Home | History | Annotate | Download | only in geometry
      1 /*
      2  * Licensed to the Apache Software Foundation (ASF) under one or more
      3  * contributor license agreements.  See the NOTICE file distributed with
      4  * this work for additional information regarding copyright ownership.
      5  * The ASF licenses this file to You under the Apache License, Version 2.0
      6  * (the "License"); you may not use this file except in compliance with
      7  * the License.  You may obtain a copy of the License at
      8  *
      9  *      http://www.apache.org/licenses/LICENSE-2.0
     10  *
     11  * Unless required by applicable law or agreed to in writing, software
     12  * distributed under the License is distributed on an "AS IS" BASIS,
     13  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     14  * See the License for the specific language governing permissions and
     15  * limitations under the License.
     16  */
     17 
     18 package org.apache.commons.math.geometry;
     19 
     20 import java.io.Serializable;
     21 
     22 import org.apache.commons.math.MathRuntimeException;
     23 import org.apache.commons.math.exception.util.LocalizedFormats;
     24 import org.apache.commons.math.util.MathUtils;
     25 import org.apache.commons.math.util.FastMath;
     26 
     27 /**
     28  * This class implements vectors in a three-dimensional space.
     29  * <p>Instance of this class are guaranteed to be immutable.</p>
     30  * @version $Revision: 990655 $ $Date: 2010-08-29 23:49:40 +0200 (dim. 29 aot 2010) $
     31  * @since 1.2
     32  */
     33 
     34 public class Vector3D
     35   implements Serializable {
     36 
     37   /** Null vector (coordinates: 0, 0, 0). */
     38   public static final Vector3D ZERO   = new Vector3D(0, 0, 0);
     39 
     40   /** First canonical vector (coordinates: 1, 0, 0). */
     41   public static final Vector3D PLUS_I = new Vector3D(1, 0, 0);
     42 
     43   /** Opposite of the first canonical vector (coordinates: -1, 0, 0). */
     44   public static final Vector3D MINUS_I = new Vector3D(-1, 0, 0);
     45 
     46   /** Second canonical vector (coordinates: 0, 1, 0). */
     47   public static final Vector3D PLUS_J = new Vector3D(0, 1, 0);
     48 
     49   /** Opposite of the second canonical vector (coordinates: 0, -1, 0). */
     50   public static final Vector3D MINUS_J = new Vector3D(0, -1, 0);
     51 
     52   /** Third canonical vector (coordinates: 0, 0, 1). */
     53   public static final Vector3D PLUS_K = new Vector3D(0, 0, 1);
     54 
     55   /** Opposite of the third canonical vector (coordinates: 0, 0, -1).  */
     56   public static final Vector3D MINUS_K = new Vector3D(0, 0, -1);
     57 
     58   // CHECKSTYLE: stop ConstantName
     59   /** A vector with all coordinates set to NaN. */
     60   public static final Vector3D NaN = new Vector3D(Double.NaN, Double.NaN, Double.NaN);
     61   // CHECKSTYLE: resume ConstantName
     62 
     63   /** A vector with all coordinates set to positive infinity. */
     64   public static final Vector3D POSITIVE_INFINITY =
     65       new Vector3D(Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY);
     66 
     67   /** A vector with all coordinates set to negative infinity. */
     68   public static final Vector3D NEGATIVE_INFINITY =
     69       new Vector3D(Double.NEGATIVE_INFINITY, Double.NEGATIVE_INFINITY, Double.NEGATIVE_INFINITY);
     70 
     71   /** Default format. */
     72   private static final Vector3DFormat DEFAULT_FORMAT =
     73       Vector3DFormat.getInstance();
     74 
     75   /** Serializable version identifier. */
     76   private static final long serialVersionUID = 5133268763396045979L;
     77 
     78   /** Abscissa. */
     79   private final double x;
     80 
     81   /** Ordinate. */
     82   private final double y;
     83 
     84   /** Height. */
     85   private final double z;
     86 
     87   /** Simple constructor.
     88    * Build a vector from its coordinates
     89    * @param x abscissa
     90    * @param y ordinate
     91    * @param z height
     92    * @see #getX()
     93    * @see #getY()
     94    * @see #getZ()
     95    */
     96   public Vector3D(double x, double y, double z) {
     97     this.x = x;
     98     this.y = y;
     99     this.z = z;
    100   }
    101 
    102   /** Simple constructor.
    103    * Build a vector from its azimuthal coordinates
    104    * @param alpha azimuth (&alpha;) around Z
    105    *              (0 is +X, &pi;/2 is +Y, &pi; is -X and 3&pi;/2 is -Y)
    106    * @param delta elevation (&delta;) above (XY) plane, from -&pi;/2 to +&pi;/2
    107    * @see #getAlpha()
    108    * @see #getDelta()
    109    */
    110   public Vector3D(double alpha, double delta) {
    111     double cosDelta = FastMath.cos(delta);
    112     this.x = FastMath.cos(alpha) * cosDelta;
    113     this.y = FastMath.sin(alpha) * cosDelta;
    114     this.z = FastMath.sin(delta);
    115   }
    116 
    117   /** Multiplicative constructor
    118    * Build a vector from another one and a scale factor.
    119    * The vector built will be a * u
    120    * @param a scale factor
    121    * @param u base (unscaled) vector
    122    */
    123   public Vector3D(double a, Vector3D u) {
    124     this.x = a * u.x;
    125     this.y = a * u.y;
    126     this.z = a * u.z;
    127   }
    128 
    129   /** Linear constructor
    130    * Build a vector from two other ones and corresponding scale factors.
    131    * The vector built will be a1 * u1 + a2 * u2
    132    * @param a1 first scale factor
    133    * @param u1 first base (unscaled) vector
    134    * @param a2 second scale factor
    135    * @param u2 second base (unscaled) vector
    136    */
    137   public Vector3D(double a1, Vector3D u1, double a2, Vector3D u2) {
    138     this.x = a1 * u1.x + a2 * u2.x;
    139     this.y = a1 * u1.y + a2 * u2.y;
    140     this.z = a1 * u1.z + a2 * u2.z;
    141   }
    142 
    143   /** Linear constructor
    144    * Build a vector from three other ones and corresponding scale factors.
    145    * The vector built will be a1 * u1 + a2 * u2 + a3 * u3
    146    * @param a1 first scale factor
    147    * @param u1 first base (unscaled) vector
    148    * @param a2 second scale factor
    149    * @param u2 second base (unscaled) vector
    150    * @param a3 third scale factor
    151    * @param u3 third base (unscaled) vector
    152    */
    153   public Vector3D(double a1, Vector3D u1, double a2, Vector3D u2,
    154                   double a3, Vector3D u3) {
    155     this.x = a1 * u1.x + a2 * u2.x + a3 * u3.x;
    156     this.y = a1 * u1.y + a2 * u2.y + a3 * u3.y;
    157     this.z = a1 * u1.z + a2 * u2.z + a3 * u3.z;
    158   }
    159 
    160   /** Linear constructor
    161    * Build a vector from four other ones and corresponding scale factors.
    162    * The vector built will be a1 * u1 + a2 * u2 + a3 * u3 + a4 * u4
    163    * @param a1 first scale factor
    164    * @param u1 first base (unscaled) vector
    165    * @param a2 second scale factor
    166    * @param u2 second base (unscaled) vector
    167    * @param a3 third scale factor
    168    * @param u3 third base (unscaled) vector
    169    * @param a4 fourth scale factor
    170    * @param u4 fourth base (unscaled) vector
    171    */
    172   public Vector3D(double a1, Vector3D u1, double a2, Vector3D u2,
    173                   double a3, Vector3D u3, double a4, Vector3D u4) {
    174     this.x = a1 * u1.x + a2 * u2.x + a3 * u3.x + a4 * u4.x;
    175     this.y = a1 * u1.y + a2 * u2.y + a3 * u3.y + a4 * u4.y;
    176     this.z = a1 * u1.z + a2 * u2.z + a3 * u3.z + a4 * u4.z;
    177   }
    178 
    179   /** Get the abscissa of the vector.
    180    * @return abscissa of the vector
    181    * @see #Vector3D(double, double, double)
    182    */
    183   public double getX() {
    184     return x;
    185   }
    186 
    187   /** Get the ordinate of the vector.
    188    * @return ordinate of the vector
    189    * @see #Vector3D(double, double, double)
    190    */
    191   public double getY() {
    192     return y;
    193   }
    194 
    195   /** Get the height of the vector.
    196    * @return height of the vector
    197    * @see #Vector3D(double, double, double)
    198    */
    199   public double getZ() {
    200     return z;
    201   }
    202 
    203   /** Get the L<sub>1</sub> norm for the vector.
    204    * @return L<sub>1</sub> norm for the vector
    205    */
    206   public double getNorm1() {
    207     return FastMath.abs(x) + FastMath.abs(y) + FastMath.abs(z);
    208   }
    209 
    210   /** Get the L<sub>2</sub> norm for the vector.
    211    * @return euclidian norm for the vector
    212    */
    213   public double getNorm() {
    214     return FastMath.sqrt (x * x + y * y + z * z);
    215   }
    216 
    217   /** Get the square of the norm for the vector.
    218    * @return square of the euclidian norm for the vector
    219    */
    220   public double getNormSq() {
    221     return x * x + y * y + z * z;
    222   }
    223 
    224   /** Get the L<sub>&infin;</sub> norm for the vector.
    225    * @return L<sub>&infin;</sub> norm for the vector
    226    */
    227   public double getNormInf() {
    228     return FastMath.max(FastMath.max(FastMath.abs(x), FastMath.abs(y)), FastMath.abs(z));
    229   }
    230 
    231   /** Get the azimuth of the vector.
    232    * @return azimuth (&alpha;) of the vector, between -&pi; and +&pi;
    233    * @see #Vector3D(double, double)
    234    */
    235   public double getAlpha() {
    236     return FastMath.atan2(y, x);
    237   }
    238 
    239   /** Get the elevation of the vector.
    240    * @return elevation (&delta;) of the vector, between -&pi;/2 and +&pi;/2
    241    * @see #Vector3D(double, double)
    242    */
    243   public double getDelta() {
    244     return FastMath.asin(z / getNorm());
    245   }
    246 
    247   /** Add a vector to the instance.
    248    * @param v vector to add
    249    * @return a new vector
    250    */
    251   public Vector3D add(Vector3D v) {
    252     return new Vector3D(x + v.x, y + v.y, z + v.z);
    253   }
    254 
    255   /** Add a scaled vector to the instance.
    256    * @param factor scale factor to apply to v before adding it
    257    * @param v vector to add
    258    * @return a new vector
    259    */
    260   public Vector3D add(double factor, Vector3D v) {
    261     return new Vector3D(x + factor * v.x, y + factor * v.y, z + factor * v.z);
    262   }
    263 
    264   /** Subtract a vector from the instance.
    265    * @param v vector to subtract
    266    * @return a new vector
    267    */
    268   public Vector3D subtract(Vector3D v) {
    269     return new Vector3D(x - v.x, y - v.y, z - v.z);
    270   }
    271 
    272   /** Subtract a scaled vector from the instance.
    273    * @param factor scale factor to apply to v before subtracting it
    274    * @param v vector to subtract
    275    * @return a new vector
    276    */
    277   public Vector3D subtract(double factor, Vector3D v) {
    278     return new Vector3D(x - factor * v.x, y - factor * v.y, z - factor * v.z);
    279   }
    280 
    281   /** Get a normalized vector aligned with the instance.
    282    * @return a new normalized vector
    283    * @exception ArithmeticException if the norm is zero
    284    */
    285   public Vector3D normalize() {
    286     double s = getNorm();
    287     if (s == 0) {
    288       throw MathRuntimeException.createArithmeticException(LocalizedFormats.CANNOT_NORMALIZE_A_ZERO_NORM_VECTOR);
    289     }
    290     return scalarMultiply(1 / s);
    291   }
    292 
    293   /** Get a vector orthogonal to the instance.
    294    * <p>There are an infinite number of normalized vectors orthogonal
    295    * to the instance. This method picks up one of them almost
    296    * arbitrarily. It is useful when one needs to compute a reference
    297    * frame with one of the axes in a predefined direction. The
    298    * following example shows how to build a frame having the k axis
    299    * aligned with the known vector u :
    300    * <pre><code>
    301    *   Vector3D k = u.normalize();
    302    *   Vector3D i = k.orthogonal();
    303    *   Vector3D j = Vector3D.crossProduct(k, i);
    304    * </code></pre></p>
    305    * @return a new normalized vector orthogonal to the instance
    306    * @exception ArithmeticException if the norm of the instance is null
    307    */
    308   public Vector3D orthogonal() {
    309 
    310     double threshold = 0.6 * getNorm();
    311     if (threshold == 0) {
    312       throw MathRuntimeException.createArithmeticException(LocalizedFormats.ZERO_NORM);
    313     }
    314 
    315     if ((x >= -threshold) && (x <= threshold)) {
    316       double inverse  = 1 / FastMath.sqrt(y * y + z * z);
    317       return new Vector3D(0, inverse * z, -inverse * y);
    318     } else if ((y >= -threshold) && (y <= threshold)) {
    319       double inverse  = 1 / FastMath.sqrt(x * x + z * z);
    320       return new Vector3D(-inverse * z, 0, inverse * x);
    321     }
    322     double inverse  = 1 / FastMath.sqrt(x * x + y * y);
    323     return new Vector3D(inverse * y, -inverse * x, 0);
    324 
    325   }
    326 
    327   /** Compute the angular separation between two vectors.
    328    * <p>This method computes the angular separation between two
    329    * vectors using the dot product for well separated vectors and the
    330    * cross product for almost aligned vectors. This allows to have a
    331    * good accuracy in all cases, even for vectors very close to each
    332    * other.</p>
    333    * @param v1 first vector
    334    * @param v2 second vector
    335    * @return angular separation between v1 and v2
    336    * @exception ArithmeticException if either vector has a null norm
    337    */
    338   public static double angle(Vector3D v1, Vector3D v2) {
    339 
    340     double normProduct = v1.getNorm() * v2.getNorm();
    341     if (normProduct == 0) {
    342       throw MathRuntimeException.createArithmeticException(LocalizedFormats.ZERO_NORM);
    343     }
    344 
    345     double dot = dotProduct(v1, v2);
    346     double threshold = normProduct * 0.9999;
    347     if ((dot < -threshold) || (dot > threshold)) {
    348       // the vectors are almost aligned, compute using the sine
    349       Vector3D v3 = crossProduct(v1, v2);
    350       if (dot >= 0) {
    351         return FastMath.asin(v3.getNorm() / normProduct);
    352       }
    353       return FastMath.PI - FastMath.asin(v3.getNorm() / normProduct);
    354     }
    355 
    356     // the vectors are sufficiently separated to use the cosine
    357     return FastMath.acos(dot / normProduct);
    358 
    359   }
    360 
    361   /** Get the opposite of the instance.
    362    * @return a new vector which is opposite to the instance
    363    */
    364   public Vector3D negate() {
    365     return new Vector3D(-x, -y, -z);
    366   }
    367 
    368   /** Multiply the instance by a scalar
    369    * @param a scalar
    370    * @return a new vector
    371    */
    372   public Vector3D scalarMultiply(double a) {
    373     return new Vector3D(a * x, a * y, a * z);
    374   }
    375 
    376   /**
    377    * Returns true if any coordinate of this vector is NaN; false otherwise
    378    * @return  true if any coordinate of this vector is NaN; false otherwise
    379    */
    380   public boolean isNaN() {
    381       return Double.isNaN(x) || Double.isNaN(y) || Double.isNaN(z);
    382   }
    383 
    384   /**
    385    * Returns true if any coordinate of this vector is infinite and none are NaN;
    386    * false otherwise
    387    * @return  true if any coordinate of this vector is infinite and none are NaN;
    388    * false otherwise
    389    */
    390   public boolean isInfinite() {
    391       return !isNaN() && (Double.isInfinite(x) || Double.isInfinite(y) || Double.isInfinite(z));
    392   }
    393 
    394   /**
    395    * Test for the equality of two 3D vectors.
    396    * <p>
    397    * If all coordinates of two 3D vectors are exactly the same, and none are
    398    * <code>Double.NaN</code>, the two 3D vectors are considered to be equal.
    399    * </p>
    400    * <p>
    401    * <code>NaN</code> coordinates are considered to affect globally the vector
    402    * and be equals to each other - i.e, if either (or all) coordinates of the
    403    * 3D vector are equal to <code>Double.NaN</code>, the 3D vector is equal to
    404    * {@link #NaN}.
    405    * </p>
    406    *
    407    * @param other Object to test for equality to this
    408    * @return true if two 3D vector objects are equal, false if
    409    *         object is null, not an instance of Vector3D, or
    410    *         not equal to this Vector3D instance
    411    *
    412    */
    413   @Override
    414   public boolean equals(Object other) {
    415 
    416     if (this == other) {
    417       return true;
    418     }
    419 
    420     if (other instanceof Vector3D) {
    421       final Vector3D rhs = (Vector3D)other;
    422       if (rhs.isNaN()) {
    423           return this.isNaN();
    424       }
    425 
    426       return (x == rhs.x) && (y == rhs.y) && (z == rhs.z);
    427     }
    428     return false;
    429   }
    430 
    431   /**
    432    * Get a hashCode for the 3D vector.
    433    * <p>
    434    * All NaN values have the same hash code.</p>
    435    *
    436    * @return a hash code value for this object
    437    */
    438   @Override
    439   public int hashCode() {
    440       if (isNaN()) {
    441           return 8;
    442       }
    443       return 31 * (23 * MathUtils.hash(x) +  19 * MathUtils.hash(y) +  MathUtils.hash(z));
    444   }
    445 
    446   /** Compute the dot-product of two vectors.
    447    * @param v1 first vector
    448    * @param v2 second vector
    449    * @return the dot product v1.v2
    450    */
    451   public static double dotProduct(Vector3D v1, Vector3D v2) {
    452     return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z;
    453   }
    454 
    455   /** Compute the cross-product of two vectors.
    456    * @param v1 first vector
    457    * @param v2 second vector
    458    * @return the cross product v1 ^ v2 as a new Vector
    459    */
    460   public static Vector3D crossProduct(Vector3D v1, Vector3D v2) {
    461     return new Vector3D(v1.y * v2.z - v1.z * v2.y,
    462                         v1.z * v2.x - v1.x * v2.z,
    463                         v1.x * v2.y - v1.y * v2.x);
    464   }
    465 
    466   /** Compute the distance between two vectors according to the L<sub>1</sub> norm.
    467    * <p>Calling this method is equivalent to calling:
    468    * <code>v1.subtract(v2).getNorm1()</code> except that no intermediate
    469    * vector is built</p>
    470    * @param v1 first vector
    471    * @param v2 second vector
    472    * @return the distance between v1 and v2 according to the L<sub>1</sub> norm
    473    */
    474   public static double distance1(Vector3D v1, Vector3D v2) {
    475     final double dx = FastMath.abs(v2.x - v1.x);
    476     final double dy = FastMath.abs(v2.y - v1.y);
    477     final double dz = FastMath.abs(v2.z - v1.z);
    478     return dx + dy + dz;
    479   }
    480 
    481   /** Compute the distance between two vectors according to the L<sub>2</sub> norm.
    482    * <p>Calling this method is equivalent to calling:
    483    * <code>v1.subtract(v2).getNorm()</code> except that no intermediate
    484    * vector is built</p>
    485    * @param v1 first vector
    486    * @param v2 second vector
    487    * @return the distance between v1 and v2 according to the L<sub>2</sub> norm
    488    */
    489   public static double distance(Vector3D v1, Vector3D v2) {
    490     final double dx = v2.x - v1.x;
    491     final double dy = v2.y - v1.y;
    492     final double dz = v2.z - v1.z;
    493     return FastMath.sqrt(dx * dx + dy * dy + dz * dz);
    494   }
    495 
    496   /** Compute the distance between two vectors according to the L<sub>&infin;</sub> norm.
    497    * <p>Calling this method is equivalent to calling:
    498    * <code>v1.subtract(v2).getNormInf()</code> except that no intermediate
    499    * vector is built</p>
    500    * @param v1 first vector
    501    * @param v2 second vector
    502    * @return the distance between v1 and v2 according to the L<sub>&infin;</sub> norm
    503    */
    504   public static double distanceInf(Vector3D v1, Vector3D v2) {
    505     final double dx = FastMath.abs(v2.x - v1.x);
    506     final double dy = FastMath.abs(v2.y - v1.y);
    507     final double dz = FastMath.abs(v2.z - v1.z);
    508     return FastMath.max(FastMath.max(dx, dy), dz);
    509   }
    510 
    511   /** Compute the square of the distance between two vectors.
    512    * <p>Calling this method is equivalent to calling:
    513    * <code>v1.subtract(v2).getNormSq()</code> except that no intermediate
    514    * vector is built</p>
    515    * @param v1 first vector
    516    * @param v2 second vector
    517    * @return the square of the distance between v1 and v2
    518    */
    519   public static double distanceSq(Vector3D v1, Vector3D v2) {
    520     final double dx = v2.x - v1.x;
    521     final double dy = v2.y - v1.y;
    522     final double dz = v2.z - v1.z;
    523     return dx * dx + dy * dy + dz * dz;
    524   }
    525 
    526   /** Get a string representation of this vector.
    527    * @return a string representation of this vector
    528    */
    529   @Override
    530   public String toString() {
    531       return DEFAULT_FORMAT.format(this);
    532   }
    533 
    534 }
    535