 The OpenSSL Project.  All rights reserved.
     59  *
     60  * Redistribution and use in source and binary forms, with or without
     61  * modification, are permitted provided that the following conditions
     62  * are met:
     63  *
     64  * 1. Redistributions of source code must retain the above copyright
     65  *    notice, this list of conditions and the following disclaimer.
     66  *
     67  * 2. Redistributions in binary form must reproduce the above copyright
     68  *    notice, this list of conditions and the following disclaimer in
     69  *    the documentation and/or other materials provided with the
     70  *    distribution.
     71  *
     72  * 3. All advertising materials mentioning features or use of this
     73  *    software must display the following acknowledgment:
     74  *    "This product includes software developed by the OpenSSL Project
     75  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
     76  *
     77  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
     78  *    endorse or promote products derived from this software without
     79  *    prior written permission. For written permission, please contact
     80  *    openssl-core (at) openssl.org.
     81  *
     82  * 5. Products derived from this software may not be called "OpenSSL"
     83  *    nor may "OpenSSL" appear in their names without prior written
     84  *    permission of the OpenSSL Project.
     85  *
     86  * 6. Redistributions of any form whatsoever must retain the following
     87  *    acknowledgment:
     88  *    "This product includes software developed by the OpenSSL Project
     89  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
     90  *
     91  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
     92  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     93  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     94  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
     95  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     96  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     97  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     98  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     99  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
    100  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
    101  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
    102  * OF THE POSSIBILITY OF SUCH DAMAGE.
    103  * ====================================================================
    104  *
    105  * This product includes cryptographic software written by Eric Young
    106  * (eay (at) cryptsoft.com).  This product includes software written by Tim
    107  * Hudson (tjh (at) cryptsoft.com). */
    108 
    109 #ifndef OPENSSL_HEADER_CRYPTO_INTERNAL_H
    110 #define OPENSSL_HEADER_CRYPTO_INTERNAL_H
    111 
    112 #include <openssl/ex_data.h>
    113 #include <openssl/thread.h>
    114 
    115 #include <string.h>
    116 
    117 #if defined(_MSC_VER)
    118 #if !defined(__cplusplus) || _MSC_VER < 1900
    119 #define alignas(x) __declspec(align(x))
    120 #define alignof __alignof
    121 #endif
    122 #else
    123 #include <stdalign.h>
    124 #endif
    125 
    126 #if !defined(OPENSSL_NO_THREADS) && \
    127     (!defined(OPENSSL_WINDOWS) || defined(__MINGW32__))
    128 #include <pthread.h>
    129 #define OPENSSL_PTHREADS
    130 #endif
    131 
    132 #if !defined(OPENSSL_NO_THREADS) && !defined(OPENSSL_PTHREADS) && \
    133     defined(OPENSSL_WINDOWS)
    134 #define OPENSSL_WINDOWS_THREADS
    135 OPENSSL_MSVC_PRAGMA(warning(push, 3))
    136 #include <windows.h>
    137 OPENSSL_MSVC_PRAGMA(warning(pop))
    138 #endif
    139 
    140 #if defined(__cplusplus)
    141 extern "C" {
    142 #endif
    143 
    144 
    145 #if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) || defined(OPENSSL_ARM) || \
    146     defined(OPENSSL_AARCH64) || defined(OPENSSL_PPC64LE)
    147 /* OPENSSL_cpuid_setup initializes the platform-specific feature cache. */
    148 void OPENSSL_cpuid_setup(void);
    149 #endif
    150 
    151 
    152 #if !defined(_MSC_VER) && defined(OPENSSL_64_BIT)
    153 typedef __int128_t int128_t;
    154 typedef __uint128_t uint128_t;
    155 #endif
    156 
    157 #define OPENSSL_ARRAY_SIZE(array) (sizeof(array) / sizeof((array)[0]))
    158 
    159 /* buffers_alias returns one if |a| and |b| alias and zero otherwise. */
    160 static inline int buffers_alias(const uint8_t *a, size_t a_len,
    161                                 const uint8_t *b, size_t b_len) {
    162   /* Cast |a| and |b| to integers. In C, pointer comparisons between unrelated
    163    * objects are undefined whereas pointer to integer conversions are merely
    164    * implementation-defined. We assume the implementation defined it in a sane
    165    * way. */
    166   uintptr_t a_u = (uintptr_t)a;
    167   uintptr_t b_u = (uintptr_t)b;
    168   return a_u + a_len > b_u && b_u + b_len > a_u;
    169 }
    170 
    171 
    172 /* Constant-time utility functions.
    173  *
    174  * The following methods return a bitmask of all ones (0xff...f) for true and 0
    175  * for false. This is useful for choosing a value based on the result of a
    176  * conditional in constant time. For example,
    177  *
    178  * if (a < b) {
    179  *   c = a;
    180  * } else {
    181  *   c = b;
    182  * }
    183  *
    184  * can be written as
    185  *
    186  * unsigned int lt = constant_time_lt(a, b);
    187  * c = constant_time_select(lt, a, b); */
    188 
    189 /* constant_time_msb returns the given value with the MSB copied to all the
    190  * other bits. */
    191 static inline unsigned int constant_time_msb(unsigned int a) {
    192   return (unsigned int)((int)(a) >> (sizeof(int) * 8 - 1));
    193 }
    194 
    195 /* constant_time_lt returns 0xff..f if a < b and 0 otherwise. */
    196 static inline unsigned int constant_time_lt(unsigned int a, unsigned int b) {
    197   /* Consider the two cases of the problem:
    198    *   msb(a) == msb(b): a < b iff the MSB of a - b is set.
    199    *   msb(a) != msb(b): a < b iff the MSB of b is set.
    200    *
    201    * If msb(a) == msb(b) then the following evaluates as:
    202    *   msb(a^((a^b)|((a-b)^a))) ==
    203    *   msb(a^((a-b) ^ a))       ==   (because msb(a^b) == 0)
    204    *   msb(a^a^(a-b))           ==   (rearranging)
    205    *   msb(a-b)                      (because x. x^x == 0)
    206    *
    207    * Else, if msb(a) != msb(b) then the following evaluates as:
    208    *   msb(a^((a^b)|((a-b)^a))) ==
    209    *   msb(a^( | ((a-b)^a)))   ==   (because msb(a^b) == 1 and 
    210    *                                  represents a value s.t. msb() = 1)
    211    *   msb(a^)                 ==   (because ORing with 1 results in 1)
    212    *   msb(b)
    213    *
    214    *
    215    * Here is an SMT-LIB verification of this formula:
    216    *
    217    * (define-fun lt ((a (_ BitVec 32)) (b (_ BitVec 32))) (_ BitVec 32)
    218    *   (bvxor a (bvor (bvxor a b) (bvxor (bvsub a b) a)))
    219    * )
    220    *
    221    * (declare-fun a () (_ BitVec 32))
    222    * (declare-fun b () (_ BitVec 32))
    223    *
    224    * (assert (not (= (= #x00000001 (bvlshr (lt a b) #x0000001f)) (bvult a b))))
    225    * (check-sat)
    226    * (get-model)
    227    */
    228   return constant_time_msb(a^((a^b)|((a-b)^a)));
    229 }
    230 
    231 /* constant_time_lt_8 acts like |constant_time_lt| but returns an 8-bit mask. */
    232 static inline uint8_t constant_time_lt_8(unsigned int a, unsigned int b) {
    233   return (uint8_t)(constant_time_lt(a, b));
    234 }
    235 
    236 /* constant_time_gt returns 0xff..f if a >= b and 0 otherwise. */
    237 static inline unsigned int constant_time_ge(unsigned int a, unsigned int b) {
    238   return ~constant_time_lt(a, b);
    239 }
    240 
    241 /* constant_time_ge_8 acts like |constant_time_ge| but returns an 8-bit mask. */
    242 static inline uint8_t constant_time_ge_8(unsigned int a, unsigned int b) {
    243   return (uint8_t)(constant_time_ge(a, b));
    244 }
    245 
    246 /* constant_time_is_zero returns 0xff..f if a == 0 and 0 otherwise. */
    247 static inline unsigned int constant_time_is_zero(unsigned int a) {
    248   /* Here is an SMT-LIB verification of this formula:
    249    *
    250    * (define-fun is_zero ((a (_ BitVec 32))) (_ BitVec 32)
    251    *   (bvand (bvnot a) (bvsub a #x00000001))
    252    * )
    253    *
    254    * (declare-fun a () (_ BitVec 32))
    255    *
    256    * (assert (not (= (= #x00000001 (bvlshr (is_zero a) #x0000001f)) (= a #x00000000))))
    257    * (check-sat)
    258    * (get-model)
    259    */
    260   return constant_time_msb(~a & (a - 1));
    261 }
    262 
    263 /* constant_time_is_zero_8 acts like constant_time_is_zero but returns an 8-bit
    264  * mask. */
    265 static inline uint8_t constant_time_is_zero_8(unsigned int a) {
    266   return (uint8_t)(constant_time_is_zero(a));
    267 }
    268 
    269 /* constant_time_eq returns 0xff..f if a == b and 0 otherwise. */
    270 static inline unsigned int constant_time_eq(unsigned int a, unsigned int b) {
    271   return constant_time_is_zero(a ^ b);
    272 }
    273 
    274 /* constant_time_eq_8 acts like |constant_time_eq| but returns an 8-bit mask. */
    275 static inline uint8_t constant_time_eq_8(unsigned int a, unsigned int b) {
    276   return (uint8_t)(constant_time_eq(a, b));
    277 }
    278 
    279 /* constant_time_eq_int acts like |constant_time_eq| but works on int values. */
    280 static inline unsigned int constant_time_eq_int(int a, int b) {
    281   return constant_time_eq((unsigned)(a), (unsigned)(b));
    282 }
    283 
    284 /* constant_time_eq_int_8 acts like |constant_time_eq_int| but returns an 8-bit
    285  * mask. */
    286 static inline uint8_t constant_time_eq_int_8(int a, int b) {
    287   return constant_time_eq_8((unsigned)(a), (unsigned)(b));
    288 }
    289 
    290 /* constant_time_select returns (mask & a) | (~mask & b). When |mask| is all 1s
    291  * or all 0s (as returned by the methods above), the select methods return
    292  * either |a| (if |mask| is nonzero) or |b| (if |mask| is zero). */
    293 static inline unsigned int constant_time_select(unsigned int mask,
    294                                                 unsigned int a, unsigned int b) {
    295   return (mask & a) | (~mask & b);
    296 }
    297 
    298 /* constant_time_select_8 acts like |constant_time_select| but operates on
    299  * 8-bit values. */
    300 static inline uint8_t constant_time_select_8(uint8_t mask, uint8_t a,
    301                                              uint8_t b) {
    302   return (uint8_t)(constant_time_select(mask, a, b));
    303 }
    304 
    305 /* constant_time_select_int acts like |constant_time_select| but operates on
    306  * ints. */
    307 static inline int constant_time_select_int(unsigned int mask, int a, int b) {
    308   return (int)(constant_time_select(mask, (unsigned)(a), (unsigned)(b)));
    309 }
    310 
    311 
    312 /* Thread-safe initialisation. */
    313 
    314 #if defined(OPENSSL_NO_THREADS)
    315 typedef uint32_t CRYPTO_once_t;
    316 #define CRYPTO_ONCE_INIT 0
    317 #elif defined(OPENSSL_WINDOWS_THREADS)
    318 typedef INIT_ONCE CRYPTO_once_t;
    319 #define CRYPTO_ONCE_INIT INIT_ONCE_STATIC_INIT
    320 #elif defined(OPENSSL_PTHREADS)
    321 typedef pthread_once_t CRYPTO_once_t;
    322 #define CRYPTO_ONCE_INIT PTHREAD_ONCE_INIT
    323 #else
    324 #error "Unknown threading library"
    325 #endif
    326 
    327 /* CRYPTO_once calls |init| exactly once per process. This is thread-safe: if
    328  * concurrent threads call |CRYPTO_once| with the same |CRYPTO_once_t| argument
    329  * then they will block until |init| completes, but |init| will have only been
    330  * called once.
    331  *
    332  * The |once| argument must be a |CRYPTO_once_t| that has been initialised with
    333  * the value |CRYPTO_ONCE_INIT|. */
    334 OPENSSL_EXPORT void CRYPTO_once(CRYPTO_once_t *once, void (*init)(void));
    335 
    336 
    337 /* Reference counting. */
    338 
    339 /* CRYPTO_REFCOUNT_MAX is the value at which the reference count saturates. */
    340 #define CRYPTO_REFCOUNT_MAX 0xffffffff
    341 
    342 /* CRYPTO_refcount_inc atomically increments the value at |*count| unless the
    343  * value would overflow. It's safe for multiple threads to concurrently call
    344  * this or |CRYPTO_refcount_dec_and_test_zero| on the same
    345  * |CRYPTO_refcount_t|. */
    346 OPENSSL_EXPORT void CRYPTO_refcount_inc(CRYPTO_refcount_t *count);
    347 
    348 /* CRYPTO_refcount_dec_and_test_zero tests the value at |*count|:
    349  *   if it's zero, it crashes the address space.
    350  *   if it's the maximum value, it returns zero.
    351  *   otherwise, it atomically decrements it and returns one iff the resulting
    352  *       value is zero.
    353  *
    354  * It's safe for multiple threads to concurrently call this or
    355  * |CRYPTO_refcount_inc| on the same |CRYPTO_refcount_t|. */
    356 OPENSSL_EXPORT int CRYPTO_refcount_dec_and_test_zero(CRYPTO_refcount_t *count);
    357 
    358 
    359 /* Locks.
    360  *
    361  * Two types of locks are defined: |CRYPTO_MUTEX|, which can be used in
    362  * structures as normal, and |struct CRYPTO_STATIC_MUTEX|, which can be used as
    363  * a global lock. A global lock must be initialised to the value
    364  * |CRYPTO_STATIC_MUTEX_INIT|.
    365  *
    366  * |CRYPTO_MUTEX| can appear in public structures and so is defined in
    367  * thread.h as a structure large enough to fit the real type. The global lock is
    368  * a different type so it may be initialized with platform initializer macros.*/
    369 
    370 #if defined(OPENSSL_NO_THREADS)
    371 struct CRYPTO_STATIC_MUTEX {
    372   char padding;  /* Empty structs have different sizes in C and C++. */
    373 };
    374 #define CRYPTO_STATIC_MUTEX_INIT { 0 }
    375 #elif defined(OPENSSL_WINDOWS_THREADS)
    376 struct CRYPTO_STATIC_MUTEX {
    377   SRWLOCK lock;
    378 };
    379 #define CRYPTO_STATIC_MUTEX_INIT { SRWLOCK_INIT }
    380 #elif defined(OPENSSL_PTHREADS)
    381 struct CRYPTO_STATIC_MUTEX {
    382   pthread_rwlock_t lock;
    383 };
    384 #define CRYPTO_STATIC_MUTEX_INIT { PTHREAD_RWLOCK_INITIALIZER }
    385 #else
    386 #error "Unknown threading library"
    387 #endif
    388 
    389 /* CRYPTO_MUTEX_init initialises |lock|. If |lock| is a static variable, use a
    390  * |CRYPTO_STATIC_MUTEX|. */
    391 OPENSSL_EXPORT void CRYPTO_MUTEX_init(CRYPTO_MUTEX *lock);
    392 
    393 /* CRYPTO_MUTEX_lock_read locks |lock| such that other threads may also have a
    394  * read lock, but none may have a write lock. */
    395 OPENSSL_EXPORT void CRYPTO_MUTEX_lock_read(CRYPTO_MUTEX *lock);
    396 
    397 /* CRYPTO_MUTEX_lock_write locks |lock| such that no other thread has any type
    398  * of lock on it. */
    399 OPENSSL_EXPORT void CRYPTO_MUTEX_lock_write(CRYPTO_MUTEX *lock);
    400 
    401 /* CRYPTO_MUTEX_unlock_read unlocks |lock| for reading. */
    402 OPENSSL_EXPORT void CRYPTO_MUTEX_unlock_read(CRYPTO_MUTEX *lock);
    403 
    404 /* CRYPTO_MUTEX_unlock_write unlocks |lock| for writing. */
    405 OPENSSL_EXPORT void CRYPTO_MUTEX_unlock_write(CRYPTO_MUTEX *lock);
    406 
    407 /* CRYPTO_MUTEX_cleanup releases all resources held by |lock|. */
    408 OPENSSL_EXPORT void CRYPTO_MUTEX_cleanup(CRYPTO_MUTEX *lock);
    409 
    410 /* CRYPTO_STATIC_MUTEX_lock_read locks |lock| such that other threads may also
    411  * have a read lock, but none may have a write lock. The |lock| variable does
    412  * not need to be initialised by any function, but must have been statically
    413  * initialised with |CRYPTO_STATIC_MUTEX_INIT|. */
    414 OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_lock_read(
    415     struct CRYPTO_STATIC_MUTEX *lock);
    416 
    417 /* CRYPTO_STATIC_MUTEX_lock_write locks |lock| such that no other thread has
    418  * any type of lock on it.  The |lock| variable does not need to be initialised
    419  * by any function, but must have been statically initialised with
    420  * |CRYPTO_STATIC_MUTEX_INIT|. */
    421 OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_lock_write(
    422     struct CRYPTO_STATIC_MUTEX *lock);
    423 
    424 /* CRYPTO_STATIC_MUTEX_unlock_read unlocks |lock| for reading. */
    425 OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_unlock_read(
    426     struct CRYPTO_STATIC_MUTEX *lock);
    427 
    428 /* CRYPTO_STATIC_MUTEX_unlock_write unlocks |lock| for writing. */
    429 OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_unlock_write(
    430     struct CRYPTO_STATIC_MUTEX *lock);
    431 
    432 
    433 /* Thread local storage. */
    434 
    435 /* thread_local_data_t enumerates the types of thread-local data that can be
    436  * stored. */
    437 typedef enum {
    438   OPENSSL_THREAD_LOCAL_ERR = 0,
    439   OPENSSL_THREAD_LOCAL_RAND,
    440   OPENSSL_THREAD_LOCAL_URANDOM_BUF,
    441   OPENSSL_THREAD_LOCAL_TEST,
    442   NUM_OPENSSL_THREAD_LOCALS,
    443 } thread_local_data_t;
    444 
    445 /* thread_local_destructor_t is the type of a destructor function that will be
    446  * called when a thread exits and its thread-local storage needs to be freed. */
    447 typedef void (*thread_local_destructor_t)(void *);
    448 
    449 /* CRYPTO_get_thread_local gets the pointer value that is stored for the
    450  * current thread for the given index, or NULL if none has been set. */
    451 OPENSSL_EXPORT void *CRYPTO_get_thread_local(thread_local_data_t value);
    452 
    453 /* CRYPTO_set_thread_local sets a pointer value for the current thread at the
    454  * given index. This function should only be called once per thread for a given
    455  * |index|: rather than update the pointer value itself, update the data that
    456  * is pointed to.
    457  *
    458  * The destructor function will be called when a thread exits to free this
    459  * thread-local data. All calls to |CRYPTO_set_thread_local| with the same
    460  * |index| should have the same |destructor| argument. The destructor may be
    461  * called with a NULL argument if a thread that never set a thread-local
    462  * pointer for |index|, exits. The destructor may be called concurrently with
    463  * different arguments.
    464  *
    465  * This function returns one on success or zero on error. If it returns zero
    466  * then |destructor| has been called with |value| already. */
    467 OPENSSL_EXPORT int CRYPTO_set_thread_local(
    468     thread_local_data_t index, void *value,
    469     thread_local_destructor_t destructor);
    470 
    471 
    472 /* ex_data */
    473 
    474 typedef struct crypto_ex_data_func_st CRYPTO_EX_DATA_FUNCS;
    475 
    476 /* CRYPTO_EX_DATA_CLASS tracks the ex_indices registered for a type which
    477  * supports ex_data. It should defined as a static global within the module
    478  * which defines that type. */
    479 typedef struct {
    480   struct CRYPTO_STATIC_MUTEX lock;
    481   STACK_OF(CRYPTO_EX_DATA_FUNCS) *meth;
    482   /* num_reserved is one if the ex_data index zero is reserved for legacy
    483    * |TYPE_get_app_data| functions. */
    484   uint8_t num_reserved;
    485 } CRYPTO_EX_DATA_CLASS;
    486 
    487 #define CRYPTO_EX_DATA_CLASS_INIT {CRYPTO_STATIC_MUTEX_INIT, NULL, 0}
    488 #define CRYPTO_EX_DATA_CLASS_INIT_WITH_APP_DATA \
    489     {CRYPTO_STATIC_MUTEX_INIT, NULL, 1}
    490 
    491 /* CRYPTO_get_ex_new_index allocates a new index for |ex_data_class| and writes
    492  * it to |*out_index|. Each class of object should provide a wrapper function
    493  * that uses the correct |CRYPTO_EX_DATA_CLASS|. It returns one on success and
    494  * zero otherwise. */
    495 OPENSSL_EXPORT int CRYPTO_get_ex_new_index(CRYPTO_EX_DATA_CLASS *ex_data_class,
    496                                            int *out_index, long argl,
    497                                            void *argp, CRYPTO_EX_dup *dup_func,
    498                                            CRYPTO_EX_free *free_func);
    499 
    500 /* CRYPTO_set_ex_data sets an extra data pointer on a given object. Each class
    501  * of object should provide a wrapper function. */
    502 OPENSSL_EXPORT int CRYPTO_set_ex_data(CRYPTO_EX_DATA *ad, int index, void *val);
    503 
    504 /* CRYPTO_get_ex_data returns an extra data pointer for a given object, or NULL
    505  * if no such index exists. Each class of object should provide a wrapper
    506  * function. */
    507 OPENSSL_EXPORT void *CRYPTO_get_ex_data(const CRYPTO_EX_DATA *ad, int index);
    508 
    509 /* CRYPTO_new_ex_data initialises a newly allocated |CRYPTO_EX_DATA|. */
    510 OPENSSL_EXPORT void CRYPTO_new_ex_data(CRYPTO_EX_DATA *ad);
    511 
    512 /* CRYPTO_dup_ex_data duplicates |from| into a freshly allocated
    513  * |CRYPTO_EX_DATA|, |to|. Both of which are inside objects of the given
    514  * class. It returns one on success and zero otherwise. */
    515 OPENSSL_EXPORT int CRYPTO_dup_ex_data(CRYPTO_EX_DATA_CLASS *ex_data_class,
    516                                       CRYPTO_EX_DATA *to,
    517                                       const CRYPTO_EX_DATA *from);
    518 
    519 /* CRYPTO_free_ex_data frees |ad|, which is embedded inside |obj|, which is an
    520  * object of the given class. */
    521 OPENSSL_EXPORT void CRYPTO_free_ex_data(CRYPTO_EX_DATA_CLASS *ex_data_class,
    522                                         void *obj, CRYPTO_EX_DATA *ad);
    523 
    524 
    525 /* Language bug workarounds.
    526  *
    527  * Most C standard library functions are undefined if passed NULL, even when the
    528  * corresponding length is zero. This gives them (and, in turn, all functions
    529  * which call them) surprising behavior on empty arrays. Some compilers will
    530  * miscompile code due to this rule. See also
    531  * https://www.imperialviolet.org/2016/06/26/nonnull.html
    532  *
    533  * These wrapper functions behave the same as the corresponding C standard
    534  * functions, but behave as expected when passed NULL if the length is zero.
    535  *
    536  * Note |OPENSSL_memcmp| is a different function from |CRYPTO_memcmp|. */
    537 
    538 /* C++ defines |memchr| as a const-correct overload. */
    539 #if defined(__cplusplus)
    540 extern "C++" {
    541 
    542 static inline const void *OPENSSL_memchr(const void *s, int c, size_t n) {
    543   if (n == 0) {
    544     return NULL;
    545   }
    546 
    547   return memchr(s, c, n);
    548 }
    549 
    550 static inline void *OPENSSL_memchr(void *s, int c, size_t n) {
    551   if (n == 0) {
    552     return NULL;
    553   }
    554 
    555   return memchr(s, c, n);
    556 }
    557 
    558 }  /* extern "C++" */
    559 #else  /* __cplusplus */
    560 
    561 static inline void *OPENSSL_memchr(const void *s, int c, size_t n) {
    562   if (n == 0) {
    563     return NULL;
    564   }
    565 
    566   return memchr(s, c, n);
    567 }
    568 
    569 #endif  /* __cplusplus */
    570 
    571 static inline int OPENSSL_memcmp(const void *s1, const void *s2, size_t n) {
    572   if (n == 0) {
    573     return 0;
    574   }
    575 
    576   return memcmp(s1, s2, n);
    577 }
    578 
    579 static inline void *OPENSSL_memcpy(void *dst, const void *src, size_t n) {
    580   if (n == 0) {
    581     return dst;
    582   }
    583 
    584   return memcpy(dst, src, n);
    585 }
    586 
    587 static inline void *OPENSSL_memmove(void *dst, const void *src, size_t n) {
    588   if (n == 0) {
    589     return dst;
    590   }
    591 
    592   return memmove(dst, src, n);
    593 }
    594 
    595 static inline void *OPENSSL_memset(void *dst, int c, size_t n) {
    596   if (n == 0) {
    597     return dst;
    598   }
    599 
    600   return memset(dst, c, n);
    601 }
    602 
    603 
    604 #if defined(__cplusplus)
    605 }  /* extern C */
    606 #endif
    607 
    608 #endif  /* OPENSSL_HEADER_CRYPTO_INTERNAL_H */
    609