Home | History | Annotate | Download | only in Utils
      1 //===- llvm/Transforms/Utils/LoopUtils.h - Loop utilities -*- C++ -*-=========//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines some loop transformation utilities.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_TRANSFORMS_UTILS_LOOPUTILS_H
     15 #define LLVM_TRANSFORMS_UTILS_LOOPUTILS_H
     16 
     17 #include "llvm/ADT/SmallVector.h"
     18 #include "llvm/Analysis/AliasAnalysis.h"
     19 #include "llvm/Analysis/EHPersonalities.h"
     20 #include "llvm/IR/Dominators.h"
     21 #include "llvm/IR/IRBuilder.h"
     22 
     23 namespace llvm {
     24 class AliasSet;
     25 class AliasSetTracker;
     26 class AssumptionCache;
     27 class BasicBlock;
     28 class DataLayout;
     29 class DominatorTree;
     30 class Loop;
     31 class LoopInfo;
     32 class Pass;
     33 class PredicatedScalarEvolution;
     34 class PredIteratorCache;
     35 class ScalarEvolution;
     36 class SCEV;
     37 class TargetLibraryInfo;
     38 
     39 /// \brief Captures loop safety information.
     40 /// It keep information for loop & its header may throw exception.
     41 struct LoopSafetyInfo {
     42   bool MayThrow;       // The current loop contains an instruction which
     43                        // may throw.
     44   bool HeaderMayThrow; // Same as previous, but specific to loop header
     45   // Used to update funclet bundle operands.
     46   DenseMap<BasicBlock *, ColorVector> BlockColors;
     47   LoopSafetyInfo() : MayThrow(false), HeaderMayThrow(false) {}
     48 };
     49 
     50 /// The RecurrenceDescriptor is used to identify recurrences variables in a
     51 /// loop. Reduction is a special case of recurrence that has uses of the
     52 /// recurrence variable outside the loop. The method isReductionPHI identifies
     53 /// reductions that are basic recurrences.
     54 ///
     55 /// Basic recurrences are defined as the summation, product, OR, AND, XOR, min,
     56 /// or max of a set of terms. For example: for(i=0; i<n; i++) { total +=
     57 /// array[i]; } is a summation of array elements. Basic recurrences are a
     58 /// special case of chains of recurrences (CR). See ScalarEvolution for CR
     59 /// references.
     60 
     61 /// This struct holds information about recurrence variables.
     62 class RecurrenceDescriptor {
     63 
     64 public:
     65   /// This enum represents the kinds of recurrences that we support.
     66   enum RecurrenceKind {
     67     RK_NoRecurrence,  ///< Not a recurrence.
     68     RK_IntegerAdd,    ///< Sum of integers.
     69     RK_IntegerMult,   ///< Product of integers.
     70     RK_IntegerOr,     ///< Bitwise or logical OR of numbers.
     71     RK_IntegerAnd,    ///< Bitwise or logical AND of numbers.
     72     RK_IntegerXor,    ///< Bitwise or logical XOR of numbers.
     73     RK_IntegerMinMax, ///< Min/max implemented in terms of select(cmp()).
     74     RK_FloatAdd,      ///< Sum of floats.
     75     RK_FloatMult,     ///< Product of floats.
     76     RK_FloatMinMax    ///< Min/max implemented in terms of select(cmp()).
     77   };
     78 
     79   // This enum represents the kind of minmax recurrence.
     80   enum MinMaxRecurrenceKind {
     81     MRK_Invalid,
     82     MRK_UIntMin,
     83     MRK_UIntMax,
     84     MRK_SIntMin,
     85     MRK_SIntMax,
     86     MRK_FloatMin,
     87     MRK_FloatMax
     88   };
     89 
     90   RecurrenceDescriptor()
     91       : StartValue(nullptr), LoopExitInstr(nullptr), Kind(RK_NoRecurrence),
     92         MinMaxKind(MRK_Invalid), UnsafeAlgebraInst(nullptr),
     93         RecurrenceType(nullptr), IsSigned(false) {}
     94 
     95   RecurrenceDescriptor(Value *Start, Instruction *Exit, RecurrenceKind K,
     96                        MinMaxRecurrenceKind MK, Instruction *UAI, Type *RT,
     97                        bool Signed, SmallPtrSetImpl<Instruction *> &CI)
     98       : StartValue(Start), LoopExitInstr(Exit), Kind(K), MinMaxKind(MK),
     99         UnsafeAlgebraInst(UAI), RecurrenceType(RT), IsSigned(Signed) {
    100     CastInsts.insert(CI.begin(), CI.end());
    101   }
    102 
    103   /// This POD struct holds information about a potential recurrence operation.
    104   class InstDesc {
    105 
    106   public:
    107     InstDesc(bool IsRecur, Instruction *I, Instruction *UAI = nullptr)
    108         : IsRecurrence(IsRecur), PatternLastInst(I), MinMaxKind(MRK_Invalid),
    109           UnsafeAlgebraInst(UAI) {}
    110 
    111     InstDesc(Instruction *I, MinMaxRecurrenceKind K, Instruction *UAI = nullptr)
    112         : IsRecurrence(true), PatternLastInst(I), MinMaxKind(K),
    113           UnsafeAlgebraInst(UAI) {}
    114 
    115     bool isRecurrence() { return IsRecurrence; }
    116 
    117     bool hasUnsafeAlgebra() { return UnsafeAlgebraInst != nullptr; }
    118 
    119     Instruction *getUnsafeAlgebraInst() { return UnsafeAlgebraInst; }
    120 
    121     MinMaxRecurrenceKind getMinMaxKind() { return MinMaxKind; }
    122 
    123     Instruction *getPatternInst() { return PatternLastInst; }
    124 
    125   private:
    126     // Is this instruction a recurrence candidate.
    127     bool IsRecurrence;
    128     // The last instruction in a min/max pattern (select of the select(icmp())
    129     // pattern), or the current recurrence instruction otherwise.
    130     Instruction *PatternLastInst;
    131     // If this is a min/max pattern the comparison predicate.
    132     MinMaxRecurrenceKind MinMaxKind;
    133     // Recurrence has unsafe algebra.
    134     Instruction *UnsafeAlgebraInst;
    135   };
    136 
    137   /// Returns a struct describing if the instruction 'I' can be a recurrence
    138   /// variable of type 'Kind'. If the recurrence is a min/max pattern of
    139   /// select(icmp()) this function advances the instruction pointer 'I' from the
    140   /// compare instruction to the select instruction and stores this pointer in
    141   /// 'PatternLastInst' member of the returned struct.
    142   static InstDesc isRecurrenceInstr(Instruction *I, RecurrenceKind Kind,
    143                                     InstDesc &Prev, bool HasFunNoNaNAttr);
    144 
    145   /// Returns true if instruction I has multiple uses in Insts
    146   static bool hasMultipleUsesOf(Instruction *I,
    147                                 SmallPtrSetImpl<Instruction *> &Insts);
    148 
    149   /// Returns true if all uses of the instruction I is within the Set.
    150   static bool areAllUsesIn(Instruction *I, SmallPtrSetImpl<Instruction *> &Set);
    151 
    152   /// Returns a struct describing if the instruction if the instruction is a
    153   /// Select(ICmp(X, Y), X, Y) instruction pattern corresponding to a min(X, Y)
    154   /// or max(X, Y).
    155   static InstDesc isMinMaxSelectCmpPattern(Instruction *I, InstDesc &Prev);
    156 
    157   /// Returns identity corresponding to the RecurrenceKind.
    158   static Constant *getRecurrenceIdentity(RecurrenceKind K, Type *Tp);
    159 
    160   /// Returns the opcode of binary operation corresponding to the
    161   /// RecurrenceKind.
    162   static unsigned getRecurrenceBinOp(RecurrenceKind Kind);
    163 
    164   /// Returns a Min/Max operation corresponding to MinMaxRecurrenceKind.
    165   static Value *createMinMaxOp(IRBuilder<> &Builder, MinMaxRecurrenceKind RK,
    166                                Value *Left, Value *Right);
    167 
    168   /// Returns true if Phi is a reduction of type Kind and adds it to the
    169   /// RecurrenceDescriptor.
    170   static bool AddReductionVar(PHINode *Phi, RecurrenceKind Kind, Loop *TheLoop,
    171                               bool HasFunNoNaNAttr,
    172                               RecurrenceDescriptor &RedDes);
    173 
    174   /// Returns true if Phi is a reduction in TheLoop. The RecurrenceDescriptor is
    175   /// returned in RedDes.
    176   static bool isReductionPHI(PHINode *Phi, Loop *TheLoop,
    177                              RecurrenceDescriptor &RedDes);
    178 
    179   /// Returns true if Phi is a first-order recurrence. A first-order recurrence
    180   /// is a non-reduction recurrence relation in which the value of the
    181   /// recurrence in the current loop iteration equals a value defined in the
    182   /// previous iteration.
    183   static bool isFirstOrderRecurrence(PHINode *Phi, Loop *TheLoop,
    184                                      DominatorTree *DT);
    185 
    186   RecurrenceKind getRecurrenceKind() { return Kind; }
    187 
    188   MinMaxRecurrenceKind getMinMaxRecurrenceKind() { return MinMaxKind; }
    189 
    190   TrackingVH<Value> getRecurrenceStartValue() { return StartValue; }
    191 
    192   Instruction *getLoopExitInstr() { return LoopExitInstr; }
    193 
    194   /// Returns true if the recurrence has unsafe algebra which requires a relaxed
    195   /// floating-point model.
    196   bool hasUnsafeAlgebra() { return UnsafeAlgebraInst != nullptr; }
    197 
    198   /// Returns first unsafe algebra instruction in the PHI node's use-chain.
    199   Instruction *getUnsafeAlgebraInst() { return UnsafeAlgebraInst; }
    200 
    201   /// Returns true if the recurrence kind is an integer kind.
    202   static bool isIntegerRecurrenceKind(RecurrenceKind Kind);
    203 
    204   /// Returns true if the recurrence kind is a floating point kind.
    205   static bool isFloatingPointRecurrenceKind(RecurrenceKind Kind);
    206 
    207   /// Returns true if the recurrence kind is an arithmetic kind.
    208   static bool isArithmeticRecurrenceKind(RecurrenceKind Kind);
    209 
    210   /// Determines if Phi may have been type-promoted. If Phi has a single user
    211   /// that ANDs the Phi with a type mask, return the user. RT is updated to
    212   /// account for the narrower bit width represented by the mask, and the AND
    213   /// instruction is added to CI.
    214   static Instruction *lookThroughAnd(PHINode *Phi, Type *&RT,
    215                                      SmallPtrSetImpl<Instruction *> &Visited,
    216                                      SmallPtrSetImpl<Instruction *> &CI);
    217 
    218   /// Returns true if all the source operands of a recurrence are either
    219   /// SExtInsts or ZExtInsts. This function is intended to be used with
    220   /// lookThroughAnd to determine if the recurrence has been type-promoted. The
    221   /// source operands are added to CI, and IsSigned is updated to indicate if
    222   /// all source operands are SExtInsts.
    223   static bool getSourceExtensionKind(Instruction *Start, Instruction *Exit,
    224                                      Type *RT, bool &IsSigned,
    225                                      SmallPtrSetImpl<Instruction *> &Visited,
    226                                      SmallPtrSetImpl<Instruction *> &CI);
    227 
    228   /// Returns the type of the recurrence. This type can be narrower than the
    229   /// actual type of the Phi if the recurrence has been type-promoted.
    230   Type *getRecurrenceType() { return RecurrenceType; }
    231 
    232   /// Returns a reference to the instructions used for type-promoting the
    233   /// recurrence.
    234   SmallPtrSet<Instruction *, 8> &getCastInsts() { return CastInsts; }
    235 
    236   /// Returns true if all source operands of the recurrence are SExtInsts.
    237   bool isSigned() { return IsSigned; }
    238 
    239 private:
    240   // The starting value of the recurrence.
    241   // It does not have to be zero!
    242   TrackingVH<Value> StartValue;
    243   // The instruction who's value is used outside the loop.
    244   Instruction *LoopExitInstr;
    245   // The kind of the recurrence.
    246   RecurrenceKind Kind;
    247   // If this a min/max recurrence the kind of recurrence.
    248   MinMaxRecurrenceKind MinMaxKind;
    249   // First occurance of unasfe algebra in the PHI's use-chain.
    250   Instruction *UnsafeAlgebraInst;
    251   // The type of the recurrence.
    252   Type *RecurrenceType;
    253   // True if all source operands of the recurrence are SExtInsts.
    254   bool IsSigned;
    255   // Instructions used for type-promoting the recurrence.
    256   SmallPtrSet<Instruction *, 8> CastInsts;
    257 };
    258 
    259 /// A struct for saving information about induction variables.
    260 class InductionDescriptor {
    261 public:
    262   /// This enum represents the kinds of inductions that we support.
    263   enum InductionKind {
    264     IK_NoInduction,  ///< Not an induction variable.
    265     IK_IntInduction, ///< Integer induction variable. Step = C.
    266     IK_PtrInduction  ///< Pointer induction var. Step = C / sizeof(elem).
    267   };
    268 
    269 public:
    270   /// Default constructor - creates an invalid induction.
    271   InductionDescriptor()
    272       : StartValue(nullptr), IK(IK_NoInduction), Step(nullptr) {}
    273 
    274   /// Get the consecutive direction. Returns:
    275   ///   0 - unknown or non-consecutive.
    276   ///   1 - consecutive and increasing.
    277   ///  -1 - consecutive and decreasing.
    278   int getConsecutiveDirection() const;
    279 
    280   /// Compute the transformed value of Index at offset StartValue using step
    281   /// StepValue.
    282   /// For integer induction, returns StartValue + Index * StepValue.
    283   /// For pointer induction, returns StartValue[Index * StepValue].
    284   /// FIXME: The newly created binary instructions should contain nsw/nuw
    285   /// flags, which can be found from the original scalar operations.
    286   Value *transform(IRBuilder<> &B, Value *Index, ScalarEvolution *SE,
    287                    const DataLayout& DL) const;
    288 
    289   Value *getStartValue() const { return StartValue; }
    290   InductionKind getKind() const { return IK; }
    291   const SCEV *getStep() const { return Step; }
    292   ConstantInt *getConstIntStepValue() const;
    293 
    294   /// Returns true if \p Phi is an induction. If \p Phi is an induction,
    295   /// the induction descriptor \p D will contain the data describing this
    296   /// induction. If by some other means the caller has a better SCEV
    297   /// expression for \p Phi than the one returned by the ScalarEvolution
    298   /// analysis, it can be passed through \p Expr.
    299   static bool isInductionPHI(PHINode *Phi, ScalarEvolution *SE,
    300                              InductionDescriptor &D,
    301                              const SCEV *Expr = nullptr);
    302 
    303   /// Returns true if \p Phi is an induction, in the context associated with
    304   /// the run-time predicate of PSE. If \p Assume is true, this can add further
    305   /// SCEV predicates to \p PSE in order to prove that \p Phi is an induction.
    306   /// If \p Phi is an induction, \p D will contain the data describing this
    307   /// induction.
    308   static bool isInductionPHI(PHINode *Phi, PredicatedScalarEvolution &PSE,
    309                              InductionDescriptor &D, bool Assume = false);
    310 
    311 private:
    312   /// Private constructor - used by \c isInductionPHI.
    313   InductionDescriptor(Value *Start, InductionKind K, const SCEV *Step);
    314 
    315   /// Start value.
    316   TrackingVH<Value> StartValue;
    317   /// Induction kind.
    318   InductionKind IK;
    319   /// Step value.
    320   const SCEV *Step;
    321 };
    322 
    323 BasicBlock *InsertPreheaderForLoop(Loop *L, DominatorTree *DT, LoopInfo *LI,
    324                                    bool PreserveLCSSA);
    325 
    326 /// \brief Put loop into LCSSA form.
    327 ///
    328 /// Looks at all instructions in the loop which have uses outside of the
    329 /// current loop. For each, an LCSSA PHI node is inserted and the uses outside
    330 /// the loop are rewritten to use this node.
    331 ///
    332 /// LoopInfo and DominatorTree are required and preserved.
    333 ///
    334 /// If ScalarEvolution is passed in, it will be preserved.
    335 ///
    336 /// Returns true if any modifications are made to the loop.
    337 bool formLCSSA(Loop &L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution *SE);
    338 
    339 /// \brief Put a loop nest into LCSSA form.
    340 ///
    341 /// This recursively forms LCSSA for a loop nest.
    342 ///
    343 /// LoopInfo and DominatorTree are required and preserved.
    344 ///
    345 /// If ScalarEvolution is passed in, it will be preserved.
    346 ///
    347 /// Returns true if any modifications are made to the loop.
    348 bool formLCSSARecursively(Loop &L, DominatorTree &DT, LoopInfo *LI,
    349                           ScalarEvolution *SE);
    350 
    351 /// \brief Walk the specified region of the CFG (defined by all blocks
    352 /// dominated by the specified block, and that are in the current loop) in
    353 /// reverse depth first order w.r.t the DominatorTree. This allows us to visit
    354 /// uses before definitions, allowing us to sink a loop body in one pass without
    355 /// iteration. Takes DomTreeNode, AliasAnalysis, LoopInfo, DominatorTree,
    356 /// DataLayout, TargetLibraryInfo, Loop, AliasSet information for all
    357 /// instructions of the loop and loop safety information as arguments.
    358 /// It returns changed status.
    359 bool sinkRegion(DomTreeNode *, AliasAnalysis *, LoopInfo *, DominatorTree *,
    360                 TargetLibraryInfo *, Loop *, AliasSetTracker *,
    361                 LoopSafetyInfo *);
    362 
    363 /// \brief Walk the specified region of the CFG (defined by all blocks
    364 /// dominated by the specified block, and that are in the current loop) in depth
    365 /// first order w.r.t the DominatorTree.  This allows us to visit definitions
    366 /// before uses, allowing us to hoist a loop body in one pass without iteration.
    367 /// Takes DomTreeNode, AliasAnalysis, LoopInfo, DominatorTree, DataLayout,
    368 /// TargetLibraryInfo, Loop, AliasSet information for all instructions of the
    369 /// loop and loop safety information as arguments. It returns changed status.
    370 bool hoistRegion(DomTreeNode *, AliasAnalysis *, LoopInfo *, DominatorTree *,
    371                  TargetLibraryInfo *, Loop *, AliasSetTracker *,
    372                  LoopSafetyInfo *);
    373 
    374 /// \brief Try to promote memory values to scalars by sinking stores out of
    375 /// the loop and moving loads to before the loop.  We do this by looping over
    376 /// the stores in the loop, looking for stores to Must pointers which are
    377 /// loop invariant. It takes AliasSet, Loop exit blocks vector, loop exit blocks
    378 /// insertion point vector, PredIteratorCache, LoopInfo, DominatorTree, Loop,
    379 /// AliasSet information for all instructions of the loop and loop safety
    380 /// information as arguments. It returns changed status.
    381 bool promoteLoopAccessesToScalars(AliasSet &, SmallVectorImpl<BasicBlock *> &,
    382                                   SmallVectorImpl<Instruction *> &,
    383                                   PredIteratorCache &, LoopInfo *,
    384                                   DominatorTree *, const TargetLibraryInfo *,
    385                                   Loop *, AliasSetTracker *, LoopSafetyInfo *);
    386 
    387 /// \brief Computes safety information for a loop
    388 /// checks loop body & header for the possibility of may throw
    389 /// exception, it takes LoopSafetyInfo and loop as argument.
    390 /// Updates safety information in LoopSafetyInfo argument.
    391 void computeLoopSafetyInfo(LoopSafetyInfo *, Loop *);
    392 
    393 /// Returns true if the instruction in a loop is guaranteed to execute at least
    394 /// once.
    395 bool isGuaranteedToExecute(const Instruction &Inst, const DominatorTree *DT,
    396                            const Loop *CurLoop,
    397                            const LoopSafetyInfo *SafetyInfo);
    398 
    399 /// \brief Returns the instructions that use values defined in the loop.
    400 SmallVector<Instruction *, 8> findDefsUsedOutsideOfLoop(Loop *L);
    401 
    402 /// \brief Find string metadata for loop
    403 ///
    404 /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an
    405 /// operand or null otherwise.  If the string metadata is not found return
    406 /// Optional's not-a-value.
    407 Optional<const MDOperand *> findStringMetadataForLoop(Loop *TheLoop,
    408                                                       StringRef Name);
    409 
    410 /// \brief Set input string into loop metadata by keeping other values intact.
    411 void addStringMetadataToLoop(Loop *TheLoop, const char *MDString,
    412                              unsigned V = 0);
    413 
    414 /// Helper to consistently add the set of standard passes to a loop pass's \c
    415 /// AnalysisUsage.
    416 ///
    417 /// All loop passes should call this as part of implementing their \c
    418 /// getAnalysisUsage.
    419 void getLoopAnalysisUsage(AnalysisUsage &AU);
    420 }
    421 
    422 #endif
    423