Home | History | Annotate | Download | only in Utils
      1 //===-- Local.h - Functions to perform local transformations ----*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This family of functions perform various local transformations to the
     11 // program.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_TRANSFORMS_UTILS_LOCAL_H
     16 #define LLVM_TRANSFORMS_UTILS_LOCAL_H
     17 
     18 #include "llvm/Analysis/AliasAnalysis.h"
     19 #include "llvm/IR/DataLayout.h"
     20 #include "llvm/IR/Dominators.h"
     21 #include "llvm/IR/GetElementPtrTypeIterator.h"
     22 #include "llvm/IR/IRBuilder.h"
     23 #include "llvm/IR/Operator.h"
     24 #include "llvm/ADT/SmallPtrSet.h"
     25 
     26 namespace llvm {
     27 
     28 class User;
     29 class BasicBlock;
     30 class Function;
     31 class BranchInst;
     32 class Instruction;
     33 class CallInst;
     34 class DbgDeclareInst;
     35 class StoreInst;
     36 class LoadInst;
     37 class Value;
     38 class PHINode;
     39 class AllocaInst;
     40 class AssumptionCache;
     41 class ConstantExpr;
     42 class DataLayout;
     43 class TargetLibraryInfo;
     44 class TargetTransformInfo;
     45 class DIBuilder;
     46 class DominatorTree;
     47 class LazyValueInfo;
     48 
     49 template<typename T> class SmallVectorImpl;
     50 
     51 //===----------------------------------------------------------------------===//
     52 //  Local constant propagation.
     53 //
     54 
     55 /// If a terminator instruction is predicated on a constant value, convert it
     56 /// into an unconditional branch to the constant destination.
     57 /// This is a nontrivial operation because the successors of this basic block
     58 /// must have their PHI nodes updated.
     59 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
     60 /// conditions and indirectbr addresses this might make dead if
     61 /// DeleteDeadConditions is true.
     62 bool ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions = false,
     63                             const TargetLibraryInfo *TLI = nullptr);
     64 
     65 //===----------------------------------------------------------------------===//
     66 //  Local dead code elimination.
     67 //
     68 
     69 /// Return true if the result produced by the instruction is not used, and the
     70 /// instruction has no side effects.
     71 bool isInstructionTriviallyDead(Instruction *I,
     72                                 const TargetLibraryInfo *TLI = nullptr);
     73 
     74 /// If the specified value is a trivially dead instruction, delete it.
     75 /// If that makes any of its operands trivially dead, delete them too,
     76 /// recursively. Return true if any instructions were deleted.
     77 bool RecursivelyDeleteTriviallyDeadInstructions(Value *V,
     78                                         const TargetLibraryInfo *TLI = nullptr);
     79 
     80 /// If the specified value is an effectively dead PHI node, due to being a
     81 /// def-use chain of single-use nodes that either forms a cycle or is terminated
     82 /// by a trivially dead instruction, delete it. If that makes any of its
     83 /// operands trivially dead, delete them too, recursively. Return true if a
     84 /// change was made.
     85 bool RecursivelyDeleteDeadPHINode(PHINode *PN,
     86                                   const TargetLibraryInfo *TLI = nullptr);
     87 
     88 /// Scan the specified basic block and try to simplify any instructions in it
     89 /// and recursively delete dead instructions.
     90 ///
     91 /// This returns true if it changed the code, note that it can delete
     92 /// instructions in other blocks as well in this block.
     93 bool SimplifyInstructionsInBlock(BasicBlock *BB,
     94                                  const TargetLibraryInfo *TLI = nullptr);
     95 
     96 //===----------------------------------------------------------------------===//
     97 //  Control Flow Graph Restructuring.
     98 //
     99 
    100 /// Like BasicBlock::removePredecessor, this method is called when we're about
    101 /// to delete Pred as a predecessor of BB. If BB contains any PHI nodes, this
    102 /// drops the entries in the PHI nodes for Pred.
    103 ///
    104 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI
    105 /// nodes that collapse into identity values.  For example, if we have:
    106 ///   x = phi(1, 0, 0, 0)
    107 ///   y = and x, z
    108 ///
    109 /// .. and delete the predecessor corresponding to the '1', this will attempt to
    110 /// recursively fold the 'and' to 0.
    111 void RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred);
    112 
    113 /// BB is a block with one predecessor and its predecessor is known to have one
    114 /// successor (BB!). Eliminate the edge between them, moving the instructions in
    115 /// the predecessor into BB. This deletes the predecessor block.
    116 void MergeBasicBlockIntoOnlyPred(BasicBlock *BB, DominatorTree *DT = nullptr);
    117 
    118 /// BB is known to contain an unconditional branch, and contains no instructions
    119 /// other than PHI nodes, potential debug intrinsics and the branch. If
    120 /// possible, eliminate BB by rewriting all the predecessors to branch to the
    121 /// successor block and return true. If we can't transform, return false.
    122 bool TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB);
    123 
    124 /// Check for and eliminate duplicate PHI nodes in this block. This doesn't try
    125 /// to be clever about PHI nodes which differ only in the order of the incoming
    126 /// values, but instcombine orders them so it usually won't matter.
    127 bool EliminateDuplicatePHINodes(BasicBlock *BB);
    128 
    129 /// This function is used to do simplification of a CFG.  For
    130 /// example, it adjusts branches to branches to eliminate the extra hop, it
    131 /// eliminates unreachable basic blocks, and does other "peephole" optimization
    132 /// of the CFG.  It returns true if a modification was made, possibly deleting
    133 /// the basic block that was pointed to. LoopHeaders is an optional input
    134 /// parameter, providing the set of loop header that SimplifyCFG should not
    135 /// eliminate.
    136 bool SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
    137                  unsigned BonusInstThreshold, AssumptionCache *AC = nullptr,
    138                  SmallPtrSetImpl<BasicBlock *> *LoopHeaders = nullptr);
    139 
    140 /// This function is used to flatten a CFG. For example, it uses parallel-and
    141 /// and parallel-or mode to collapse if-conditions and merge if-regions with
    142 /// identical statements.
    143 bool FlattenCFG(BasicBlock *BB, AliasAnalysis *AA = nullptr);
    144 
    145 /// If this basic block is ONLY a setcc and a branch, and if a predecessor
    146 /// branches to us and one of our successors, fold the setcc into the
    147 /// predecessor and use logical operations to pick the right destination.
    148 bool FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold = 1);
    149 
    150 /// This function takes a virtual register computed by an Instruction and
    151 /// replaces it with a slot in the stack frame, allocated via alloca.
    152 /// This allows the CFG to be changed around without fear of invalidating the
    153 /// SSA information for the value. It returns the pointer to the alloca inserted
    154 /// to create a stack slot for X.
    155 AllocaInst *DemoteRegToStack(Instruction &X,
    156                              bool VolatileLoads = false,
    157                              Instruction *AllocaPoint = nullptr);
    158 
    159 /// This function takes a virtual register computed by a phi node and replaces
    160 /// it with a slot in the stack frame, allocated via alloca. The phi node is
    161 /// deleted and it returns the pointer to the alloca inserted.
    162 AllocaInst *DemotePHIToStack(PHINode *P, Instruction *AllocaPoint = nullptr);
    163 
    164 /// If the specified pointer has an alignment that we can determine, return it,
    165 /// otherwise return 0. If PrefAlign is specified, and it is more than the
    166 /// alignment of the ultimate object, see if we can increase the alignment of
    167 /// the ultimate object, making this check succeed.
    168 unsigned getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
    169                                     const DataLayout &DL,
    170                                     const Instruction *CxtI = nullptr,
    171                                     AssumptionCache *AC = nullptr,
    172                                     const DominatorTree *DT = nullptr);
    173 
    174 /// Try to infer an alignment for the specified pointer.
    175 static inline unsigned getKnownAlignment(Value *V, const DataLayout &DL,
    176                                          const Instruction *CxtI = nullptr,
    177                                          AssumptionCache *AC = nullptr,
    178                                          const DominatorTree *DT = nullptr) {
    179   return getOrEnforceKnownAlignment(V, 0, DL, CxtI, AC, DT);
    180 }
    181 
    182 /// Given a getelementptr instruction/constantexpr, emit the code necessary to
    183 /// compute the offset from the base pointer (without adding in the base
    184 /// pointer). Return the result as a signed integer of intptr size.
    185 /// When NoAssumptions is true, no assumptions about index computation not
    186 /// overflowing is made.
    187 template <typename IRBuilderTy>
    188 Value *EmitGEPOffset(IRBuilderTy *Builder, const DataLayout &DL, User *GEP,
    189                      bool NoAssumptions = false) {
    190   GEPOperator *GEPOp = cast<GEPOperator>(GEP);
    191   Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
    192   Value *Result = Constant::getNullValue(IntPtrTy);
    193 
    194   // If the GEP is inbounds, we know that none of the addressing operations will
    195   // overflow in an unsigned sense.
    196   bool isInBounds = GEPOp->isInBounds() && !NoAssumptions;
    197 
    198   // Build a mask for high order bits.
    199   unsigned IntPtrWidth = IntPtrTy->getScalarType()->getIntegerBitWidth();
    200   uint64_t PtrSizeMask = ~0ULL >> (64 - IntPtrWidth);
    201 
    202   gep_type_iterator GTI = gep_type_begin(GEP);
    203   for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end(); i != e;
    204        ++i, ++GTI) {
    205     Value *Op = *i;
    206     uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()) & PtrSizeMask;
    207     if (Constant *OpC = dyn_cast<Constant>(Op)) {
    208       if (OpC->isZeroValue())
    209         continue;
    210 
    211       // Handle a struct index, which adds its field offset to the pointer.
    212       if (StructType *STy = dyn_cast<StructType>(*GTI)) {
    213         if (OpC->getType()->isVectorTy())
    214           OpC = OpC->getSplatValue();
    215 
    216         uint64_t OpValue = cast<ConstantInt>(OpC)->getZExtValue();
    217         Size = DL.getStructLayout(STy)->getElementOffset(OpValue);
    218 
    219         if (Size)
    220           Result = Builder->CreateAdd(Result, ConstantInt::get(IntPtrTy, Size),
    221                                       GEP->getName()+".offs");
    222         continue;
    223       }
    224 
    225       Constant *Scale = ConstantInt::get(IntPtrTy, Size);
    226       Constant *OC = ConstantExpr::getIntegerCast(OpC, IntPtrTy, true /*SExt*/);
    227       Scale = ConstantExpr::getMul(OC, Scale, isInBounds/*NUW*/);
    228       // Emit an add instruction.
    229       Result = Builder->CreateAdd(Result, Scale, GEP->getName()+".offs");
    230       continue;
    231     }
    232     // Convert to correct type.
    233     if (Op->getType() != IntPtrTy)
    234       Op = Builder->CreateIntCast(Op, IntPtrTy, true, Op->getName()+".c");
    235     if (Size != 1) {
    236       // We'll let instcombine(mul) convert this to a shl if possible.
    237       Op = Builder->CreateMul(Op, ConstantInt::get(IntPtrTy, Size),
    238                               GEP->getName()+".idx", isInBounds /*NUW*/);
    239     }
    240 
    241     // Emit an add instruction.
    242     Result = Builder->CreateAdd(Op, Result, GEP->getName()+".offs");
    243   }
    244   return Result;
    245 }
    246 
    247 ///===---------------------------------------------------------------------===//
    248 ///  Dbg Intrinsic utilities
    249 ///
    250 
    251 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
    252 /// that has an associated llvm.dbg.decl intrinsic.
    253 bool ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
    254                                      StoreInst *SI, DIBuilder &Builder);
    255 
    256 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
    257 /// that has an associated llvm.dbg.decl intrinsic.
    258 bool ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
    259                                      LoadInst *LI, DIBuilder &Builder);
    260 
    261 /// Lowers llvm.dbg.declare intrinsics into appropriate set of
    262 /// llvm.dbg.value intrinsics.
    263 bool LowerDbgDeclare(Function &F);
    264 
    265 /// Finds the llvm.dbg.declare intrinsic corresponding to an alloca, if any.
    266 DbgDeclareInst *FindAllocaDbgDeclare(Value *V);
    267 
    268 /// Replaces llvm.dbg.declare instruction when the address it describes
    269 /// is replaced with a new value. If Deref is true, an additional DW_OP_deref is
    270 /// prepended to the expression. If Offset is non-zero, a constant displacement
    271 /// is added to the expression (after the optional Deref). Offset can be
    272 /// negative.
    273 bool replaceDbgDeclare(Value *Address, Value *NewAddress,
    274                        Instruction *InsertBefore, DIBuilder &Builder,
    275                        bool Deref, int Offset);
    276 
    277 /// Replaces llvm.dbg.declare instruction when the alloca it describes
    278 /// is replaced with a new value. If Deref is true, an additional DW_OP_deref is
    279 /// prepended to the expression. If Offset is non-zero, a constant displacement
    280 /// is added to the expression (after the optional Deref). Offset can be
    281 /// negative. New llvm.dbg.declare is inserted immediately before AI.
    282 bool replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
    283                                 DIBuilder &Builder, bool Deref, int Offset = 0);
    284 
    285 /// Replaces multiple llvm.dbg.value instructions when the alloca it describes
    286 /// is replaced with a new value. If Offset is non-zero, a constant displacement
    287 /// is added to the expression (after the mandatory Deref). Offset can be
    288 /// negative. New llvm.dbg.value instructions are inserted at the locations of
    289 /// the instructions they replace.
    290 void replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
    291                               DIBuilder &Builder, int Offset = 0);
    292 
    293 /// Remove all instructions from a basic block other than it's terminator
    294 /// and any present EH pad instructions.
    295 unsigned removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB);
    296 
    297 /// Insert an unreachable instruction before the specified
    298 /// instruction, making it and the rest of the code in the block dead.
    299 unsigned changeToUnreachable(Instruction *I, bool UseLLVMTrap);
    300 
    301 /// Replace 'BB's terminator with one that does not have an unwind successor
    302 /// block. Rewrites `invoke` to `call`, etc. Updates any PHIs in unwind
    303 /// successor.
    304 ///
    305 /// \param BB  Block whose terminator will be replaced.  Its terminator must
    306 ///            have an unwind successor.
    307 void removeUnwindEdge(BasicBlock *BB);
    308 
    309 /// Remove all blocks that can not be reached from the function's entry.
    310 ///
    311 /// Returns true if any basic block was removed.
    312 bool removeUnreachableBlocks(Function &F, LazyValueInfo *LVI = nullptr);
    313 
    314 /// Combine the metadata of two instructions so that K can replace J
    315 ///
    316 /// Metadata not listed as known via KnownIDs is removed
    317 void combineMetadata(Instruction *K, const Instruction *J, ArrayRef<unsigned> KnownIDs);
    318 
    319 /// Replace each use of 'From' with 'To' if that use is dominated by
    320 /// the given edge.  Returns the number of replacements made.
    321 unsigned replaceDominatedUsesWith(Value *From, Value *To, DominatorTree &DT,
    322                                   const BasicBlockEdge &Edge);
    323 /// Replace each use of 'From' with 'To' if that use is dominated by
    324 /// the end of the given BasicBlock. Returns the number of replacements made.
    325 unsigned replaceDominatedUsesWith(Value *From, Value *To, DominatorTree &DT,
    326                                   const BasicBlock *BB);
    327 
    328 
    329 /// Return true if the CallSite CS calls a gc leaf function.
    330 ///
    331 /// A leaf function is a function that does not safepoint the thread during its
    332 /// execution.  During a call or invoke to such a function, the callers stack
    333 /// does not have to be made parseable.
    334 ///
    335 /// Most passes can and should ignore this information, and it is only used
    336 /// during lowering by the GC infrastructure.
    337 bool callsGCLeafFunction(ImmutableCallSite CS);
    338 
    339 //===----------------------------------------------------------------------===//
    340 //  Intrinsic pattern matching
    341 //
    342 
    343 /// Try and match a bswap or bitreverse idiom.
    344 ///
    345 /// If an idiom is matched, an intrinsic call is inserted before \c I. Any added
    346 /// instructions are returned in \c InsertedInsts. They will all have been added
    347 /// to a basic block.
    348 ///
    349 /// A bitreverse idiom normally requires around 2*BW nodes to be searched (where
    350 /// BW is the bitwidth of the integer type). A bswap idiom requires anywhere up
    351 /// to BW / 4 nodes to be searched, so is significantly faster.
    352 ///
    353 /// This function returns true on a successful match or false otherwise.
    354 bool recognizeBSwapOrBitReverseIdiom(
    355     Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
    356     SmallVectorImpl<Instruction *> &InsertedInsts);
    357 
    358 //===----------------------------------------------------------------------===//
    359 //  Sanitizer utilities
    360 //
    361 
    362 /// Given a CallInst, check if it calls a string function known to CodeGen,
    363 /// and mark it with NoBuiltin if so.  To be used by sanitizers that intend
    364 /// to intercept string functions and want to avoid converting them to target
    365 /// specific instructions.
    366 void maybeMarkSanitizerLibraryCallNoBuiltin(CallInst *CI,
    367                                             const TargetLibraryInfo *TLI);
    368 
    369 } // End llvm namespace
    370 
    371 #endif
    372