Home | History | Annotate | Download | only in Analysis
      1 //===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the LoopInfo class that is used to identify natural loops
     11 // and determine the loop depth of various nodes of the CFG.  A natural loop
     12 // has exactly one entry-point, which is called the header. Note that natural
     13 // loops may actually be several loops that share the same header node.
     14 //
     15 // This analysis calculates the nesting structure of loops in a function.  For
     16 // each natural loop identified, this analysis identifies natural loops
     17 // contained entirely within the loop and the basic blocks the make up the loop.
     18 //
     19 // It can calculate on the fly various bits of information, for example:
     20 //
     21 //  * whether there is a preheader for the loop
     22 //  * the number of back edges to the header
     23 //  * whether or not a particular block branches out of the loop
     24 //  * the successor blocks of the loop
     25 //  * the loop depth
     26 //  * the trip count
     27 //  * etc...
     28 //
     29 //===----------------------------------------------------------------------===//
     30 
     31 #ifndef LLVM_ANALYSIS_LOOP_INFO_H
     32 #define LLVM_ANALYSIS_LOOP_INFO_H
     33 
     34 #include "llvm/Pass.h"
     35 #include "llvm/ADT/DenseMap.h"
     36 #include "llvm/ADT/DenseSet.h"
     37 #include "llvm/ADT/DepthFirstIterator.h"
     38 #include "llvm/ADT/GraphTraits.h"
     39 #include "llvm/ADT/SmallVector.h"
     40 #include "llvm/ADT/STLExtras.h"
     41 #include "llvm/Analysis/Dominators.h"
     42 #include "llvm/Support/CFG.h"
     43 #include "llvm/Support/raw_ostream.h"
     44 #include <algorithm>
     45 #include <map>
     46 
     47 namespace llvm {
     48 
     49 template<typename T>
     50 static void RemoveFromVector(std::vector<T*> &V, T *N) {
     51   typename std::vector<T*>::iterator I = std::find(V.begin(), V.end(), N);
     52   assert(I != V.end() && "N is not in this list!");
     53   V.erase(I);
     54 }
     55 
     56 class DominatorTree;
     57 class LoopInfo;
     58 class Loop;
     59 class PHINode;
     60 template<class N, class M> class LoopInfoBase;
     61 template<class N, class M> class LoopBase;
     62 
     63 //===----------------------------------------------------------------------===//
     64 /// LoopBase class - Instances of this class are used to represent loops that
     65 /// are detected in the flow graph
     66 ///
     67 template<class BlockT, class LoopT>
     68 class LoopBase {
     69   LoopT *ParentLoop;
     70   // SubLoops - Loops contained entirely within this one.
     71   std::vector<LoopT *> SubLoops;
     72 
     73   // Blocks - The list of blocks in this loop.  First entry is the header node.
     74   std::vector<BlockT*> Blocks;
     75 
     76   // DO NOT IMPLEMENT
     77   LoopBase(const LoopBase<BlockT, LoopT> &);
     78   // DO NOT IMPLEMENT
     79   const LoopBase<BlockT, LoopT>&operator=(const LoopBase<BlockT, LoopT> &);
     80 public:
     81   /// Loop ctor - This creates an empty loop.
     82   LoopBase() : ParentLoop(0) {}
     83   ~LoopBase() {
     84     for (size_t i = 0, e = SubLoops.size(); i != e; ++i)
     85       delete SubLoops[i];
     86   }
     87 
     88   /// getLoopDepth - Return the nesting level of this loop.  An outer-most
     89   /// loop has depth 1, for consistency with loop depth values used for basic
     90   /// blocks, where depth 0 is used for blocks not inside any loops.
     91   unsigned getLoopDepth() const {
     92     unsigned D = 1;
     93     for (const LoopT *CurLoop = ParentLoop; CurLoop;
     94          CurLoop = CurLoop->ParentLoop)
     95       ++D;
     96     return D;
     97   }
     98   BlockT *getHeader() const { return Blocks.front(); }
     99   LoopT *getParentLoop() const { return ParentLoop; }
    100 
    101   /// contains - Return true if the specified loop is contained within in
    102   /// this loop.
    103   ///
    104   bool contains(const LoopT *L) const {
    105     if (L == this) return true;
    106     if (L == 0)    return false;
    107     return contains(L->getParentLoop());
    108   }
    109 
    110   /// contains - Return true if the specified basic block is in this loop.
    111   ///
    112   bool contains(const BlockT *BB) const {
    113     return std::find(block_begin(), block_end(), BB) != block_end();
    114   }
    115 
    116   /// contains - Return true if the specified instruction is in this loop.
    117   ///
    118   template<class InstT>
    119   bool contains(const InstT *Inst) const {
    120     return contains(Inst->getParent());
    121   }
    122 
    123   /// iterator/begin/end - Return the loops contained entirely within this loop.
    124   ///
    125   const std::vector<LoopT *> &getSubLoops() const { return SubLoops; }
    126   typedef typename std::vector<LoopT *>::const_iterator iterator;
    127   iterator begin() const { return SubLoops.begin(); }
    128   iterator end() const { return SubLoops.end(); }
    129   bool empty() const { return SubLoops.empty(); }
    130 
    131   /// getBlocks - Get a list of the basic blocks which make up this loop.
    132   ///
    133   const std::vector<BlockT*> &getBlocks() const { return Blocks; }
    134   typedef typename std::vector<BlockT*>::const_iterator block_iterator;
    135   block_iterator block_begin() const { return Blocks.begin(); }
    136   block_iterator block_end() const { return Blocks.end(); }
    137 
    138   /// getNumBlocks - Get the number of blocks in this loop in constant time.
    139   unsigned getNumBlocks() const {
    140     return Blocks.size();
    141   }
    142 
    143   /// isLoopExiting - True if terminator in the block can branch to another
    144   /// block that is outside of the current loop.
    145   ///
    146   bool isLoopExiting(const BlockT *BB) const {
    147     typedef GraphTraits<BlockT*> BlockTraits;
    148     for (typename BlockTraits::ChildIteratorType SI =
    149          BlockTraits::child_begin(const_cast<BlockT*>(BB)),
    150          SE = BlockTraits::child_end(const_cast<BlockT*>(BB)); SI != SE; ++SI) {
    151       if (!contains(*SI))
    152         return true;
    153     }
    154     return false;
    155   }
    156 
    157   /// getNumBackEdges - Calculate the number of back edges to the loop header
    158   ///
    159   unsigned getNumBackEdges() const {
    160     unsigned NumBackEdges = 0;
    161     BlockT *H = getHeader();
    162 
    163     typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
    164     for (typename InvBlockTraits::ChildIteratorType I =
    165          InvBlockTraits::child_begin(const_cast<BlockT*>(H)),
    166          E = InvBlockTraits::child_end(const_cast<BlockT*>(H)); I != E; ++I)
    167       if (contains(*I))
    168         ++NumBackEdges;
    169 
    170     return NumBackEdges;
    171   }
    172 
    173   //===--------------------------------------------------------------------===//
    174   // APIs for simple analysis of the loop.
    175   //
    176   // Note that all of these methods can fail on general loops (ie, there may not
    177   // be a preheader, etc).  For best success, the loop simplification and
    178   // induction variable canonicalization pass should be used to normalize loops
    179   // for easy analysis.  These methods assume canonical loops.
    180 
    181   /// getExitingBlocks - Return all blocks inside the loop that have successors
    182   /// outside of the loop.  These are the blocks _inside of the current loop_
    183   /// which branch out.  The returned list is always unique.
    184   ///
    185   void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const {
    186     // Sort the blocks vector so that we can use binary search to do quick
    187     // lookups.
    188     SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
    189     std::sort(LoopBBs.begin(), LoopBBs.end());
    190 
    191     typedef GraphTraits<BlockT*> BlockTraits;
    192     for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
    193       for (typename BlockTraits::ChildIteratorType I =
    194           BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
    195           I != E; ++I)
    196         if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I)) {
    197           // Not in current loop? It must be an exit block.
    198           ExitingBlocks.push_back(*BI);
    199           break;
    200         }
    201   }
    202 
    203   /// getExitingBlock - If getExitingBlocks would return exactly one block,
    204   /// return that block. Otherwise return null.
    205   BlockT *getExitingBlock() const {
    206     SmallVector<BlockT*, 8> ExitingBlocks;
    207     getExitingBlocks(ExitingBlocks);
    208     if (ExitingBlocks.size() == 1)
    209       return ExitingBlocks[0];
    210     return 0;
    211   }
    212 
    213   /// getExitBlocks - Return all of the successor blocks of this loop.  These
    214   /// are the blocks _outside of the current loop_ which are branched to.
    215   ///
    216   void getExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const {
    217     // Sort the blocks vector so that we can use binary search to do quick
    218     // lookups.
    219     SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
    220     std::sort(LoopBBs.begin(), LoopBBs.end());
    221 
    222     typedef GraphTraits<BlockT*> BlockTraits;
    223     for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
    224       for (typename BlockTraits::ChildIteratorType I =
    225            BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
    226            I != E; ++I)
    227         if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
    228           // Not in current loop? It must be an exit block.
    229           ExitBlocks.push_back(*I);
    230   }
    231 
    232   /// getExitBlock - If getExitBlocks would return exactly one block,
    233   /// return that block. Otherwise return null.
    234   BlockT *getExitBlock() const {
    235     SmallVector<BlockT*, 8> ExitBlocks;
    236     getExitBlocks(ExitBlocks);
    237     if (ExitBlocks.size() == 1)
    238       return ExitBlocks[0];
    239     return 0;
    240   }
    241 
    242   /// Edge type.
    243   typedef std::pair<BlockT*, BlockT*> Edge;
    244 
    245   /// getExitEdges - Return all pairs of (_inside_block_,_outside_block_).
    246   template <typename EdgeT>
    247   void getExitEdges(SmallVectorImpl<EdgeT> &ExitEdges) const {
    248     // Sort the blocks vector so that we can use binary search to do quick
    249     // lookups.
    250     SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
    251     array_pod_sort(LoopBBs.begin(), LoopBBs.end());
    252 
    253     typedef GraphTraits<BlockT*> BlockTraits;
    254     for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
    255       for (typename BlockTraits::ChildIteratorType I =
    256            BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
    257            I != E; ++I)
    258         if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
    259           // Not in current loop? It must be an exit block.
    260           ExitEdges.push_back(EdgeT(*BI, *I));
    261   }
    262 
    263   /// getLoopPreheader - If there is a preheader for this loop, return it.  A
    264   /// loop has a preheader if there is only one edge to the header of the loop
    265   /// from outside of the loop.  If this is the case, the block branching to the
    266   /// header of the loop is the preheader node.
    267   ///
    268   /// This method returns null if there is no preheader for the loop.
    269   ///
    270   BlockT *getLoopPreheader() const {
    271     // Keep track of nodes outside the loop branching to the header...
    272     BlockT *Out = getLoopPredecessor();
    273     if (!Out) return 0;
    274 
    275     // Make sure there is only one exit out of the preheader.
    276     typedef GraphTraits<BlockT*> BlockTraits;
    277     typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(Out);
    278     ++SI;
    279     if (SI != BlockTraits::child_end(Out))
    280       return 0;  // Multiple exits from the block, must not be a preheader.
    281 
    282     // The predecessor has exactly one successor, so it is a preheader.
    283     return Out;
    284   }
    285 
    286   /// getLoopPredecessor - If the given loop's header has exactly one unique
    287   /// predecessor outside the loop, return it. Otherwise return null.
    288   /// This is less strict that the loop "preheader" concept, which requires
    289   /// the predecessor to have exactly one successor.
    290   ///
    291   BlockT *getLoopPredecessor() const {
    292     // Keep track of nodes outside the loop branching to the header...
    293     BlockT *Out = 0;
    294 
    295     // Loop over the predecessors of the header node...
    296     BlockT *Header = getHeader();
    297     typedef GraphTraits<BlockT*> BlockTraits;
    298     typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
    299     for (typename InvBlockTraits::ChildIteratorType PI =
    300          InvBlockTraits::child_begin(Header),
    301          PE = InvBlockTraits::child_end(Header); PI != PE; ++PI) {
    302       typename InvBlockTraits::NodeType *N = *PI;
    303       if (!contains(N)) {     // If the block is not in the loop...
    304         if (Out && Out != N)
    305           return 0;             // Multiple predecessors outside the loop
    306         Out = N;
    307       }
    308     }
    309 
    310     // Make sure there is only one exit out of the preheader.
    311     assert(Out && "Header of loop has no predecessors from outside loop?");
    312     return Out;
    313   }
    314 
    315   /// getLoopLatch - If there is a single latch block for this loop, return it.
    316   /// A latch block is a block that contains a branch back to the header.
    317   BlockT *getLoopLatch() const {
    318     BlockT *Header = getHeader();
    319     typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
    320     typename InvBlockTraits::ChildIteratorType PI =
    321                                             InvBlockTraits::child_begin(Header);
    322     typename InvBlockTraits::ChildIteratorType PE =
    323                                               InvBlockTraits::child_end(Header);
    324     BlockT *Latch = 0;
    325     for (; PI != PE; ++PI) {
    326       typename InvBlockTraits::NodeType *N = *PI;
    327       if (contains(N)) {
    328         if (Latch) return 0;
    329         Latch = N;
    330       }
    331     }
    332 
    333     return Latch;
    334   }
    335 
    336   //===--------------------------------------------------------------------===//
    337   // APIs for updating loop information after changing the CFG
    338   //
    339 
    340   /// addBasicBlockToLoop - This method is used by other analyses to update loop
    341   /// information.  NewBB is set to be a new member of the current loop.
    342   /// Because of this, it is added as a member of all parent loops, and is added
    343   /// to the specified LoopInfo object as being in the current basic block.  It
    344   /// is not valid to replace the loop header with this method.
    345   ///
    346   void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LI);
    347 
    348   /// replaceChildLoopWith - This is used when splitting loops up.  It replaces
    349   /// the OldChild entry in our children list with NewChild, and updates the
    350   /// parent pointer of OldChild to be null and the NewChild to be this loop.
    351   /// This updates the loop depth of the new child.
    352   void replaceChildLoopWith(LoopT *OldChild,
    353                             LoopT *NewChild) {
    354     assert(OldChild->ParentLoop == this && "This loop is already broken!");
    355     assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
    356     typename std::vector<LoopT *>::iterator I =
    357                           std::find(SubLoops.begin(), SubLoops.end(), OldChild);
    358     assert(I != SubLoops.end() && "OldChild not in loop!");
    359     *I = NewChild;
    360     OldChild->ParentLoop = 0;
    361     NewChild->ParentLoop = static_cast<LoopT *>(this);
    362   }
    363 
    364   /// addChildLoop - Add the specified loop to be a child of this loop.  This
    365   /// updates the loop depth of the new child.
    366   ///
    367   void addChildLoop(LoopT *NewChild) {
    368     assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
    369     NewChild->ParentLoop = static_cast<LoopT *>(this);
    370     SubLoops.push_back(NewChild);
    371   }
    372 
    373   /// removeChildLoop - This removes the specified child from being a subloop of
    374   /// this loop.  The loop is not deleted, as it will presumably be inserted
    375   /// into another loop.
    376   LoopT *removeChildLoop(iterator I) {
    377     assert(I != SubLoops.end() && "Cannot remove end iterator!");
    378     LoopT *Child = *I;
    379     assert(Child->ParentLoop == this && "Child is not a child of this loop!");
    380     SubLoops.erase(SubLoops.begin()+(I-begin()));
    381     Child->ParentLoop = 0;
    382     return Child;
    383   }
    384 
    385   /// addBlockEntry - This adds a basic block directly to the basic block list.
    386   /// This should only be used by transformations that create new loops.  Other
    387   /// transformations should use addBasicBlockToLoop.
    388   void addBlockEntry(BlockT *BB) {
    389     Blocks.push_back(BB);
    390   }
    391 
    392   /// moveToHeader - This method is used to move BB (which must be part of this
    393   /// loop) to be the loop header of the loop (the block that dominates all
    394   /// others).
    395   void moveToHeader(BlockT *BB) {
    396     if (Blocks[0] == BB) return;
    397     for (unsigned i = 0; ; ++i) {
    398       assert(i != Blocks.size() && "Loop does not contain BB!");
    399       if (Blocks[i] == BB) {
    400         Blocks[i] = Blocks[0];
    401         Blocks[0] = BB;
    402         return;
    403       }
    404     }
    405   }
    406 
    407   /// removeBlockFromLoop - This removes the specified basic block from the
    408   /// current loop, updating the Blocks as appropriate.  This does not update
    409   /// the mapping in the LoopInfo class.
    410   void removeBlockFromLoop(BlockT *BB) {
    411     RemoveFromVector(Blocks, BB);
    412   }
    413 
    414   /// verifyLoop - Verify loop structure
    415   void verifyLoop() const {
    416 #ifndef NDEBUG
    417     assert(!Blocks.empty() && "Loop header is missing");
    418 
    419     // Sort the blocks vector so that we can use binary search to do quick
    420     // lookups.
    421     SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
    422     std::sort(LoopBBs.begin(), LoopBBs.end());
    423 
    424     // Check the individual blocks.
    425     for (block_iterator I = block_begin(), E = block_end(); I != E; ++I) {
    426       BlockT *BB = *I;
    427       bool HasInsideLoopSuccs = false;
    428       bool HasInsideLoopPreds = false;
    429       SmallVector<BlockT *, 2> OutsideLoopPreds;
    430 
    431       typedef GraphTraits<BlockT*> BlockTraits;
    432       for (typename BlockTraits::ChildIteratorType SI =
    433            BlockTraits::child_begin(BB), SE = BlockTraits::child_end(BB);
    434            SI != SE; ++SI)
    435         if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *SI)) {
    436           HasInsideLoopSuccs = true;
    437           break;
    438         }
    439       typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
    440       for (typename InvBlockTraits::ChildIteratorType PI =
    441            InvBlockTraits::child_begin(BB), PE = InvBlockTraits::child_end(BB);
    442            PI != PE; ++PI) {
    443         typename InvBlockTraits::NodeType *N = *PI;
    444         if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), N))
    445           HasInsideLoopPreds = true;
    446         else
    447           OutsideLoopPreds.push_back(N);
    448       }
    449 
    450       if (BB == getHeader()) {
    451         assert(!OutsideLoopPreds.empty() && "Loop is unreachable!");
    452       } else if (!OutsideLoopPreds.empty()) {
    453         // A non-header loop shouldn't be reachable from outside the loop,
    454         // though it is permitted if the predecessor is not itself actually
    455         // reachable.
    456         BlockT *EntryBB = BB->getParent()->begin();
    457         for (df_iterator<BlockT *> NI = df_begin(EntryBB),
    458              NE = df_end(EntryBB); NI != NE; ++NI)
    459           for (unsigned i = 0, e = OutsideLoopPreds.size(); i != e; ++i)
    460             assert(*NI != OutsideLoopPreds[i] &&
    461                    "Loop has multiple entry points!");
    462       }
    463       assert(HasInsideLoopPreds && "Loop block has no in-loop predecessors!");
    464       assert(HasInsideLoopSuccs && "Loop block has no in-loop successors!");
    465       assert(BB != getHeader()->getParent()->begin() &&
    466              "Loop contains function entry block!");
    467     }
    468 
    469     // Check the subloops.
    470     for (iterator I = begin(), E = end(); I != E; ++I)
    471       // Each block in each subloop should be contained within this loop.
    472       for (block_iterator BI = (*I)->block_begin(), BE = (*I)->block_end();
    473            BI != BE; ++BI) {
    474         assert(std::binary_search(LoopBBs.begin(), LoopBBs.end(), *BI) &&
    475                "Loop does not contain all the blocks of a subloop!");
    476       }
    477 
    478     // Check the parent loop pointer.
    479     if (ParentLoop) {
    480       assert(std::find(ParentLoop->begin(), ParentLoop->end(), this) !=
    481                ParentLoop->end() &&
    482              "Loop is not a subloop of its parent!");
    483     }
    484 #endif
    485   }
    486 
    487   /// verifyLoop - Verify loop structure of this loop and all nested loops.
    488   void verifyLoopNest(DenseSet<const LoopT*> *Loops) const {
    489     Loops->insert(static_cast<const LoopT *>(this));
    490     // Verify this loop.
    491     verifyLoop();
    492     // Verify the subloops.
    493     for (iterator I = begin(), E = end(); I != E; ++I)
    494       (*I)->verifyLoopNest(Loops);
    495   }
    496 
    497   void print(raw_ostream &OS, unsigned Depth = 0) const {
    498     OS.indent(Depth*2) << "Loop at depth " << getLoopDepth()
    499        << " containing: ";
    500 
    501     for (unsigned i = 0; i < getBlocks().size(); ++i) {
    502       if (i) OS << ",";
    503       BlockT *BB = getBlocks()[i];
    504       WriteAsOperand(OS, BB, false);
    505       if (BB == getHeader())    OS << "<header>";
    506       if (BB == getLoopLatch()) OS << "<latch>";
    507       if (isLoopExiting(BB))    OS << "<exiting>";
    508     }
    509     OS << "\n";
    510 
    511     for (iterator I = begin(), E = end(); I != E; ++I)
    512       (*I)->print(OS, Depth+2);
    513   }
    514 
    515 protected:
    516   friend class LoopInfoBase<BlockT, LoopT>;
    517   explicit LoopBase(BlockT *BB) : ParentLoop(0) {
    518     Blocks.push_back(BB);
    519   }
    520 };
    521 
    522 template<class BlockT, class LoopT>
    523 raw_ostream& operator<<(raw_ostream &OS, const LoopBase<BlockT, LoopT> &Loop) {
    524   Loop.print(OS);
    525   return OS;
    526 }
    527 
    528 class Loop : public LoopBase<BasicBlock, Loop> {
    529 public:
    530   Loop() {}
    531 
    532   /// isLoopInvariant - Return true if the specified value is loop invariant
    533   ///
    534   bool isLoopInvariant(Value *V) const;
    535 
    536   /// hasLoopInvariantOperands - Return true if all the operands of the
    537   /// specified instruction are loop invariant.
    538   bool hasLoopInvariantOperands(Instruction *I) const;
    539 
    540   /// makeLoopInvariant - If the given value is an instruction inside of the
    541   /// loop and it can be hoisted, do so to make it trivially loop-invariant.
    542   /// Return true if the value after any hoisting is loop invariant. This
    543   /// function can be used as a slightly more aggressive replacement for
    544   /// isLoopInvariant.
    545   ///
    546   /// If InsertPt is specified, it is the point to hoist instructions to.
    547   /// If null, the terminator of the loop preheader is used.
    548   ///
    549   bool makeLoopInvariant(Value *V, bool &Changed,
    550                          Instruction *InsertPt = 0) const;
    551 
    552   /// makeLoopInvariant - If the given instruction is inside of the
    553   /// loop and it can be hoisted, do so to make it trivially loop-invariant.
    554   /// Return true if the instruction after any hoisting is loop invariant. This
    555   /// function can be used as a slightly more aggressive replacement for
    556   /// isLoopInvariant.
    557   ///
    558   /// If InsertPt is specified, it is the point to hoist instructions to.
    559   /// If null, the terminator of the loop preheader is used.
    560   ///
    561   bool makeLoopInvariant(Instruction *I, bool &Changed,
    562                          Instruction *InsertPt = 0) const;
    563 
    564   /// getCanonicalInductionVariable - Check to see if the loop has a canonical
    565   /// induction variable: an integer recurrence that starts at 0 and increments
    566   /// by one each time through the loop.  If so, return the phi node that
    567   /// corresponds to it.
    568   ///
    569   /// The IndVarSimplify pass transforms loops to have a canonical induction
    570   /// variable.
    571   ///
    572   PHINode *getCanonicalInductionVariable() const;
    573 
    574   /// getTripCount - Return a loop-invariant LLVM value indicating the number of
    575   /// times the loop will be executed.  Note that this means that the backedge
    576   /// of the loop executes N-1 times.  If the trip-count cannot be determined,
    577   /// this returns null.
    578   ///
    579   /// The IndVarSimplify pass transforms loops to have a form that this
    580   /// function easily understands.
    581   ///
    582   Value *getTripCount() const;
    583 
    584   /// getSmallConstantTripCount - Returns the trip count of this loop as a
    585   /// normal unsigned value, if possible. Returns 0 if the trip count is unknown
    586   /// of not constant. Will also return 0 if the trip count is very large
    587   /// (>= 2^32)
    588   ///
    589   /// The IndVarSimplify pass transforms loops to have a form that this
    590   /// function easily understands.
    591   ///
    592   unsigned getSmallConstantTripCount() const;
    593 
    594   /// getSmallConstantTripMultiple - Returns the largest constant divisor of the
    595   /// trip count of this loop as a normal unsigned value, if possible. This
    596   /// means that the actual trip count is always a multiple of the returned
    597   /// value (don't forget the trip count could very well be zero as well!).
    598   ///
    599   /// Returns 1 if the trip count is unknown or not guaranteed to be the
    600   /// multiple of a constant (which is also the case if the trip count is simply
    601   /// constant, use getSmallConstantTripCount for that case), Will also return 1
    602   /// if the trip count is very large (>= 2^32).
    603   unsigned getSmallConstantTripMultiple() const;
    604 
    605   /// isLCSSAForm - Return true if the Loop is in LCSSA form
    606   bool isLCSSAForm(DominatorTree &DT) const;
    607 
    608   /// isLoopSimplifyForm - Return true if the Loop is in the form that
    609   /// the LoopSimplify form transforms loops to, which is sometimes called
    610   /// normal form.
    611   bool isLoopSimplifyForm() const;
    612 
    613   /// hasDedicatedExits - Return true if no exit block for the loop
    614   /// has a predecessor that is outside the loop.
    615   bool hasDedicatedExits() const;
    616 
    617   /// getUniqueExitBlocks - Return all unique successor blocks of this loop.
    618   /// These are the blocks _outside of the current loop_ which are branched to.
    619   /// This assumes that loop exits are in canonical form.
    620   ///
    621   void getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const;
    622 
    623   /// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one
    624   /// block, return that block. Otherwise return null.
    625   BasicBlock *getUniqueExitBlock() const;
    626 
    627   void dump() const;
    628 
    629 private:
    630   friend class LoopInfoBase<BasicBlock, Loop>;
    631   explicit Loop(BasicBlock *BB) : LoopBase<BasicBlock, Loop>(BB) {}
    632 };
    633 
    634 //===----------------------------------------------------------------------===//
    635 /// LoopInfo - This class builds and contains all of the top level loop
    636 /// structures in the specified function.
    637 ///
    638 
    639 template<class BlockT, class LoopT>
    640 class LoopInfoBase {
    641   // BBMap - Mapping of basic blocks to the inner most loop they occur in
    642   DenseMap<BlockT *, LoopT *> BBMap;
    643   std::vector<LoopT *> TopLevelLoops;
    644   friend class LoopBase<BlockT, LoopT>;
    645   friend class LoopInfo;
    646 
    647   void operator=(const LoopInfoBase &); // do not implement
    648   LoopInfoBase(const LoopInfo &);       // do not implement
    649 public:
    650   LoopInfoBase() { }
    651   ~LoopInfoBase() { releaseMemory(); }
    652 
    653   void releaseMemory() {
    654     for (typename std::vector<LoopT *>::iterator I =
    655          TopLevelLoops.begin(), E = TopLevelLoops.end(); I != E; ++I)
    656       delete *I;   // Delete all of the loops...
    657 
    658     BBMap.clear();                           // Reset internal state of analysis
    659     TopLevelLoops.clear();
    660   }
    661 
    662   /// iterator/begin/end - The interface to the top-level loops in the current
    663   /// function.
    664   ///
    665   typedef typename std::vector<LoopT *>::const_iterator iterator;
    666   iterator begin() const { return TopLevelLoops.begin(); }
    667   iterator end() const { return TopLevelLoops.end(); }
    668   bool empty() const { return TopLevelLoops.empty(); }
    669 
    670   /// getLoopFor - Return the inner most loop that BB lives in.  If a basic
    671   /// block is in no loop (for example the entry node), null is returned.
    672   ///
    673   LoopT *getLoopFor(const BlockT *BB) const {
    674     typename DenseMap<BlockT *, LoopT *>::const_iterator I=
    675       BBMap.find(const_cast<BlockT*>(BB));
    676     return I != BBMap.end() ? I->second : 0;
    677   }
    678 
    679   /// operator[] - same as getLoopFor...
    680   ///
    681   const LoopT *operator[](const BlockT *BB) const {
    682     return getLoopFor(BB);
    683   }
    684 
    685   /// getLoopDepth - Return the loop nesting level of the specified block.  A
    686   /// depth of 0 means the block is not inside any loop.
    687   ///
    688   unsigned getLoopDepth(const BlockT *BB) const {
    689     const LoopT *L = getLoopFor(BB);
    690     return L ? L->getLoopDepth() : 0;
    691   }
    692 
    693   // isLoopHeader - True if the block is a loop header node
    694   bool isLoopHeader(BlockT *BB) const {
    695     const LoopT *L = getLoopFor(BB);
    696     return L && L->getHeader() == BB;
    697   }
    698 
    699   /// removeLoop - This removes the specified top-level loop from this loop info
    700   /// object.  The loop is not deleted, as it will presumably be inserted into
    701   /// another loop.
    702   LoopT *removeLoop(iterator I) {
    703     assert(I != end() && "Cannot remove end iterator!");
    704     LoopT *L = *I;
    705     assert(L->getParentLoop() == 0 && "Not a top-level loop!");
    706     TopLevelLoops.erase(TopLevelLoops.begin() + (I-begin()));
    707     return L;
    708   }
    709 
    710   /// changeLoopFor - Change the top-level loop that contains BB to the
    711   /// specified loop.  This should be used by transformations that restructure
    712   /// the loop hierarchy tree.
    713   void changeLoopFor(BlockT *BB, LoopT *L) {
    714     if (!L) {
    715       typename DenseMap<BlockT *, LoopT *>::iterator I = BBMap.find(BB);
    716       if (I != BBMap.end())
    717         BBMap.erase(I);
    718       return;
    719     }
    720     BBMap[BB] = L;
    721   }
    722 
    723   /// changeTopLevelLoop - Replace the specified loop in the top-level loops
    724   /// list with the indicated loop.
    725   void changeTopLevelLoop(LoopT *OldLoop,
    726                           LoopT *NewLoop) {
    727     typename std::vector<LoopT *>::iterator I =
    728                  std::find(TopLevelLoops.begin(), TopLevelLoops.end(), OldLoop);
    729     assert(I != TopLevelLoops.end() && "Old loop not at top level!");
    730     *I = NewLoop;
    731     assert(NewLoop->ParentLoop == 0 && OldLoop->ParentLoop == 0 &&
    732            "Loops already embedded into a subloop!");
    733   }
    734 
    735   /// addTopLevelLoop - This adds the specified loop to the collection of
    736   /// top-level loops.
    737   void addTopLevelLoop(LoopT *New) {
    738     assert(New->getParentLoop() == 0 && "Loop already in subloop!");
    739     TopLevelLoops.push_back(New);
    740   }
    741 
    742   /// removeBlock - This method completely removes BB from all data structures,
    743   /// including all of the Loop objects it is nested in and our mapping from
    744   /// BasicBlocks to loops.
    745   void removeBlock(BlockT *BB) {
    746     typename DenseMap<BlockT *, LoopT *>::iterator I = BBMap.find(BB);
    747     if (I != BBMap.end()) {
    748       for (LoopT *L = I->second; L; L = L->getParentLoop())
    749         L->removeBlockFromLoop(BB);
    750 
    751       BBMap.erase(I);
    752     }
    753   }
    754 
    755   // Internals
    756 
    757   static bool isNotAlreadyContainedIn(const LoopT *SubLoop,
    758                                       const LoopT *ParentLoop) {
    759     if (SubLoop == 0) return true;
    760     if (SubLoop == ParentLoop) return false;
    761     return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop);
    762   }
    763 
    764   void Calculate(DominatorTreeBase<BlockT> &DT) {
    765     BlockT *RootNode = DT.getRootNode()->getBlock();
    766 
    767     for (df_iterator<BlockT*> NI = df_begin(RootNode),
    768            NE = df_end(RootNode); NI != NE; ++NI)
    769       if (LoopT *L = ConsiderForLoop(*NI, DT))
    770         TopLevelLoops.push_back(L);
    771   }
    772 
    773   LoopT *ConsiderForLoop(BlockT *BB, DominatorTreeBase<BlockT> &DT) {
    774     if (BBMap.find(BB) != BBMap.end()) return 0;// Haven't processed this node?
    775 
    776     std::vector<BlockT *> TodoStack;
    777 
    778     // Scan the predecessors of BB, checking to see if BB dominates any of
    779     // them.  This identifies backedges which target this node...
    780     typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
    781     for (typename InvBlockTraits::ChildIteratorType I =
    782          InvBlockTraits::child_begin(BB), E = InvBlockTraits::child_end(BB);
    783          I != E; ++I) {
    784       typename InvBlockTraits::NodeType *N = *I;
    785       if (DT.dominates(BB, N))   // If BB dominates its predecessor...
    786           TodoStack.push_back(N);
    787     }
    788 
    789     if (TodoStack.empty()) return 0;  // No backedges to this block...
    790 
    791     // Create a new loop to represent this basic block...
    792     LoopT *L = new LoopT(BB);
    793     BBMap[BB] = L;
    794 
    795     BlockT *EntryBlock = BB->getParent()->begin();
    796 
    797     while (!TodoStack.empty()) {  // Process all the nodes in the loop
    798       BlockT *X = TodoStack.back();
    799       TodoStack.pop_back();
    800 
    801       if (!L->contains(X) &&         // As of yet unprocessed??
    802           DT.dominates(EntryBlock, X)) {   // X is reachable from entry block?
    803         // Check to see if this block already belongs to a loop.  If this occurs
    804         // then we have a case where a loop that is supposed to be a child of
    805         // the current loop was processed before the current loop.  When this
    806         // occurs, this child loop gets added to a part of the current loop,
    807         // making it a sibling to the current loop.  We have to reparent this
    808         // loop.
    809         if (LoopT *SubLoop =
    810             const_cast<LoopT *>(getLoopFor(X)))
    811           if (SubLoop->getHeader() == X && isNotAlreadyContainedIn(SubLoop, L)){
    812             // Remove the subloop from its current parent...
    813             assert(SubLoop->ParentLoop && SubLoop->ParentLoop != L);
    814             LoopT *SLP = SubLoop->ParentLoop;  // SubLoopParent
    815             typename std::vector<LoopT *>::iterator I =
    816               std::find(SLP->SubLoops.begin(), SLP->SubLoops.end(), SubLoop);
    817             assert(I != SLP->SubLoops.end() &&"SubLoop not a child of parent?");
    818             SLP->SubLoops.erase(I);   // Remove from parent...
    819 
    820             // Add the subloop to THIS loop...
    821             SubLoop->ParentLoop = L;
    822             L->SubLoops.push_back(SubLoop);
    823           }
    824 
    825         // Normal case, add the block to our loop...
    826         L->Blocks.push_back(X);
    827 
    828         typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
    829 
    830         // Add all of the predecessors of X to the end of the work stack...
    831         for (typename InvBlockTraits::ChildIteratorType PI = InvBlockTraits::child_begin(X), PE = InvBlockTraits::child_end(X); PI != PE; ++PI) {
    832           typename InvBlockTraits::NodeType *N = *PI;
    833           TodoStack.push_back(N);
    834         }
    835       }
    836     }
    837 
    838     // If there are any loops nested within this loop, create them now!
    839     for (typename std::vector<BlockT*>::iterator I = L->Blocks.begin(),
    840          E = L->Blocks.end(); I != E; ++I)
    841       if (LoopT *NewLoop = ConsiderForLoop(*I, DT)) {
    842         L->SubLoops.push_back(NewLoop);
    843         NewLoop->ParentLoop = L;
    844       }
    845 
    846     // Add the basic blocks that comprise this loop to the BBMap so that this
    847     // loop can be found for them.
    848     //
    849     for (typename std::vector<BlockT*>::iterator I = L->Blocks.begin(),
    850            E = L->Blocks.end(); I != E; ++I)
    851       BBMap.insert(std::make_pair(*I, L));
    852 
    853     // Now that we have a list of all of the child loops of this loop, check to
    854     // see if any of them should actually be nested inside of each other.  We
    855     // can accidentally pull loops our of their parents, so we must make sure to
    856     // organize the loop nests correctly now.
    857     {
    858       std::map<BlockT *, LoopT *> ContainingLoops;
    859       for (unsigned i = 0; i != L->SubLoops.size(); ++i) {
    860         LoopT *Child = L->SubLoops[i];
    861         assert(Child->getParentLoop() == L && "Not proper child loop?");
    862 
    863         if (LoopT *ContainingLoop = ContainingLoops[Child->getHeader()]) {
    864           // If there is already a loop which contains this loop, move this loop
    865           // into the containing loop.
    866           MoveSiblingLoopInto(Child, ContainingLoop);
    867           --i;  // The loop got removed from the SubLoops list.
    868         } else {
    869           // This is currently considered to be a top-level loop.  Check to see
    870           // if any of the contained blocks are loop headers for subloops we
    871           // have already processed.
    872           for (unsigned b = 0, e = Child->Blocks.size(); b != e; ++b) {
    873             LoopT *&BlockLoop = ContainingLoops[Child->Blocks[b]];
    874             if (BlockLoop == 0) {   // Child block not processed yet...
    875               BlockLoop = Child;
    876             } else if (BlockLoop != Child) {
    877               LoopT *SubLoop = BlockLoop;
    878               // Reparent all of the blocks which used to belong to BlockLoops
    879               for (unsigned j = 0, f = SubLoop->Blocks.size(); j != f; ++j)
    880                 ContainingLoops[SubLoop->Blocks[j]] = Child;
    881 
    882               // There is already a loop which contains this block, that means
    883               // that we should reparent the loop which the block is currently
    884               // considered to belong to to be a child of this loop.
    885               MoveSiblingLoopInto(SubLoop, Child);
    886               --i;  // We just shrunk the SubLoops list.
    887             }
    888           }
    889         }
    890       }
    891     }
    892 
    893     return L;
    894   }
    895 
    896   /// MoveSiblingLoopInto - This method moves the NewChild loop to live inside
    897   /// of the NewParent Loop, instead of being a sibling of it.
    898   void MoveSiblingLoopInto(LoopT *NewChild,
    899                            LoopT *NewParent) {
    900     LoopT *OldParent = NewChild->getParentLoop();
    901     assert(OldParent && OldParent == NewParent->getParentLoop() &&
    902            NewChild != NewParent && "Not sibling loops!");
    903 
    904     // Remove NewChild from being a child of OldParent
    905     typename std::vector<LoopT *>::iterator I =
    906       std::find(OldParent->SubLoops.begin(), OldParent->SubLoops.end(),
    907                 NewChild);
    908     assert(I != OldParent->SubLoops.end() && "Parent fields incorrect??");
    909     OldParent->SubLoops.erase(I);   // Remove from parent's subloops list
    910     NewChild->ParentLoop = 0;
    911 
    912     InsertLoopInto(NewChild, NewParent);
    913   }
    914 
    915   /// InsertLoopInto - This inserts loop L into the specified parent loop.  If
    916   /// the parent loop contains a loop which should contain L, the loop gets
    917   /// inserted into L instead.
    918   void InsertLoopInto(LoopT *L, LoopT *Parent) {
    919     BlockT *LHeader = L->getHeader();
    920     assert(Parent->contains(LHeader) &&
    921            "This loop should not be inserted here!");
    922 
    923     // Check to see if it belongs in a child loop...
    924     for (unsigned i = 0, e = static_cast<unsigned>(Parent->SubLoops.size());
    925          i != e; ++i)
    926       if (Parent->SubLoops[i]->contains(LHeader)) {
    927         InsertLoopInto(L, Parent->SubLoops[i]);
    928         return;
    929       }
    930 
    931     // If not, insert it here!
    932     Parent->SubLoops.push_back(L);
    933     L->ParentLoop = Parent;
    934   }
    935 
    936   // Debugging
    937 
    938   void print(raw_ostream &OS) const {
    939     for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
    940       TopLevelLoops[i]->print(OS);
    941   #if 0
    942     for (DenseMap<BasicBlock*, LoopT*>::const_iterator I = BBMap.begin(),
    943            E = BBMap.end(); I != E; ++I)
    944       OS << "BB '" << I->first->getName() << "' level = "
    945          << I->second->getLoopDepth() << "\n";
    946   #endif
    947   }
    948 };
    949 
    950 class LoopInfo : public FunctionPass {
    951   LoopInfoBase<BasicBlock, Loop> LI;
    952   friend class LoopBase<BasicBlock, Loop>;
    953 
    954   void operator=(const LoopInfo &); // do not implement
    955   LoopInfo(const LoopInfo &);       // do not implement
    956 public:
    957   static char ID; // Pass identification, replacement for typeid
    958 
    959   LoopInfo() : FunctionPass(ID) {
    960     initializeLoopInfoPass(*PassRegistry::getPassRegistry());
    961   }
    962 
    963   LoopInfoBase<BasicBlock, Loop>& getBase() { return LI; }
    964 
    965   /// iterator/begin/end - The interface to the top-level loops in the current
    966   /// function.
    967   ///
    968   typedef LoopInfoBase<BasicBlock, Loop>::iterator iterator;
    969   inline iterator begin() const { return LI.begin(); }
    970   inline iterator end() const { return LI.end(); }
    971   bool empty() const { return LI.empty(); }
    972 
    973   /// getLoopFor - Return the inner most loop that BB lives in.  If a basic
    974   /// block is in no loop (for example the entry node), null is returned.
    975   ///
    976   inline Loop *getLoopFor(const BasicBlock *BB) const {
    977     return LI.getLoopFor(BB);
    978   }
    979 
    980   /// operator[] - same as getLoopFor...
    981   ///
    982   inline const Loop *operator[](const BasicBlock *BB) const {
    983     return LI.getLoopFor(BB);
    984   }
    985 
    986   /// getLoopDepth - Return the loop nesting level of the specified block.  A
    987   /// depth of 0 means the block is not inside any loop.
    988   ///
    989   inline unsigned getLoopDepth(const BasicBlock *BB) const {
    990     return LI.getLoopDepth(BB);
    991   }
    992 
    993   // isLoopHeader - True if the block is a loop header node
    994   inline bool isLoopHeader(BasicBlock *BB) const {
    995     return LI.isLoopHeader(BB);
    996   }
    997 
    998   /// runOnFunction - Calculate the natural loop information.
    999   ///
   1000   virtual bool runOnFunction(Function &F);
   1001 
   1002   virtual void verifyAnalysis() const;
   1003 
   1004   virtual void releaseMemory() { LI.releaseMemory(); }
   1005 
   1006   virtual void print(raw_ostream &O, const Module* M = 0) const;
   1007 
   1008   virtual void getAnalysisUsage(AnalysisUsage &AU) const;
   1009 
   1010   /// removeLoop - This removes the specified top-level loop from this loop info
   1011   /// object.  The loop is not deleted, as it will presumably be inserted into
   1012   /// another loop.
   1013   inline Loop *removeLoop(iterator I) { return LI.removeLoop(I); }
   1014 
   1015   /// changeLoopFor - Change the top-level loop that contains BB to the
   1016   /// specified loop.  This should be used by transformations that restructure
   1017   /// the loop hierarchy tree.
   1018   inline void changeLoopFor(BasicBlock *BB, Loop *L) {
   1019     LI.changeLoopFor(BB, L);
   1020   }
   1021 
   1022   /// changeTopLevelLoop - Replace the specified loop in the top-level loops
   1023   /// list with the indicated loop.
   1024   inline void changeTopLevelLoop(Loop *OldLoop, Loop *NewLoop) {
   1025     LI.changeTopLevelLoop(OldLoop, NewLoop);
   1026   }
   1027 
   1028   /// addTopLevelLoop - This adds the specified loop to the collection of
   1029   /// top-level loops.
   1030   inline void addTopLevelLoop(Loop *New) {
   1031     LI.addTopLevelLoop(New);
   1032   }
   1033 
   1034   /// removeBlock - This method completely removes BB from all data structures,
   1035   /// including all of the Loop objects it is nested in and our mapping from
   1036   /// BasicBlocks to loops.
   1037   void removeBlock(BasicBlock *BB) {
   1038     LI.removeBlock(BB);
   1039   }
   1040 
   1041   /// updateUnloop - Update LoopInfo after removing the last backedge from a
   1042   /// loop--now the "unloop". This updates the loop forest and parent loops for
   1043   /// each block so that Unloop is no longer referenced, but the caller must
   1044   /// actually delete the Unloop object.
   1045   void updateUnloop(Loop *Unloop);
   1046 
   1047   /// replacementPreservesLCSSAForm - Returns true if replacing From with To
   1048   /// everywhere is guaranteed to preserve LCSSA form.
   1049   bool replacementPreservesLCSSAForm(Instruction *From, Value *To) {
   1050     // Preserving LCSSA form is only problematic if the replacing value is an
   1051     // instruction.
   1052     Instruction *I = dyn_cast<Instruction>(To);
   1053     if (!I) return true;
   1054     // If both instructions are defined in the same basic block then replacement
   1055     // cannot break LCSSA form.
   1056     if (I->getParent() == From->getParent())
   1057       return true;
   1058     // If the instruction is not defined in a loop then it can safely replace
   1059     // anything.
   1060     Loop *ToLoop = getLoopFor(I->getParent());
   1061     if (!ToLoop) return true;
   1062     // If the replacing instruction is defined in the same loop as the original
   1063     // instruction, or in a loop that contains it as an inner loop, then using
   1064     // it as a replacement will not break LCSSA form.
   1065     return ToLoop->contains(getLoopFor(From->getParent()));
   1066   }
   1067 };
   1068 
   1069 
   1070 // Allow clients to walk the list of nested loops...
   1071 template <> struct GraphTraits<const Loop*> {
   1072   typedef const Loop NodeType;
   1073   typedef LoopInfo::iterator ChildIteratorType;
   1074 
   1075   static NodeType *getEntryNode(const Loop *L) { return L; }
   1076   static inline ChildIteratorType child_begin(NodeType *N) {
   1077     return N->begin();
   1078   }
   1079   static inline ChildIteratorType child_end(NodeType *N) {
   1080     return N->end();
   1081   }
   1082 };
   1083 
   1084 template <> struct GraphTraits<Loop*> {
   1085   typedef Loop NodeType;
   1086   typedef LoopInfo::iterator ChildIteratorType;
   1087 
   1088   static NodeType *getEntryNode(Loop *L) { return L; }
   1089   static inline ChildIteratorType child_begin(NodeType *N) {
   1090     return N->begin();
   1091   }
   1092   static inline ChildIteratorType child_end(NodeType *N) {
   1093     return N->end();
   1094   }
   1095 };
   1096 
   1097 template<class BlockT, class LoopT>
   1098 void
   1099 LoopBase<BlockT, LoopT>::addBasicBlockToLoop(BlockT *NewBB,
   1100                                              LoopInfoBase<BlockT, LoopT> &LIB) {
   1101   assert((Blocks.empty() || LIB[getHeader()] == this) &&
   1102          "Incorrect LI specified for this loop!");
   1103   assert(NewBB && "Cannot add a null basic block to the loop!");
   1104   assert(LIB[NewBB] == 0 && "BasicBlock already in the loop!");
   1105 
   1106   LoopT *L = static_cast<LoopT *>(this);
   1107 
   1108   // Add the loop mapping to the LoopInfo object...
   1109   LIB.BBMap[NewBB] = L;
   1110 
   1111   // Add the basic block to this loop and all parent loops...
   1112   while (L) {
   1113     L->Blocks.push_back(NewBB);
   1114     L = L->getParentLoop();
   1115   }
   1116 }
   1117 
   1118 } // End llvm namespace
   1119 
   1120 #endif
   1121