Home | History | Annotate | Download | only in utils
      1 // Copyright 2011 Google Inc. All Rights Reserved.
      2 //
      3 // Use of this source code is governed by a BSD-style license
      4 // that can be found in the COPYING file in the root of the source
      5 // tree. An additional intellectual property rights grant can be found
      6 // in the file PATENTS. All contributing project authors may
      7 // be found in the AUTHORS file in the root of the source tree.
      8 // -----------------------------------------------------------------------------
      9 //
     10 // Quantize levels for specified number of quantization-levels ([2, 256]).
     11 // Min and max values are preserved (usual 0 and 255 for alpha plane).
     12 //
     13 // Author: Skal (pascal.massimino (at) gmail.com)
     14 
     15 #include <assert.h>
     16 
     17 #include "./quant_levels_utils.h"
     18 
     19 #define NUM_SYMBOLS     256
     20 
     21 #define MAX_ITER  6             // Maximum number of convergence steps.
     22 #define ERROR_THRESHOLD 1e-4    // MSE stopping criterion.
     23 
     24 // -----------------------------------------------------------------------------
     25 // Quantize levels.
     26 
     27 int QuantizeLevels(uint8_t* const data, int width, int height,
     28                    int num_levels, uint64_t* const sse) {
     29   int freq[NUM_SYMBOLS] = { 0 };
     30   int q_level[NUM_SYMBOLS] = { 0 };
     31   double inv_q_level[NUM_SYMBOLS] = { 0 };
     32   int min_s = 255, max_s = 0;
     33   const size_t data_size = height * width;
     34   int i, num_levels_in, iter;
     35   double last_err = 1.e38, err = 0.;
     36   const double err_threshold = ERROR_THRESHOLD * data_size;
     37 
     38   if (data == NULL) {
     39     return 0;
     40   }
     41 
     42   if (width <= 0 || height <= 0) {
     43     return 0;
     44   }
     45 
     46   if (num_levels < 2 || num_levels > 256) {
     47     return 0;
     48   }
     49 
     50   {
     51     size_t n;
     52     num_levels_in = 0;
     53     for (n = 0; n < data_size; ++n) {
     54       num_levels_in += (freq[data[n]] == 0);
     55       if (min_s > data[n]) min_s = data[n];
     56       if (max_s < data[n]) max_s = data[n];
     57       ++freq[data[n]];
     58     }
     59   }
     60 
     61   if (num_levels_in <= num_levels) goto End;  // nothing to do!
     62 
     63   // Start with uniformly spread centroids.
     64   for (i = 0; i < num_levels; ++i) {
     65     inv_q_level[i] = min_s + (double)(max_s - min_s) * i / (num_levels - 1);
     66   }
     67 
     68   // Fixed values. Won't be changed.
     69   q_level[min_s] = 0;
     70   q_level[max_s] = num_levels - 1;
     71   assert(inv_q_level[0] == min_s);
     72   assert(inv_q_level[num_levels - 1] == max_s);
     73 
     74   // k-Means iterations.
     75   for (iter = 0; iter < MAX_ITER; ++iter) {
     76     double q_sum[NUM_SYMBOLS] = { 0 };
     77     double q_count[NUM_SYMBOLS] = { 0 };
     78     int s, slot = 0;
     79 
     80     // Assign classes to representatives.
     81     for (s = min_s; s <= max_s; ++s) {
     82       // Keep track of the nearest neighbour 'slot'
     83       while (slot < num_levels - 1 &&
     84              2 * s > inv_q_level[slot] + inv_q_level[slot + 1]) {
     85         ++slot;
     86       }
     87       if (freq[s] > 0) {
     88         q_sum[slot] += s * freq[s];
     89         q_count[slot] += freq[s];
     90       }
     91       q_level[s] = slot;
     92     }
     93 
     94     // Assign new representatives to classes.
     95     if (num_levels > 2) {
     96       for (slot = 1; slot < num_levels - 1; ++slot) {
     97         const double count = q_count[slot];
     98         if (count > 0.) {
     99           inv_q_level[slot] = q_sum[slot] / count;
    100         }
    101       }
    102     }
    103 
    104     // Compute convergence error.
    105     err = 0.;
    106     for (s = min_s; s <= max_s; ++s) {
    107       const double error = s - inv_q_level[q_level[s]];
    108       err += freq[s] * error * error;
    109     }
    110 
    111     // Check for convergence: we stop as soon as the error is no
    112     // longer improving.
    113     if (last_err - err < err_threshold) break;
    114     last_err = err;
    115   }
    116 
    117   // Remap the alpha plane to quantized values.
    118   {
    119     // double->int rounding operation can be costly, so we do it
    120     // once for all before remapping. We also perform the data[] -> slot
    121     // mapping, while at it (avoid one indirection in the final loop).
    122     uint8_t map[NUM_SYMBOLS];
    123     int s;
    124     size_t n;
    125     for (s = min_s; s <= max_s; ++s) {
    126       const int slot = q_level[s];
    127       map[s] = (uint8_t)(inv_q_level[slot] + .5);
    128     }
    129     // Final pass.
    130     for (n = 0; n < data_size; ++n) {
    131       data[n] = map[data[n]];
    132     }
    133   }
    134  End:
    135   // Store sum of squared error if needed.
    136   if (sse != NULL) *sse = (uint64_t)err;
    137 
    138   return 1;
    139 }
    140 
    141