Home | History | Annotate | Download | only in Analysis
      1 //===- llvm/Analysis/ScalarEvolution.h - Scalar Evolution -------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // The ScalarEvolution class is an LLVM pass which can be used to analyze and
     11 // categorize scalar expressions in loops.  It specializes in recognizing
     12 // general induction variables, representing them with the abstract and opaque
     13 // SCEV class.  Given this analysis, trip counts of loops and other important
     14 // properties can be obtained.
     15 //
     16 // This analysis is primarily useful for induction variable substitution and
     17 // strength reduction.
     18 //
     19 //===----------------------------------------------------------------------===//
     20 
     21 #ifndef LLVM_ANALYSIS_SCALAREVOLUTION_H
     22 #define LLVM_ANALYSIS_SCALAREVOLUTION_H
     23 
     24 #include "llvm/ADT/DenseSet.h"
     25 #include "llvm/ADT/FoldingSet.h"
     26 #include "llvm/ADT/SetVector.h"
     27 #include "llvm/Analysis/LoopInfo.h"
     28 #include "llvm/IR/ConstantRange.h"
     29 #include "llvm/IR/Instructions.h"
     30 #include "llvm/IR/Operator.h"
     31 #include "llvm/IR/PassManager.h"
     32 #include "llvm/IR/ValueHandle.h"
     33 #include "llvm/IR/ValueMap.h"
     34 #include "llvm/Pass.h"
     35 #include "llvm/Support/Allocator.h"
     36 #include "llvm/Support/DataTypes.h"
     37 
     38 namespace llvm {
     39   class APInt;
     40   class AssumptionCache;
     41   class Constant;
     42   class ConstantInt;
     43   class DominatorTree;
     44   class Type;
     45   class ScalarEvolution;
     46   class DataLayout;
     47   class TargetLibraryInfo;
     48   class LLVMContext;
     49   class Operator;
     50   class SCEV;
     51   class SCEVAddRecExpr;
     52   class SCEVConstant;
     53   class SCEVExpander;
     54   class SCEVPredicate;
     55   class SCEVUnknown;
     56   class Function;
     57 
     58   template <> struct FoldingSetTrait<SCEV>;
     59   template <> struct FoldingSetTrait<SCEVPredicate>;
     60 
     61   /// This class represents an analyzed expression in the program.  These are
     62   /// opaque objects that the client is not allowed to do much with directly.
     63   ///
     64   class SCEV : public FoldingSetNode {
     65     friend struct FoldingSetTrait<SCEV>;
     66 
     67     /// A reference to an Interned FoldingSetNodeID for this node.  The
     68     /// ScalarEvolution's BumpPtrAllocator holds the data.
     69     FoldingSetNodeIDRef FastID;
     70 
     71     // The SCEV baseclass this node corresponds to
     72     const unsigned short SCEVType;
     73 
     74   protected:
     75     /// This field is initialized to zero and may be used in subclasses to store
     76     /// miscellaneous information.
     77     unsigned short SubclassData;
     78 
     79   private:
     80     SCEV(const SCEV &) = delete;
     81     void operator=(const SCEV &) = delete;
     82 
     83   public:
     84     /// NoWrapFlags are bitfield indices into SubclassData.
     85     ///
     86     /// Add and Mul expressions may have no-unsigned-wrap <NUW> or
     87     /// no-signed-wrap <NSW> properties, which are derived from the IR
     88     /// operator. NSW is a misnomer that we use to mean no signed overflow or
     89     /// underflow.
     90     ///
     91     /// AddRec expressions may have a no-self-wraparound <NW> property if, in
     92     /// the integer domain, abs(step) * max-iteration(loop) <=
     93     /// unsigned-max(bitwidth).  This means that the recurrence will never reach
     94     /// its start value if the step is non-zero.  Computing the same value on
     95     /// each iteration is not considered wrapping, and recurrences with step = 0
     96     /// are trivially <NW>.  <NW> is independent of the sign of step and the
     97     /// value the add recurrence starts with.
     98     ///
     99     /// Note that NUW and NSW are also valid properties of a recurrence, and
    100     /// either implies NW. For convenience, NW will be set for a recurrence
    101     /// whenever either NUW or NSW are set.
    102     enum NoWrapFlags { FlagAnyWrap = 0,          // No guarantee.
    103                        FlagNW      = (1 << 0),   // No self-wrap.
    104                        FlagNUW     = (1 << 1),   // No unsigned wrap.
    105                        FlagNSW     = (1 << 2),   // No signed wrap.
    106                        NoWrapMask  = (1 << 3) -1 };
    107 
    108     explicit SCEV(const FoldingSetNodeIDRef ID, unsigned SCEVTy) :
    109       FastID(ID), SCEVType(SCEVTy), SubclassData(0) {}
    110 
    111     unsigned getSCEVType() const { return SCEVType; }
    112 
    113     /// Return the LLVM type of this SCEV expression.
    114     ///
    115     Type *getType() const;
    116 
    117     /// Return true if the expression is a constant zero.
    118     ///
    119     bool isZero() const;
    120 
    121     /// Return true if the expression is a constant one.
    122     ///
    123     bool isOne() const;
    124 
    125     /// Return true if the expression is a constant all-ones value.
    126     ///
    127     bool isAllOnesValue() const;
    128 
    129     /// Return true if the specified scev is negated, but not a constant.
    130     bool isNonConstantNegative() const;
    131 
    132     /// Print out the internal representation of this scalar to the specified
    133     /// stream.  This should really only be used for debugging purposes.
    134     void print(raw_ostream &OS) const;
    135 
    136     /// This method is used for debugging.
    137     ///
    138     void dump() const;
    139   };
    140 
    141   // Specialize FoldingSetTrait for SCEV to avoid needing to compute
    142   // temporary FoldingSetNodeID values.
    143   template<> struct FoldingSetTrait<SCEV> : DefaultFoldingSetTrait<SCEV> {
    144     static void Profile(const SCEV &X, FoldingSetNodeID& ID) {
    145       ID = X.FastID;
    146     }
    147     static bool Equals(const SCEV &X, const FoldingSetNodeID &ID,
    148                        unsigned IDHash, FoldingSetNodeID &TempID) {
    149       return ID == X.FastID;
    150     }
    151     static unsigned ComputeHash(const SCEV &X, FoldingSetNodeID &TempID) {
    152       return X.FastID.ComputeHash();
    153     }
    154   };
    155 
    156   inline raw_ostream &operator<<(raw_ostream &OS, const SCEV &S) {
    157     S.print(OS);
    158     return OS;
    159   }
    160 
    161   /// An object of this class is returned by queries that could not be answered.
    162   /// For example, if you ask for the number of iterations of a linked-list
    163   /// traversal loop, you will get one of these.  None of the standard SCEV
    164   /// operations are valid on this class, it is just a marker.
    165   struct SCEVCouldNotCompute : public SCEV {
    166     SCEVCouldNotCompute();
    167 
    168     /// Methods for support type inquiry through isa, cast, and dyn_cast:
    169     static bool classof(const SCEV *S);
    170   };
    171 
    172   /// This class represents an assumption made using SCEV expressions which can
    173   /// be checked at run-time.
    174   class SCEVPredicate : public FoldingSetNode {
    175     friend struct FoldingSetTrait<SCEVPredicate>;
    176 
    177     /// A reference to an Interned FoldingSetNodeID for this node.  The
    178     /// ScalarEvolution's BumpPtrAllocator holds the data.
    179     FoldingSetNodeIDRef FastID;
    180 
    181   public:
    182     enum SCEVPredicateKind { P_Union, P_Equal, P_Wrap };
    183 
    184   protected:
    185     SCEVPredicateKind Kind;
    186     ~SCEVPredicate() = default;
    187     SCEVPredicate(const SCEVPredicate&) = default;
    188     SCEVPredicate &operator=(const SCEVPredicate&) = default;
    189 
    190   public:
    191     SCEVPredicate(const FoldingSetNodeIDRef ID, SCEVPredicateKind Kind);
    192 
    193     SCEVPredicateKind getKind() const { return Kind; }
    194 
    195     /// Returns the estimated complexity of this predicate.  This is roughly
    196     /// measured in the number of run-time checks required.
    197     virtual unsigned getComplexity() const { return 1; }
    198 
    199     /// Returns true if the predicate is always true. This means that no
    200     /// assumptions were made and nothing needs to be checked at run-time.
    201     virtual bool isAlwaysTrue() const = 0;
    202 
    203     /// Returns true if this predicate implies \p N.
    204     virtual bool implies(const SCEVPredicate *N) const = 0;
    205 
    206     /// Prints a textual representation of this predicate with an indentation of
    207     /// \p Depth.
    208     virtual void print(raw_ostream &OS, unsigned Depth = 0) const = 0;
    209 
    210     /// Returns the SCEV to which this predicate applies, or nullptr if this is
    211     /// a SCEVUnionPredicate.
    212     virtual const SCEV *getExpr() const = 0;
    213   };
    214 
    215   inline raw_ostream &operator<<(raw_ostream &OS, const SCEVPredicate &P) {
    216     P.print(OS);
    217     return OS;
    218   }
    219 
    220   // Specialize FoldingSetTrait for SCEVPredicate to avoid needing to compute
    221   // temporary FoldingSetNodeID values.
    222   template <>
    223   struct FoldingSetTrait<SCEVPredicate>
    224       : DefaultFoldingSetTrait<SCEVPredicate> {
    225 
    226     static void Profile(const SCEVPredicate &X, FoldingSetNodeID &ID) {
    227       ID = X.FastID;
    228     }
    229 
    230     static bool Equals(const SCEVPredicate &X, const FoldingSetNodeID &ID,
    231                        unsigned IDHash, FoldingSetNodeID &TempID) {
    232       return ID == X.FastID;
    233     }
    234     static unsigned ComputeHash(const SCEVPredicate &X,
    235                                 FoldingSetNodeID &TempID) {
    236       return X.FastID.ComputeHash();
    237     }
    238   };
    239 
    240   /// This class represents an assumption that two SCEV expressions are equal,
    241   /// and this can be checked at run-time. We assume that the left hand side is
    242   /// a SCEVUnknown and the right hand side a constant.
    243   class SCEVEqualPredicate final : public SCEVPredicate {
    244     /// We assume that LHS == RHS, where LHS is a SCEVUnknown and RHS a
    245     /// constant.
    246     const SCEVUnknown *LHS;
    247     const SCEVConstant *RHS;
    248 
    249   public:
    250     SCEVEqualPredicate(const FoldingSetNodeIDRef ID, const SCEVUnknown *LHS,
    251                        const SCEVConstant *RHS);
    252 
    253     /// Implementation of the SCEVPredicate interface
    254     bool implies(const SCEVPredicate *N) const override;
    255     void print(raw_ostream &OS, unsigned Depth = 0) const override;
    256     bool isAlwaysTrue() const override;
    257     const SCEV *getExpr() const override;
    258 
    259     /// Returns the left hand side of the equality.
    260     const SCEVUnknown *getLHS() const { return LHS; }
    261 
    262     /// Returns the right hand side of the equality.
    263     const SCEVConstant *getRHS() const { return RHS; }
    264 
    265     /// Methods for support type inquiry through isa, cast, and dyn_cast:
    266     static inline bool classof(const SCEVPredicate *P) {
    267       return P->getKind() == P_Equal;
    268     }
    269   };
    270 
    271   /// This class represents an assumption made on an AddRec expression. Given an
    272   /// affine AddRec expression {a,+,b}, we assume that it has the nssw or nusw
    273   /// flags (defined below) in the first X iterations of the loop, where X is a
    274   /// SCEV expression returned by getPredicatedBackedgeTakenCount).
    275   ///
    276   /// Note that this does not imply that X is equal to the backedge taken
    277   /// count. This means that if we have a nusw predicate for i32 {0,+,1} with a
    278   /// predicated backedge taken count of X, we only guarantee that {0,+,1} has
    279   /// nusw in the first X iterations. {0,+,1} may still wrap in the loop if we
    280   /// have more than X iterations.
    281   class SCEVWrapPredicate final : public SCEVPredicate {
    282   public:
    283     /// Similar to SCEV::NoWrapFlags, but with slightly different semantics
    284     /// for FlagNUSW. The increment is considered to be signed, and a + b
    285     /// (where b is the increment) is considered to wrap if:
    286     ///    zext(a + b) != zext(a) + sext(b)
    287     ///
    288     /// If Signed is a function that takes an n-bit tuple and maps to the
    289     /// integer domain as the tuples value interpreted as twos complement,
    290     /// and Unsigned a function that takes an n-bit tuple and maps to the
    291     /// integer domain as as the base two value of input tuple, then a + b
    292     /// has IncrementNUSW iff:
    293     ///
    294     /// 0 <= Unsigned(a) + Signed(b) < 2^n
    295     ///
    296     /// The IncrementNSSW flag has identical semantics with SCEV::FlagNSW.
    297     ///
    298     /// Note that the IncrementNUSW flag is not commutative: if base + inc
    299     /// has IncrementNUSW, then inc + base doesn't neccessarily have this
    300     /// property. The reason for this is that this is used for sign/zero
    301     /// extending affine AddRec SCEV expressions when a SCEVWrapPredicate is
    302     /// assumed. A {base,+,inc} expression is already non-commutative with
    303     /// regards to base and inc, since it is interpreted as:
    304     ///     (((base + inc) + inc) + inc) ...
    305     enum IncrementWrapFlags {
    306       IncrementAnyWrap = 0,     // No guarantee.
    307       IncrementNUSW = (1 << 0), // No unsigned with signed increment wrap.
    308       IncrementNSSW = (1 << 1), // No signed with signed increment wrap
    309                                 // (equivalent with SCEV::NSW)
    310       IncrementNoWrapMask = (1 << 2) - 1
    311     };
    312 
    313     /// Convenient IncrementWrapFlags manipulation methods.
    314     static SCEVWrapPredicate::IncrementWrapFlags LLVM_ATTRIBUTE_UNUSED_RESULT
    315     clearFlags(SCEVWrapPredicate::IncrementWrapFlags Flags,
    316                SCEVWrapPredicate::IncrementWrapFlags OffFlags) {
    317       assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!");
    318       assert((OffFlags & IncrementNoWrapMask) == OffFlags &&
    319              "Invalid flags value!");
    320       return (SCEVWrapPredicate::IncrementWrapFlags)(Flags & ~OffFlags);
    321     }
    322 
    323     static SCEVWrapPredicate::IncrementWrapFlags LLVM_ATTRIBUTE_UNUSED_RESULT
    324     maskFlags(SCEVWrapPredicate::IncrementWrapFlags Flags, int Mask) {
    325       assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!");
    326       assert((Mask & IncrementNoWrapMask) == Mask && "Invalid mask value!");
    327 
    328       return (SCEVWrapPredicate::IncrementWrapFlags)(Flags & Mask);
    329     }
    330 
    331     static SCEVWrapPredicate::IncrementWrapFlags LLVM_ATTRIBUTE_UNUSED_RESULT
    332     setFlags(SCEVWrapPredicate::IncrementWrapFlags Flags,
    333              SCEVWrapPredicate::IncrementWrapFlags OnFlags) {
    334       assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!");
    335       assert((OnFlags & IncrementNoWrapMask) == OnFlags &&
    336              "Invalid flags value!");
    337 
    338       return (SCEVWrapPredicate::IncrementWrapFlags)(Flags | OnFlags);
    339     }
    340 
    341     /// Returns the set of SCEVWrapPredicate no wrap flags implied by a
    342     /// SCEVAddRecExpr.
    343     static SCEVWrapPredicate::IncrementWrapFlags
    344     getImpliedFlags(const SCEVAddRecExpr *AR, ScalarEvolution &SE);
    345 
    346   private:
    347     const SCEVAddRecExpr *AR;
    348     IncrementWrapFlags Flags;
    349 
    350   public:
    351     explicit SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
    352                                const SCEVAddRecExpr *AR,
    353                                IncrementWrapFlags Flags);
    354 
    355     /// Returns the set assumed no overflow flags.
    356     IncrementWrapFlags getFlags() const { return Flags; }
    357     /// Implementation of the SCEVPredicate interface
    358     const SCEV *getExpr() const override;
    359     bool implies(const SCEVPredicate *N) const override;
    360     void print(raw_ostream &OS, unsigned Depth = 0) const override;
    361     bool isAlwaysTrue() const override;
    362 
    363     /// Methods for support type inquiry through isa, cast, and dyn_cast:
    364     static inline bool classof(const SCEVPredicate *P) {
    365       return P->getKind() == P_Wrap;
    366     }
    367   };
    368 
    369   /// This class represents a composition of other SCEV predicates, and is the
    370   /// class that most clients will interact with.  This is equivalent to a
    371   /// logical "AND" of all the predicates in the union.
    372   class SCEVUnionPredicate final : public SCEVPredicate {
    373   private:
    374     typedef DenseMap<const SCEV *, SmallVector<const SCEVPredicate *, 4>>
    375         PredicateMap;
    376 
    377     /// Vector with references to all predicates in this union.
    378     SmallVector<const SCEVPredicate *, 16> Preds;
    379     /// Maps SCEVs to predicates for quick look-ups.
    380     PredicateMap SCEVToPreds;
    381 
    382   public:
    383     SCEVUnionPredicate();
    384 
    385     const SmallVectorImpl<const SCEVPredicate *> &getPredicates() const {
    386       return Preds;
    387     }
    388 
    389     /// Adds a predicate to this union.
    390     void add(const SCEVPredicate *N);
    391 
    392     /// Returns a reference to a vector containing all predicates which apply to
    393     /// \p Expr.
    394     ArrayRef<const SCEVPredicate *> getPredicatesForExpr(const SCEV *Expr);
    395 
    396     /// Implementation of the SCEVPredicate interface
    397     bool isAlwaysTrue() const override;
    398     bool implies(const SCEVPredicate *N) const override;
    399     void print(raw_ostream &OS, unsigned Depth) const override;
    400     const SCEV *getExpr() const override;
    401 
    402     /// We estimate the complexity of a union predicate as the size number of
    403     /// predicates in the union.
    404     unsigned getComplexity() const override { return Preds.size(); }
    405 
    406     /// Methods for support type inquiry through isa, cast, and dyn_cast:
    407     static inline bool classof(const SCEVPredicate *P) {
    408       return P->getKind() == P_Union;
    409     }
    410   };
    411 
    412   /// The main scalar evolution driver. Because client code (intentionally)
    413   /// can't do much with the SCEV objects directly, they must ask this class
    414   /// for services.
    415   class ScalarEvolution {
    416   public:
    417     /// An enum describing the relationship between a SCEV and a loop.
    418     enum LoopDisposition {
    419       LoopVariant,    ///< The SCEV is loop-variant (unknown).
    420       LoopInvariant,  ///< The SCEV is loop-invariant.
    421       LoopComputable  ///< The SCEV varies predictably with the loop.
    422     };
    423 
    424     /// An enum describing the relationship between a SCEV and a basic block.
    425     enum BlockDisposition {
    426       DoesNotDominateBlock,  ///< The SCEV does not dominate the block.
    427       DominatesBlock,        ///< The SCEV dominates the block.
    428       ProperlyDominatesBlock ///< The SCEV properly dominates the block.
    429     };
    430 
    431     /// Convenient NoWrapFlags manipulation that hides enum casts and is
    432     /// visible in the ScalarEvolution name space.
    433     static SCEV::NoWrapFlags LLVM_ATTRIBUTE_UNUSED_RESULT
    434     maskFlags(SCEV::NoWrapFlags Flags, int Mask) {
    435       return (SCEV::NoWrapFlags)(Flags & Mask);
    436     }
    437     static SCEV::NoWrapFlags LLVM_ATTRIBUTE_UNUSED_RESULT
    438     setFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags OnFlags) {
    439       return (SCEV::NoWrapFlags)(Flags | OnFlags);
    440     }
    441     static SCEV::NoWrapFlags LLVM_ATTRIBUTE_UNUSED_RESULT
    442     clearFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags OffFlags) {
    443       return (SCEV::NoWrapFlags)(Flags & ~OffFlags);
    444     }
    445 
    446   private:
    447     /// A CallbackVH to arrange for ScalarEvolution to be notified whenever a
    448     /// Value is deleted.
    449     class SCEVCallbackVH final : public CallbackVH {
    450       ScalarEvolution *SE;
    451       void deleted() override;
    452       void allUsesReplacedWith(Value *New) override;
    453     public:
    454       SCEVCallbackVH(Value *V, ScalarEvolution *SE = nullptr);
    455     };
    456 
    457     friend class SCEVCallbackVH;
    458     friend class SCEVExpander;
    459     friend class SCEVUnknown;
    460 
    461     /// The function we are analyzing.
    462     ///
    463     Function &F;
    464 
    465     /// Does the module have any calls to the llvm.experimental.guard intrinsic
    466     /// at all?  If this is false, we avoid doing work that will only help if
    467     /// thare are guards present in the IR.
    468     ///
    469     bool HasGuards;
    470 
    471     /// The target library information for the target we are targeting.
    472     ///
    473     TargetLibraryInfo &TLI;
    474 
    475     /// The tracker for @llvm.assume intrinsics in this function.
    476     AssumptionCache &AC;
    477 
    478     /// The dominator tree.
    479     ///
    480     DominatorTree &DT;
    481 
    482     /// The loop information for the function we are currently analyzing.
    483     ///
    484     LoopInfo &LI;
    485 
    486     /// This SCEV is used to represent unknown trip counts and things.
    487     std::unique_ptr<SCEVCouldNotCompute> CouldNotCompute;
    488 
    489     /// The typedef for HasRecMap.
    490     ///
    491     typedef DenseMap<const SCEV *, bool> HasRecMapType;
    492 
    493     /// This is a cache to record whether a SCEV contains any scAddRecExpr.
    494     HasRecMapType HasRecMap;
    495 
    496     /// The typedef for ExprValueMap.
    497     ///
    498     typedef DenseMap<const SCEV *, SetVector<Value *>> ExprValueMapType;
    499 
    500     /// ExprValueMap -- This map records the original values from which
    501     /// the SCEV expr is generated from.
    502     ExprValueMapType ExprValueMap;
    503 
    504     /// The typedef for ValueExprMap.
    505     ///
    506     typedef DenseMap<SCEVCallbackVH, const SCEV *, DenseMapInfo<Value *> >
    507       ValueExprMapType;
    508 
    509     /// This is a cache of the values we have analyzed so far.
    510     ///
    511     ValueExprMapType ValueExprMap;
    512 
    513     /// Mark predicate values currently being processed by isImpliedCond.
    514     DenseSet<Value*> PendingLoopPredicates;
    515 
    516     /// Set to true by isLoopBackedgeGuardedByCond when we're walking the set of
    517     /// conditions dominating the backedge of a loop.
    518     bool WalkingBEDominatingConds;
    519 
    520     /// Set to true by isKnownPredicateViaSplitting when we're trying to prove a
    521     /// predicate by splitting it into a set of independent predicates.
    522     bool ProvingSplitPredicate;
    523 
    524     /// Information about the number of loop iterations for which a loop exit's
    525     /// branch condition evaluates to the not-taken path.  This is a temporary
    526     /// pair of exact and max expressions that are eventually summarized in
    527     /// ExitNotTakenInfo and BackedgeTakenInfo.
    528     struct ExitLimit {
    529       const SCEV *Exact;
    530       const SCEV *Max;
    531 
    532       /// A predicate union guard for this ExitLimit. The result is only
    533       /// valid if this predicate evaluates to 'true' at run-time.
    534       SCEVUnionPredicate Pred;
    535 
    536       /*implicit*/ ExitLimit(const SCEV *E) : Exact(E), Max(E) {}
    537 
    538       ExitLimit(const SCEV *E, const SCEV *M, SCEVUnionPredicate &P)
    539           : Exact(E), Max(M), Pred(P) {
    540         assert((isa<SCEVCouldNotCompute>(Exact) ||
    541                 !isa<SCEVCouldNotCompute>(Max)) &&
    542                "Exact is not allowed to be less precise than Max");
    543       }
    544 
    545       /// Test whether this ExitLimit contains any computed information, or
    546       /// whether it's all SCEVCouldNotCompute values.
    547       bool hasAnyInfo() const {
    548         return !isa<SCEVCouldNotCompute>(Exact) ||
    549           !isa<SCEVCouldNotCompute>(Max);
    550       }
    551 
    552       /// Test whether this ExitLimit contains all information.
    553       bool hasFullInfo() const { return !isa<SCEVCouldNotCompute>(Exact); }
    554     };
    555 
    556     /// Forward declaration of ExitNotTakenExtras
    557     struct ExitNotTakenExtras;
    558 
    559     /// Information about the number of times a particular loop exit may be
    560     /// reached before exiting the loop.
    561     struct ExitNotTakenInfo {
    562       AssertingVH<BasicBlock> ExitingBlock;
    563       const SCEV *ExactNotTaken;
    564 
    565       ExitNotTakenExtras *ExtraInfo;
    566       bool Complete;
    567 
    568       ExitNotTakenInfo()
    569           : ExitingBlock(nullptr), ExactNotTaken(nullptr), ExtraInfo(nullptr),
    570             Complete(true) {}
    571 
    572       ExitNotTakenInfo(BasicBlock *ExitBlock, const SCEV *Expr,
    573                        ExitNotTakenExtras *Ptr)
    574           : ExitingBlock(ExitBlock), ExactNotTaken(Expr), ExtraInfo(Ptr),
    575             Complete(true) {}
    576 
    577       /// Return true if all loop exits are computable.
    578       bool isCompleteList() const { return Complete; }
    579 
    580       /// Sets the incomplete property, indicating that one of the loop exits
    581       /// doesn't have a corresponding ExitNotTakenInfo entry.
    582       void setIncomplete() { Complete = false; }
    583 
    584       /// Returns a pointer to the predicate associated with this information,
    585       /// or nullptr if this doesn't exist (meaning always true).
    586       SCEVUnionPredicate *getPred() const {
    587         if (ExtraInfo)
    588           return &ExtraInfo->Pred;
    589 
    590         return nullptr;
    591       }
    592 
    593       /// Return true if the SCEV predicate associated with this information
    594       /// is always true.
    595       bool hasAlwaysTruePred() const {
    596         return !getPred() || getPred()->isAlwaysTrue();
    597       }
    598 
    599       /// Defines a simple forward iterator for ExitNotTakenInfo.
    600       class ExitNotTakenInfoIterator
    601           : public std::iterator<std::forward_iterator_tag, ExitNotTakenInfo> {
    602         const ExitNotTakenInfo *Start;
    603         unsigned Position;
    604 
    605       public:
    606         ExitNotTakenInfoIterator(const ExitNotTakenInfo *Start,
    607                                  unsigned Position)
    608             : Start(Start), Position(Position) {}
    609 
    610         const ExitNotTakenInfo &operator*() const {
    611           if (Position == 0)
    612             return *Start;
    613 
    614           return Start->ExtraInfo->Exits[Position - 1];
    615         }
    616 
    617         const ExitNotTakenInfo *operator->() const {
    618           if (Position == 0)
    619             return Start;
    620 
    621           return &Start->ExtraInfo->Exits[Position - 1];
    622         }
    623 
    624         bool operator==(const ExitNotTakenInfoIterator &RHS) const {
    625           return Start == RHS.Start && Position == RHS.Position;
    626         }
    627 
    628         bool operator!=(const ExitNotTakenInfoIterator &RHS) const {
    629           return Start != RHS.Start || Position != RHS.Position;
    630         }
    631 
    632         ExitNotTakenInfoIterator &operator++() { // Preincrement
    633           if (!Start)
    634             return *this;
    635 
    636           unsigned Elements =
    637               Start->ExtraInfo ? Start->ExtraInfo->Exits.size() + 1 : 1;
    638 
    639           ++Position;
    640 
    641           // We've run out of elements.
    642           if (Position == Elements) {
    643             Start = nullptr;
    644             Position = 0;
    645           }
    646 
    647           return *this;
    648         }
    649         ExitNotTakenInfoIterator operator++(int) { // Postincrement
    650           ExitNotTakenInfoIterator Tmp = *this;
    651           ++*this;
    652           return Tmp;
    653         }
    654       };
    655 
    656       /// Iterators
    657       ExitNotTakenInfoIterator begin() const {
    658         return ExitNotTakenInfoIterator(this, 0);
    659       }
    660       ExitNotTakenInfoIterator end() const {
    661         return ExitNotTakenInfoIterator(nullptr, 0);
    662       }
    663     };
    664 
    665     /// Describes the extra information that a ExitNotTakenInfo can have.
    666     struct ExitNotTakenExtras {
    667       /// The predicate associated with the ExitNotTakenInfo struct.
    668       SCEVUnionPredicate Pred;
    669 
    670       /// The extra exits in the loop. Only the ExitNotTakenExtras structure
    671       /// pointed to by the first ExitNotTakenInfo struct (associated with the
    672       /// first loop exit) will populate this vector to prevent having
    673       /// redundant information.
    674       SmallVector<ExitNotTakenInfo, 4> Exits;
    675     };
    676 
    677     /// A struct containing the information attached to a backedge.
    678     struct EdgeInfo {
    679       EdgeInfo(BasicBlock *Block, const SCEV *Taken, SCEVUnionPredicate &P) :
    680           ExitBlock(Block), Taken(Taken), Pred(std::move(P)) {}
    681 
    682       /// The exit basic block.
    683       BasicBlock *ExitBlock;
    684 
    685       /// The (exact) number of time we take the edge back.
    686       const SCEV *Taken;
    687 
    688       /// The SCEV predicated associated with Taken. If Pred doesn't evaluate
    689       /// to true, the information in Taken is not valid (or equivalent with
    690       /// a CouldNotCompute.
    691       SCEVUnionPredicate Pred;
    692     };
    693 
    694     /// Information about the backedge-taken count of a loop. This currently
    695     /// includes an exact count and a maximum count.
    696     ///
    697     class BackedgeTakenInfo {
    698       /// A list of computable exits and their not-taken counts.  Loops almost
    699       /// never have more than one computable exit.
    700       ExitNotTakenInfo ExitNotTaken;
    701 
    702       /// An expression indicating the least maximum backedge-taken count of the
    703       /// loop that is known, or a SCEVCouldNotCompute. This expression is only
    704       /// valid if the predicates associated with all loop exits are true.
    705       const SCEV *Max;
    706 
    707     public:
    708       BackedgeTakenInfo() : Max(nullptr) {}
    709 
    710       /// Initialize BackedgeTakenInfo from a list of exact exit counts.
    711       BackedgeTakenInfo(SmallVectorImpl<EdgeInfo> &ExitCounts, bool Complete,
    712                         const SCEV *MaxCount);
    713 
    714       /// Test whether this BackedgeTakenInfo contains any computed information,
    715       /// or whether it's all SCEVCouldNotCompute values.
    716       bool hasAnyInfo() const {
    717         return ExitNotTaken.ExitingBlock || !isa<SCEVCouldNotCompute>(Max);
    718       }
    719 
    720       /// Test whether this BackedgeTakenInfo contains complete information.
    721       bool hasFullInfo() const { return ExitNotTaken.isCompleteList(); }
    722 
    723       /// Return an expression indicating the exact backedge-taken count of the
    724       /// loop if it is known or SCEVCouldNotCompute otherwise. This is the
    725       /// number of times the loop header can be guaranteed to execute, minus
    726       /// one.
    727       ///
    728       /// If the SCEV predicate associated with the answer can be different
    729       /// from AlwaysTrue, we must add a (non null) Predicates argument.
    730       /// The SCEV predicate associated with the answer will be added to
    731       /// Predicates. A run-time check needs to be emitted for the SCEV
    732       /// predicate in order for the answer to be valid.
    733       ///
    734       /// Note that we should always know if we need to pass a predicate
    735       /// argument or not from the way the ExitCounts vector was computed.
    736       /// If we allowed SCEV predicates to be generated when populating this
    737       /// vector, this information can contain them and therefore a
    738       /// SCEVPredicate argument should be added to getExact.
    739       const SCEV *getExact(ScalarEvolution *SE,
    740                            SCEVUnionPredicate *Predicates = nullptr) const;
    741 
    742       /// Return the number of times this loop exit may fall through to the back
    743       /// edge, or SCEVCouldNotCompute. The loop is guaranteed not to exit via
    744       /// this block before this number of iterations, but may exit via another
    745       /// block.
    746       const SCEV *getExact(BasicBlock *ExitingBlock, ScalarEvolution *SE) const;
    747 
    748       /// Get the max backedge taken count for the loop.
    749       const SCEV *getMax(ScalarEvolution *SE) const;
    750 
    751       /// Return true if any backedge taken count expressions refer to the given
    752       /// subexpression.
    753       bool hasOperand(const SCEV *S, ScalarEvolution *SE) const;
    754 
    755       /// Invalidate this result and free associated memory.
    756       void clear();
    757     };
    758 
    759     /// Cache the backedge-taken count of the loops for this function as they
    760     /// are computed.
    761     DenseMap<const Loop *, BackedgeTakenInfo> BackedgeTakenCounts;
    762 
    763     /// Cache the predicated backedge-taken count of the loops for this
    764     /// function as they are computed.
    765     DenseMap<const Loop *, BackedgeTakenInfo> PredicatedBackedgeTakenCounts;
    766 
    767     /// This map contains entries for all of the PHI instructions that we
    768     /// attempt to compute constant evolutions for.  This allows us to avoid
    769     /// potentially expensive recomputation of these properties.  An instruction
    770     /// maps to null if we are unable to compute its exit value.
    771     DenseMap<PHINode*, Constant*> ConstantEvolutionLoopExitValue;
    772 
    773     /// This map contains entries for all the expressions that we attempt to
    774     /// compute getSCEVAtScope information for, which can be expensive in
    775     /// extreme cases.
    776     DenseMap<const SCEV *,
    777              SmallVector<std::pair<const Loop *, const SCEV *>, 2> > ValuesAtScopes;
    778 
    779     /// Memoized computeLoopDisposition results.
    780     DenseMap<const SCEV *,
    781              SmallVector<PointerIntPair<const Loop *, 2, LoopDisposition>, 2>>
    782         LoopDispositions;
    783 
    784     /// Cache for \c loopHasNoAbnormalExits.
    785     DenseMap<const Loop *, bool> LoopHasNoAbnormalExits;
    786 
    787     /// Returns true if \p L contains no instruction that can abnormally exit
    788     /// the loop (i.e. via throwing an exception, by terminating the thread
    789     /// cleanly or by infinite looping in a called function).  Strictly
    790     /// speaking, the last one is not leaving the loop, but is identical to
    791     /// leaving the loop for reasoning about undefined behavior.
    792     bool loopHasNoAbnormalExits(const Loop *L);
    793 
    794     /// Compute a LoopDisposition value.
    795     LoopDisposition computeLoopDisposition(const SCEV *S, const Loop *L);
    796 
    797     /// Memoized computeBlockDisposition results.
    798     DenseMap<
    799         const SCEV *,
    800         SmallVector<PointerIntPair<const BasicBlock *, 2, BlockDisposition>, 2>>
    801         BlockDispositions;
    802 
    803     /// Compute a BlockDisposition value.
    804     BlockDisposition computeBlockDisposition(const SCEV *S, const BasicBlock *BB);
    805 
    806     /// Memoized results from getRange
    807     DenseMap<const SCEV *, ConstantRange> UnsignedRanges;
    808 
    809     /// Memoized results from getRange
    810     DenseMap<const SCEV *, ConstantRange> SignedRanges;
    811 
    812     /// Used to parameterize getRange
    813     enum RangeSignHint { HINT_RANGE_UNSIGNED, HINT_RANGE_SIGNED };
    814 
    815     /// Set the memoized range for the given SCEV.
    816     const ConstantRange &setRange(const SCEV *S, RangeSignHint Hint,
    817                                   const ConstantRange &CR) {
    818       DenseMap<const SCEV *, ConstantRange> &Cache =
    819           Hint == HINT_RANGE_UNSIGNED ? UnsignedRanges : SignedRanges;
    820 
    821       auto Pair = Cache.insert({S, CR});
    822       if (!Pair.second)
    823         Pair.first->second = CR;
    824       return Pair.first->second;
    825     }
    826 
    827     /// Determine the range for a particular SCEV.
    828     ConstantRange getRange(const SCEV *S, RangeSignHint Hint);
    829 
    830     /// Determines the range for the affine SCEVAddRecExpr {\p Start,+,\p Stop}.
    831     /// Helper for \c getRange.
    832     ConstantRange getRangeForAffineAR(const SCEV *Start, const SCEV *Stop,
    833                                       const SCEV *MaxBECount,
    834                                       unsigned BitWidth);
    835 
    836     /// Try to compute a range for the affine SCEVAddRecExpr {\p Start,+,\p
    837     /// Stop} by "factoring out" a ternary expression from the add recurrence.
    838     /// Helper called by \c getRange.
    839     ConstantRange getRangeViaFactoring(const SCEV *Start, const SCEV *Stop,
    840                                        const SCEV *MaxBECount,
    841                                        unsigned BitWidth);
    842 
    843     /// We know that there is no SCEV for the specified value.  Analyze the
    844     /// expression.
    845     const SCEV *createSCEV(Value *V);
    846 
    847     /// Provide the special handling we need to analyze PHI SCEVs.
    848     const SCEV *createNodeForPHI(PHINode *PN);
    849 
    850     /// Helper function called from createNodeForPHI.
    851     const SCEV *createAddRecFromPHI(PHINode *PN);
    852 
    853     /// Helper function called from createNodeForPHI.
    854     const SCEV *createNodeFromSelectLikePHI(PHINode *PN);
    855 
    856     /// Provide special handling for a select-like instruction (currently this
    857     /// is either a select instruction or a phi node).  \p I is the instruction
    858     /// being processed, and it is assumed equivalent to "Cond ? TrueVal :
    859     /// FalseVal".
    860     const SCEV *createNodeForSelectOrPHI(Instruction *I, Value *Cond,
    861                                          Value *TrueVal, Value *FalseVal);
    862 
    863     /// Provide the special handling we need to analyze GEP SCEVs.
    864     const SCEV *createNodeForGEP(GEPOperator *GEP);
    865 
    866     /// Implementation code for getSCEVAtScope; called at most once for each
    867     /// SCEV+Loop pair.
    868     ///
    869     const SCEV *computeSCEVAtScope(const SCEV *S, const Loop *L);
    870 
    871     /// This looks up computed SCEV values for all instructions that depend on
    872     /// the given instruction and removes them from the ValueExprMap map if they
    873     /// reference SymName. This is used during PHI resolution.
    874     void forgetSymbolicName(Instruction *I, const SCEV *SymName);
    875 
    876     /// Return the BackedgeTakenInfo for the given loop, lazily computing new
    877     /// values if the loop hasn't been analyzed yet. The returned result is
    878     /// guaranteed not to be predicated.
    879     const BackedgeTakenInfo &getBackedgeTakenInfo(const Loop *L);
    880 
    881     /// Similar to getBackedgeTakenInfo, but will add predicates as required
    882     /// with the purpose of returning complete information.
    883     const BackedgeTakenInfo &getPredicatedBackedgeTakenInfo(const Loop *L);
    884 
    885     /// Compute the number of times the specified loop will iterate.
    886     /// If AllowPredicates is set, we will create new SCEV predicates as
    887     /// necessary in order to return an exact answer.
    888     BackedgeTakenInfo computeBackedgeTakenCount(const Loop *L,
    889                                                 bool AllowPredicates = false);
    890 
    891     /// Compute the number of times the backedge of the specified loop will
    892     /// execute if it exits via the specified block. If AllowPredicates is set,
    893     /// this call will try to use a minimal set of SCEV predicates in order to
    894     /// return an exact answer.
    895     ExitLimit computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
    896                                bool AllowPredicates = false);
    897 
    898     /// Compute the number of times the backedge of the specified loop will
    899     /// execute if its exit condition were a conditional branch of ExitCond,
    900     /// TBB, and FBB.
    901     ///
    902     /// \p ControlsExit is true if ExitCond directly controls the exit
    903     /// branch. In this case, we can assume that the loop exits only if the
    904     /// condition is true and can infer that failing to meet the condition prior
    905     /// to integer wraparound results in undefined behavior.
    906     ///
    907     /// If \p AllowPredicates is set, this call will try to use a minimal set of
    908     /// SCEV predicates in order to return an exact answer.
    909     ExitLimit computeExitLimitFromCond(const Loop *L,
    910                                        Value *ExitCond,
    911                                        BasicBlock *TBB,
    912                                        BasicBlock *FBB,
    913                                        bool ControlsExit,
    914                                        bool AllowPredicates = false);
    915 
    916     /// Compute the number of times the backedge of the specified loop will
    917     /// execute if its exit condition were a conditional branch of the ICmpInst
    918     /// ExitCond, TBB, and FBB. If AllowPredicates is set, this call will try
    919     /// to use a minimal set of SCEV predicates in order to return an exact
    920     /// answer.
    921     ExitLimit computeExitLimitFromICmp(const Loop *L,
    922                                        ICmpInst *ExitCond,
    923                                        BasicBlock *TBB,
    924                                        BasicBlock *FBB,
    925                                        bool IsSubExpr,
    926                                        bool AllowPredicates = false);
    927 
    928     /// Compute the number of times the backedge of the specified loop will
    929     /// execute if its exit condition were a switch with a single exiting case
    930     /// to ExitingBB.
    931     ExitLimit
    932     computeExitLimitFromSingleExitSwitch(const Loop *L, SwitchInst *Switch,
    933                                BasicBlock *ExitingBB, bool IsSubExpr);
    934 
    935     /// Given an exit condition of 'icmp op load X, cst', try to see if we can
    936     /// compute the backedge-taken count.
    937     ExitLimit computeLoadConstantCompareExitLimit(LoadInst *LI,
    938                                                   Constant *RHS,
    939                                                   const Loop *L,
    940                                                   ICmpInst::Predicate p);
    941 
    942     /// Compute the exit limit of a loop that is controlled by a
    943     /// "(IV >> 1) != 0" type comparison.  We cannot compute the exact trip
    944     /// count in these cases (since SCEV has no way of expressing them), but we
    945     /// can still sometimes compute an upper bound.
    946     ///
    947     /// Return an ExitLimit for a loop whose backedge is guarded by `LHS Pred
    948     /// RHS`.
    949     ExitLimit computeShiftCompareExitLimit(Value *LHS, Value *RHS,
    950                                            const Loop *L,
    951                                            ICmpInst::Predicate Pred);
    952 
    953     /// If the loop is known to execute a constant number of times (the
    954     /// condition evolves only from constants), try to evaluate a few iterations
    955     /// of the loop until we get the exit condition gets a value of ExitWhen
    956     /// (true or false).  If we cannot evaluate the exit count of the loop,
    957     /// return CouldNotCompute.
    958     const SCEV *computeExitCountExhaustively(const Loop *L,
    959                                              Value *Cond,
    960                                              bool ExitWhen);
    961 
    962     /// Return the number of times an exit condition comparing the specified
    963     /// value to zero will execute.  If not computable, return CouldNotCompute.
    964     /// If AllowPredicates is set, this call will try to use a minimal set of
    965     /// SCEV predicates in order to return an exact answer.
    966     ExitLimit howFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr,
    967                            bool AllowPredicates = false);
    968 
    969     /// Return the number of times an exit condition checking the specified
    970     /// value for nonzero will execute.  If not computable, return
    971     /// CouldNotCompute.
    972     ExitLimit howFarToNonZero(const SCEV *V, const Loop *L);
    973 
    974     /// Return the number of times an exit condition containing the specified
    975     /// less-than comparison will execute.  If not computable, return
    976     /// CouldNotCompute.
    977     ///
    978     /// \p isSigned specifies whether the less-than is signed.
    979     ///
    980     /// \p ControlsExit is true when the LHS < RHS condition directly controls
    981     /// the branch (loops exits only if condition is true). In this case, we can
    982     /// use NoWrapFlags to skip overflow checks.
    983     ///
    984     /// If \p AllowPredicates is set, this call will try to use a minimal set of
    985     /// SCEV predicates in order to return an exact answer.
    986     ExitLimit howManyLessThans(const SCEV *LHS, const SCEV *RHS, const Loop *L,
    987                                bool isSigned, bool ControlsExit,
    988                                bool AllowPredicates = false);
    989 
    990     ExitLimit howManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
    991                                   const Loop *L, bool isSigned, bool IsSubExpr,
    992                                   bool AllowPredicates = false);
    993 
    994     /// Return a predecessor of BB (which may not be an immediate predecessor)
    995     /// which has exactly one successor from which BB is reachable, or null if
    996     /// no such block is found.
    997     std::pair<BasicBlock *, BasicBlock *>
    998     getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB);
    999 
   1000     /// Test whether the condition described by Pred, LHS, and RHS is true
   1001     /// whenever the given FoundCondValue value evaluates to true.
   1002     bool isImpliedCond(ICmpInst::Predicate Pred,
   1003                        const SCEV *LHS, const SCEV *RHS,
   1004                        Value *FoundCondValue,
   1005                        bool Inverse);
   1006 
   1007     /// Test whether the condition described by Pred, LHS, and RHS is true
   1008     /// whenever the condition described by FoundPred, FoundLHS, FoundRHS is
   1009     /// true.
   1010     bool isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
   1011                        const SCEV *RHS, ICmpInst::Predicate FoundPred,
   1012                        const SCEV *FoundLHS, const SCEV *FoundRHS);
   1013 
   1014     /// Test whether the condition described by Pred, LHS, and RHS is true
   1015     /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
   1016     /// true.
   1017     bool isImpliedCondOperands(ICmpInst::Predicate Pred,
   1018                                const SCEV *LHS, const SCEV *RHS,
   1019                                const SCEV *FoundLHS, const SCEV *FoundRHS);
   1020 
   1021     /// Test whether the condition described by Pred, LHS, and RHS is true
   1022     /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
   1023     /// true.
   1024     bool isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
   1025                                      const SCEV *LHS, const SCEV *RHS,
   1026                                      const SCEV *FoundLHS,
   1027                                      const SCEV *FoundRHS);
   1028 
   1029     /// Test whether the condition described by Pred, LHS, and RHS is true
   1030     /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
   1031     /// true.  Utility function used by isImpliedCondOperands.  Tries to get
   1032     /// cases like "X `sgt` 0 => X - 1 `sgt` -1".
   1033     bool isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
   1034                                         const SCEV *LHS, const SCEV *RHS,
   1035                                         const SCEV *FoundLHS,
   1036                                         const SCEV *FoundRHS);
   1037 
   1038     /// Return true if the condition denoted by \p LHS \p Pred \p RHS is implied
   1039     /// by a call to \c @llvm.experimental.guard in \p BB.
   1040     bool isImpliedViaGuard(BasicBlock *BB, ICmpInst::Predicate Pred,
   1041                            const SCEV *LHS, const SCEV *RHS);
   1042 
   1043     /// Test whether the condition described by Pred, LHS, and RHS is true
   1044     /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
   1045     /// true.
   1046     ///
   1047     /// This routine tries to rule out certain kinds of integer overflow, and
   1048     /// then tries to reason about arithmetic properties of the predicates.
   1049     bool isImpliedCondOperandsViaNoOverflow(ICmpInst::Predicate Pred,
   1050                                             const SCEV *LHS, const SCEV *RHS,
   1051                                             const SCEV *FoundLHS,
   1052                                             const SCEV *FoundRHS);
   1053 
   1054     /// If we know that the specified Phi is in the header of its containing
   1055     /// loop, we know the loop executes a constant number of times, and the PHI
   1056     /// node is just a recurrence involving constants, fold it.
   1057     Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs,
   1058                                                 const Loop *L);
   1059 
   1060     /// Test if the given expression is known to satisfy the condition described
   1061     /// by Pred and the known constant ranges of LHS and RHS.
   1062     ///
   1063     bool isKnownPredicateViaConstantRanges(ICmpInst::Predicate Pred,
   1064                                            const SCEV *LHS, const SCEV *RHS);
   1065 
   1066     /// Try to prove the condition described by "LHS Pred RHS" by ruling out
   1067     /// integer overflow.
   1068     ///
   1069     /// For instance, this will return true for "A s< (A + C)<nsw>" if C is
   1070     /// positive.
   1071     bool isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
   1072                                        const SCEV *LHS, const SCEV *RHS);
   1073 
   1074     /// Try to split Pred LHS RHS into logical conjunctions (and's) and try to
   1075     /// prove them individually.
   1076     bool isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, const SCEV *LHS,
   1077                                       const SCEV *RHS);
   1078 
   1079     /// Try to match the Expr as "(L + R)<Flags>".
   1080     bool splitBinaryAdd(const SCEV *Expr, const SCEV *&L, const SCEV *&R,
   1081                         SCEV::NoWrapFlags &Flags);
   1082 
   1083     /// Return true if More == (Less + C), where C is a constant.  This is
   1084     /// intended to be used as a cheaper substitute for full SCEV subtraction.
   1085     bool computeConstantDifference(const SCEV *Less, const SCEV *More,
   1086                                    APInt &C);
   1087 
   1088     /// Drop memoized information computed for S.
   1089     void forgetMemoizedResults(const SCEV *S);
   1090 
   1091     /// Return an existing SCEV for V if there is one, otherwise return nullptr.
   1092     const SCEV *getExistingSCEV(Value *V);
   1093 
   1094     /// Return false iff given SCEV contains a SCEVUnknown with NULL value-
   1095     /// pointer.
   1096     bool checkValidity(const SCEV *S) const;
   1097 
   1098     /// Return true if `ExtendOpTy`({`Start`,+,`Step`}) can be proved to be
   1099     /// equal to {`ExtendOpTy`(`Start`),+,`ExtendOpTy`(`Step`)}.  This is
   1100     /// equivalent to proving no signed (resp. unsigned) wrap in
   1101     /// {`Start`,+,`Step`} if `ExtendOpTy` is `SCEVSignExtendExpr`
   1102     /// (resp. `SCEVZeroExtendExpr`).
   1103     ///
   1104     template<typename ExtendOpTy>
   1105     bool proveNoWrapByVaryingStart(const SCEV *Start, const SCEV *Step,
   1106                                    const Loop *L);
   1107 
   1108     /// Try to prove NSW or NUW on \p AR relying on ConstantRange manipulation.
   1109     SCEV::NoWrapFlags proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR);
   1110 
   1111     bool isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
   1112                                   ICmpInst::Predicate Pred, bool &Increasing);
   1113 
   1114     /// Return true if, for all loop invariant X, the predicate "LHS `Pred` X"
   1115     /// is monotonically increasing or decreasing.  In the former case set
   1116     /// `Increasing` to true and in the latter case set `Increasing` to false.
   1117     ///
   1118     /// A predicate is said to be monotonically increasing if may go from being
   1119     /// false to being true as the loop iterates, but never the other way
   1120     /// around.  A predicate is said to be monotonically decreasing if may go
   1121     /// from being true to being false as the loop iterates, but never the other
   1122     /// way around.
   1123     bool isMonotonicPredicate(const SCEVAddRecExpr *LHS,
   1124                               ICmpInst::Predicate Pred, bool &Increasing);
   1125 
   1126     /// Return SCEV no-wrap flags that can be proven based on reasoning about
   1127     /// how poison produced from no-wrap flags on this value (e.g. a nuw add)
   1128     /// would trigger undefined behavior on overflow.
   1129     SCEV::NoWrapFlags getNoWrapFlagsFromUB(const Value *V);
   1130 
   1131     /// Return true if the SCEV corresponding to \p I is never poison.  Proving
   1132     /// this is more complex than proving that just \p I is never poison, since
   1133     /// SCEV commons expressions across control flow, and you can have cases
   1134     /// like:
   1135     ///
   1136     ///   idx0 = a + b;
   1137     ///   ptr[idx0] = 100;
   1138     ///   if (<condition>) {
   1139     ///     idx1 = a +nsw b;
   1140     ///     ptr[idx1] = 200;
   1141     ///   }
   1142     ///
   1143     /// where the SCEV expression (+ a b) is guaranteed to not be poison (and
   1144     /// hence not sign-overflow) only if "<condition>" is true.  Since both
   1145     /// `idx0` and `idx1` will be mapped to the same SCEV expression, (+ a b),
   1146     /// it is not okay to annotate (+ a b) with <nsw> in the above example.
   1147     bool isSCEVExprNeverPoison(const Instruction *I);
   1148 
   1149     /// This is like \c isSCEVExprNeverPoison but it specifically works for
   1150     /// instructions that will get mapped to SCEV add recurrences.  Return true
   1151     /// if \p I will never generate poison under the assumption that \p I is an
   1152     /// add recurrence on the loop \p L.
   1153     bool isAddRecNeverPoison(const Instruction *I, const Loop *L);
   1154 
   1155   public:
   1156     ScalarEvolution(Function &F, TargetLibraryInfo &TLI, AssumptionCache &AC,
   1157                     DominatorTree &DT, LoopInfo &LI);
   1158     ~ScalarEvolution();
   1159     ScalarEvolution(ScalarEvolution &&Arg);
   1160 
   1161     LLVMContext &getContext() const { return F.getContext(); }
   1162 
   1163     /// Test if values of the given type are analyzable within the SCEV
   1164     /// framework. This primarily includes integer types, and it can optionally
   1165     /// include pointer types if the ScalarEvolution class has access to
   1166     /// target-specific information.
   1167     bool isSCEVable(Type *Ty) const;
   1168 
   1169     /// Return the size in bits of the specified type, for which isSCEVable must
   1170     /// return true.
   1171     uint64_t getTypeSizeInBits(Type *Ty) const;
   1172 
   1173     /// Return a type with the same bitwidth as the given type and which
   1174     /// represents how SCEV will treat the given type, for which isSCEVable must
   1175     /// return true. For pointer types, this is the pointer-sized integer type.
   1176     Type *getEffectiveSCEVType(Type *Ty) const;
   1177 
   1178     /// Return true if the SCEV is a scAddRecExpr or it contains
   1179     /// scAddRecExpr. The result will be cached in HasRecMap.
   1180     ///
   1181     bool containsAddRecurrence(const SCEV *S);
   1182 
   1183     /// Return the Value set from which the SCEV expr is generated.
   1184     SetVector<Value *> *getSCEVValues(const SCEV *S);
   1185 
   1186     /// Erase Value from ValueExprMap and ExprValueMap.
   1187     void eraseValueFromMap(Value *V);
   1188 
   1189     /// Return a SCEV expression for the full generality of the specified
   1190     /// expression.
   1191     const SCEV *getSCEV(Value *V);
   1192 
   1193     const SCEV *getConstant(ConstantInt *V);
   1194     const SCEV *getConstant(const APInt& Val);
   1195     const SCEV *getConstant(Type *Ty, uint64_t V, bool isSigned = false);
   1196     const SCEV *getTruncateExpr(const SCEV *Op, Type *Ty);
   1197     const SCEV *getZeroExtendExpr(const SCEV *Op, Type *Ty);
   1198     const SCEV *getSignExtendExpr(const SCEV *Op, Type *Ty);
   1199     const SCEV *getAnyExtendExpr(const SCEV *Op, Type *Ty);
   1200     const SCEV *getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
   1201                            SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
   1202     const SCEV *getAddExpr(const SCEV *LHS, const SCEV *RHS,
   1203                            SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
   1204       SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
   1205       return getAddExpr(Ops, Flags);
   1206     }
   1207     const SCEV *getAddExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
   1208                            SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
   1209       SmallVector<const SCEV *, 3> Ops = {Op0, Op1, Op2};
   1210       return getAddExpr(Ops, Flags);
   1211     }
   1212     const SCEV *getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
   1213                            SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
   1214     const SCEV *getMulExpr(const SCEV *LHS, const SCEV *RHS,
   1215                            SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
   1216       SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
   1217       return getMulExpr(Ops, Flags);
   1218     }
   1219     const SCEV *getMulExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
   1220                            SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
   1221       SmallVector<const SCEV *, 3> Ops = {Op0, Op1, Op2};
   1222       return getMulExpr(Ops, Flags);
   1223     }
   1224     const SCEV *getUDivExpr(const SCEV *LHS, const SCEV *RHS);
   1225     const SCEV *getUDivExactExpr(const SCEV *LHS, const SCEV *RHS);
   1226     const SCEV *getAddRecExpr(const SCEV *Start, const SCEV *Step,
   1227                               const Loop *L, SCEV::NoWrapFlags Flags);
   1228     const SCEV *getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
   1229                               const Loop *L, SCEV::NoWrapFlags Flags);
   1230     const SCEV *getAddRecExpr(const SmallVectorImpl<const SCEV *> &Operands,
   1231                               const Loop *L, SCEV::NoWrapFlags Flags) {
   1232       SmallVector<const SCEV *, 4> NewOp(Operands.begin(), Operands.end());
   1233       return getAddRecExpr(NewOp, L, Flags);
   1234     }
   1235     /// Returns an expression for a GEP
   1236     ///
   1237     /// \p PointeeType The type used as the basis for the pointer arithmetics
   1238     /// \p BaseExpr The expression for the pointer operand.
   1239     /// \p IndexExprs The expressions for the indices.
   1240     /// \p InBounds Whether the GEP is in bounds.
   1241     const SCEV *getGEPExpr(Type *PointeeType, const SCEV *BaseExpr,
   1242                            const SmallVectorImpl<const SCEV *> &IndexExprs,
   1243                            bool InBounds = false);
   1244     const SCEV *getSMaxExpr(const SCEV *LHS, const SCEV *RHS);
   1245     const SCEV *getSMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
   1246     const SCEV *getUMaxExpr(const SCEV *LHS, const SCEV *RHS);
   1247     const SCEV *getUMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
   1248     const SCEV *getSMinExpr(const SCEV *LHS, const SCEV *RHS);
   1249     const SCEV *getUMinExpr(const SCEV *LHS, const SCEV *RHS);
   1250     const SCEV *getUnknown(Value *V);
   1251     const SCEV *getCouldNotCompute();
   1252 
   1253     /// Return a SCEV for the constant 0 of a specific type.
   1254     const SCEV *getZero(Type *Ty) { return getConstant(Ty, 0); }
   1255 
   1256     /// Return a SCEV for the constant 1 of a specific type.
   1257     const SCEV *getOne(Type *Ty) { return getConstant(Ty, 1); }
   1258 
   1259     /// Return an expression for sizeof AllocTy that is type IntTy
   1260     ///
   1261     const SCEV *getSizeOfExpr(Type *IntTy, Type *AllocTy);
   1262 
   1263     /// Return an expression for offsetof on the given field with type IntTy
   1264     ///
   1265     const SCEV *getOffsetOfExpr(Type *IntTy, StructType *STy, unsigned FieldNo);
   1266 
   1267     /// Return the SCEV object corresponding to -V.
   1268     ///
   1269     const SCEV *getNegativeSCEV(const SCEV *V,
   1270                                 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
   1271 
   1272     /// Return the SCEV object corresponding to ~V.
   1273     ///
   1274     const SCEV *getNotSCEV(const SCEV *V);
   1275 
   1276     /// Return LHS-RHS.  Minus is represented in SCEV as A+B*-1.
   1277     const SCEV *getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
   1278                              SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
   1279 
   1280     /// Return a SCEV corresponding to a conversion of the input value to the
   1281     /// specified type.  If the type must be extended, it is zero extended.
   1282     const SCEV *getTruncateOrZeroExtend(const SCEV *V, Type *Ty);
   1283 
   1284     /// Return a SCEV corresponding to a conversion of the input value to the
   1285     /// specified type.  If the type must be extended, it is sign extended.
   1286     const SCEV *getTruncateOrSignExtend(const SCEV *V, Type *Ty);
   1287 
   1288     /// Return a SCEV corresponding to a conversion of the input value to the
   1289     /// specified type.  If the type must be extended, it is zero extended.  The
   1290     /// conversion must not be narrowing.
   1291     const SCEV *getNoopOrZeroExtend(const SCEV *V, Type *Ty);
   1292 
   1293     /// Return a SCEV corresponding to a conversion of the input value to the
   1294     /// specified type.  If the type must be extended, it is sign extended.  The
   1295     /// conversion must not be narrowing.
   1296     const SCEV *getNoopOrSignExtend(const SCEV *V, Type *Ty);
   1297 
   1298     /// Return a SCEV corresponding to a conversion of the input value to the
   1299     /// specified type. If the type must be extended, it is extended with
   1300     /// unspecified bits. The conversion must not be narrowing.
   1301     const SCEV *getNoopOrAnyExtend(const SCEV *V, Type *Ty);
   1302 
   1303     /// Return a SCEV corresponding to a conversion of the input value to the
   1304     /// specified type.  The conversion must not be widening.
   1305     const SCEV *getTruncateOrNoop(const SCEV *V, Type *Ty);
   1306 
   1307     /// Promote the operands to the wider of the types using zero-extension, and
   1308     /// then perform a umax operation with them.
   1309     const SCEV *getUMaxFromMismatchedTypes(const SCEV *LHS,
   1310                                            const SCEV *RHS);
   1311 
   1312     /// Promote the operands to the wider of the types using zero-extension, and
   1313     /// then perform a umin operation with them.
   1314     const SCEV *getUMinFromMismatchedTypes(const SCEV *LHS,
   1315                                            const SCEV *RHS);
   1316 
   1317     /// Transitively follow the chain of pointer-type operands until reaching a
   1318     /// SCEV that does not have a single pointer operand. This returns a
   1319     /// SCEVUnknown pointer for well-formed pointer-type expressions, but corner
   1320     /// cases do exist.
   1321     const SCEV *getPointerBase(const SCEV *V);
   1322 
   1323     /// Return a SCEV expression for the specified value at the specified scope
   1324     /// in the program.  The L value specifies a loop nest to evaluate the
   1325     /// expression at, where null is the top-level or a specified loop is
   1326     /// immediately inside of the loop.
   1327     ///
   1328     /// This method can be used to compute the exit value for a variable defined
   1329     /// in a loop by querying what the value will hold in the parent loop.
   1330     ///
   1331     /// In the case that a relevant loop exit value cannot be computed, the
   1332     /// original value V is returned.
   1333     const SCEV *getSCEVAtScope(const SCEV *S, const Loop *L);
   1334 
   1335     /// This is a convenience function which does getSCEVAtScope(getSCEV(V), L).
   1336     const SCEV *getSCEVAtScope(Value *V, const Loop *L);
   1337 
   1338     /// Test whether entry to the loop is protected by a conditional between LHS
   1339     /// and RHS.  This is used to help avoid max expressions in loop trip
   1340     /// counts, and to eliminate casts.
   1341     bool isLoopEntryGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
   1342                                   const SCEV *LHS, const SCEV *RHS);
   1343 
   1344     /// Test whether the backedge of the loop is protected by a conditional
   1345     /// between LHS and RHS.  This is used to to eliminate casts.
   1346     bool isLoopBackedgeGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
   1347                                      const SCEV *LHS, const SCEV *RHS);
   1348 
   1349     /// Returns the maximum trip count of the loop if it is a single-exit
   1350     /// loop and we can compute a small maximum for that loop.
   1351     ///
   1352     /// Implemented in terms of the \c getSmallConstantTripCount overload with
   1353     /// the single exiting block passed to it. See that routine for details.
   1354     unsigned getSmallConstantTripCount(Loop *L);
   1355 
   1356     /// Returns the maximum trip count of this loop as a normal unsigned
   1357     /// value. Returns 0 if the trip count is unknown or not constant. This
   1358     /// "trip count" assumes that control exits via ExitingBlock. More
   1359     /// precisely, it is the number of times that control may reach ExitingBlock
   1360     /// before taking the branch. For loops with multiple exits, it may not be
   1361     /// the number times that the loop header executes if the loop exits
   1362     /// prematurely via another branch.
   1363     unsigned getSmallConstantTripCount(Loop *L, BasicBlock *ExitingBlock);
   1364 
   1365     /// Returns the largest constant divisor of the trip count of the
   1366     /// loop if it is a single-exit loop and we can compute a small maximum for
   1367     /// that loop.
   1368     ///
   1369     /// Implemented in terms of the \c getSmallConstantTripMultiple overload with
   1370     /// the single exiting block passed to it. See that routine for details.
   1371     unsigned getSmallConstantTripMultiple(Loop *L);
   1372 
   1373     /// Returns the largest constant divisor of the trip count of this loop as a
   1374     /// normal unsigned value, if possible. This means that the actual trip
   1375     /// count is always a multiple of the returned value (don't forget the trip
   1376     /// count could very well be zero as well!). As explained in the comments
   1377     /// for getSmallConstantTripCount, this assumes that control exits the loop
   1378     /// via ExitingBlock.
   1379     unsigned getSmallConstantTripMultiple(Loop *L, BasicBlock *ExitingBlock);
   1380 
   1381     /// Get the expression for the number of loop iterations for which this loop
   1382     /// is guaranteed not to exit via ExitingBlock. Otherwise return
   1383     /// SCEVCouldNotCompute.
   1384     const SCEV *getExitCount(Loop *L, BasicBlock *ExitingBlock);
   1385 
   1386     /// If the specified loop has a predictable backedge-taken count, return it,
   1387     /// otherwise return a SCEVCouldNotCompute object. The backedge-taken count
   1388     /// is the number of times the loop header will be branched to from within
   1389     /// the loop. This is one less than the trip count of the loop, since it
   1390     /// doesn't count the first iteration, when the header is branched to from
   1391     /// outside the loop.
   1392     ///
   1393     /// Note that it is not valid to call this method on a loop without a
   1394     /// loop-invariant backedge-taken count (see
   1395     /// hasLoopInvariantBackedgeTakenCount).
   1396     ///
   1397     const SCEV *getBackedgeTakenCount(const Loop *L);
   1398 
   1399     /// Similar to getBackedgeTakenCount, except it will add a set of
   1400     /// SCEV predicates to Predicates that are required to be true in order for
   1401     /// the answer to be correct. Predicates can be checked with run-time
   1402     /// checks and can be used to perform loop versioning.
   1403     const SCEV *getPredicatedBackedgeTakenCount(const Loop *L,
   1404                                                 SCEVUnionPredicate &Predicates);
   1405 
   1406     /// Similar to getBackedgeTakenCount, except return the least SCEV value
   1407     /// that is known never to be less than the actual backedge taken count.
   1408     const SCEV *getMaxBackedgeTakenCount(const Loop *L);
   1409 
   1410     /// Return true if the specified loop has an analyzable loop-invariant
   1411     /// backedge-taken count.
   1412     bool hasLoopInvariantBackedgeTakenCount(const Loop *L);
   1413 
   1414     /// This method should be called by the client when it has changed a loop in
   1415     /// a way that may effect ScalarEvolution's ability to compute a trip count,
   1416     /// or if the loop is deleted.  This call is potentially expensive for large
   1417     /// loop bodies.
   1418     void forgetLoop(const Loop *L);
   1419 
   1420     /// This method should be called by the client when it has changed a value
   1421     /// in a way that may effect its value, or which may disconnect it from a
   1422     /// def-use chain linking it to a loop.
   1423     void forgetValue(Value *V);
   1424 
   1425     /// Called when the client has changed the disposition of values in
   1426     /// this loop.
   1427     ///
   1428     /// We don't have a way to invalidate per-loop dispositions. Clear and
   1429     /// recompute is simpler.
   1430     void forgetLoopDispositions(const Loop *L) { LoopDispositions.clear(); }
   1431 
   1432     /// Determine the minimum number of zero bits that S is guaranteed to end in
   1433     /// (at every loop iteration).  It is, at the same time, the minimum number
   1434     /// of times S is divisible by 2.  For example, given {4,+,8} it returns 2.
   1435     /// If S is guaranteed to be 0, it returns the bitwidth of S.
   1436     uint32_t GetMinTrailingZeros(const SCEV *S);
   1437 
   1438     /// Determine the unsigned range for a particular SCEV.
   1439     ///
   1440     ConstantRange getUnsignedRange(const SCEV *S) {
   1441       return getRange(S, HINT_RANGE_UNSIGNED);
   1442     }
   1443 
   1444     /// Determine the signed range for a particular SCEV.
   1445     ///
   1446     ConstantRange getSignedRange(const SCEV *S) {
   1447       return getRange(S, HINT_RANGE_SIGNED);
   1448     }
   1449 
   1450     /// Test if the given expression is known to be negative.
   1451     ///
   1452     bool isKnownNegative(const SCEV *S);
   1453 
   1454     /// Test if the given expression is known to be positive.
   1455     ///
   1456     bool isKnownPositive(const SCEV *S);
   1457 
   1458     /// Test if the given expression is known to be non-negative.
   1459     ///
   1460     bool isKnownNonNegative(const SCEV *S);
   1461 
   1462     /// Test if the given expression is known to be non-positive.
   1463     ///
   1464     bool isKnownNonPositive(const SCEV *S);
   1465 
   1466     /// Test if the given expression is known to be non-zero.
   1467     ///
   1468     bool isKnownNonZero(const SCEV *S);
   1469 
   1470     /// Test if the given expression is known to satisfy the condition described
   1471     /// by Pred, LHS, and RHS.
   1472     ///
   1473     bool isKnownPredicate(ICmpInst::Predicate Pred,
   1474                           const SCEV *LHS, const SCEV *RHS);
   1475 
   1476     /// Return true if the result of the predicate LHS `Pred` RHS is loop
   1477     /// invariant with respect to L.  Set InvariantPred, InvariantLHS and
   1478     /// InvariantLHS so that InvariantLHS `InvariantPred` InvariantRHS is the
   1479     /// loop invariant form of LHS `Pred` RHS.
   1480     bool isLoopInvariantPredicate(ICmpInst::Predicate Pred, const SCEV *LHS,
   1481                                   const SCEV *RHS, const Loop *L,
   1482                                   ICmpInst::Predicate &InvariantPred,
   1483                                   const SCEV *&InvariantLHS,
   1484                                   const SCEV *&InvariantRHS);
   1485 
   1486     /// Simplify LHS and RHS in a comparison with predicate Pred. Return true
   1487     /// iff any changes were made. If the operands are provably equal or
   1488     /// unequal, LHS and RHS are set to the same value and Pred is set to either
   1489     /// ICMP_EQ or ICMP_NE.
   1490     ///
   1491     bool SimplifyICmpOperands(ICmpInst::Predicate &Pred,
   1492                               const SCEV *&LHS,
   1493                               const SCEV *&RHS,
   1494                               unsigned Depth = 0);
   1495 
   1496     /// Return the "disposition" of the given SCEV with respect to the given
   1497     /// loop.
   1498     LoopDisposition getLoopDisposition(const SCEV *S, const Loop *L);
   1499 
   1500     /// Return true if the value of the given SCEV is unchanging in the
   1501     /// specified loop.
   1502     bool isLoopInvariant(const SCEV *S, const Loop *L);
   1503 
   1504     /// Return true if the given SCEV changes value in a known way in the
   1505     /// specified loop.  This property being true implies that the value is
   1506     /// variant in the loop AND that we can emit an expression to compute the
   1507     /// value of the expression at any particular loop iteration.
   1508     bool hasComputableLoopEvolution(const SCEV *S, const Loop *L);
   1509 
   1510     /// Return the "disposition" of the given SCEV with respect to the given
   1511     /// block.
   1512     BlockDisposition getBlockDisposition(const SCEV *S, const BasicBlock *BB);
   1513 
   1514     /// Return true if elements that makes up the given SCEV dominate the
   1515     /// specified basic block.
   1516     bool dominates(const SCEV *S, const BasicBlock *BB);
   1517 
   1518     /// Return true if elements that makes up the given SCEV properly dominate
   1519     /// the specified basic block.
   1520     bool properlyDominates(const SCEV *S, const BasicBlock *BB);
   1521 
   1522     /// Test whether the given SCEV has Op as a direct or indirect operand.
   1523     bool hasOperand(const SCEV *S, const SCEV *Op) const;
   1524 
   1525     /// Return the size of an element read or written by Inst.
   1526     const SCEV *getElementSize(Instruction *Inst);
   1527 
   1528     /// Compute the array dimensions Sizes from the set of Terms extracted from
   1529     /// the memory access function of this SCEVAddRecExpr (second step of
   1530     /// delinearization).
   1531     void findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
   1532                              SmallVectorImpl<const SCEV *> &Sizes,
   1533                              const SCEV *ElementSize) const;
   1534 
   1535     void print(raw_ostream &OS) const;
   1536     void verify() const;
   1537 
   1538     /// Collect parametric terms occurring in step expressions (first step of
   1539     /// delinearization).
   1540     void collectParametricTerms(const SCEV *Expr,
   1541                                 SmallVectorImpl<const SCEV *> &Terms);
   1542 
   1543 
   1544 
   1545     /// Return in Subscripts the access functions for each dimension in Sizes
   1546     /// (third step of delinearization).
   1547     void computeAccessFunctions(const SCEV *Expr,
   1548                                 SmallVectorImpl<const SCEV *> &Subscripts,
   1549                                 SmallVectorImpl<const SCEV *> &Sizes);
   1550 
   1551     /// Split this SCEVAddRecExpr into two vectors of SCEVs representing the
   1552     /// subscripts and sizes of an array access.
   1553     ///
   1554     /// The delinearization is a 3 step process: the first two steps compute the
   1555     /// sizes of each subscript and the third step computes the access functions
   1556     /// for the delinearized array:
   1557     ///
   1558     /// 1. Find the terms in the step functions
   1559     /// 2. Compute the array size
   1560     /// 3. Compute the access function: divide the SCEV by the array size
   1561     ///    starting with the innermost dimensions found in step 2. The Quotient
   1562     ///    is the SCEV to be divided in the next step of the recursion. The
   1563     ///    Remainder is the subscript of the innermost dimension. Loop over all
   1564     ///    array dimensions computed in step 2.
   1565     ///
   1566     /// To compute a uniform array size for several memory accesses to the same
   1567     /// object, one can collect in step 1 all the step terms for all the memory
   1568     /// accesses, and compute in step 2 a unique array shape. This guarantees
   1569     /// that the array shape will be the same across all memory accesses.
   1570     ///
   1571     /// FIXME: We could derive the result of steps 1 and 2 from a description of
   1572     /// the array shape given in metadata.
   1573     ///
   1574     /// Example:
   1575     ///
   1576     /// A[][n][m]
   1577     ///
   1578     /// for i
   1579     ///   for j
   1580     ///     for k
   1581     ///       A[j+k][2i][5i] =
   1582     ///
   1583     /// The initial SCEV:
   1584     ///
   1585     /// A[{{{0,+,2*m+5}_i, +, n*m}_j, +, n*m}_k]
   1586     ///
   1587     /// 1. Find the different terms in the step functions:
   1588     /// -> [2*m, 5, n*m, n*m]
   1589     ///
   1590     /// 2. Compute the array size: sort and unique them
   1591     /// -> [n*m, 2*m, 5]
   1592     /// find the GCD of all the terms = 1
   1593     /// divide by the GCD and erase constant terms
   1594     /// -> [n*m, 2*m]
   1595     /// GCD = m
   1596     /// divide by GCD -> [n, 2]
   1597     /// remove constant terms
   1598     /// -> [n]
   1599     /// size of the array is A[unknown][n][m]
   1600     ///
   1601     /// 3. Compute the access function
   1602     /// a. Divide {{{0,+,2*m+5}_i, +, n*m}_j, +, n*m}_k by the innermost size m
   1603     /// Quotient: {{{0,+,2}_i, +, n}_j, +, n}_k
   1604     /// Remainder: {{{0,+,5}_i, +, 0}_j, +, 0}_k
   1605     /// The remainder is the subscript of the innermost array dimension: [5i].
   1606     ///
   1607     /// b. Divide Quotient: {{{0,+,2}_i, +, n}_j, +, n}_k by next outer size n
   1608     /// Quotient: {{{0,+,0}_i, +, 1}_j, +, 1}_k
   1609     /// Remainder: {{{0,+,2}_i, +, 0}_j, +, 0}_k
   1610     /// The Remainder is the subscript of the next array dimension: [2i].
   1611     ///
   1612     /// The subscript of the outermost dimension is the Quotient: [j+k].
   1613     ///
   1614     /// Overall, we have: A[][n][m], and the access function: A[j+k][2i][5i].
   1615     void delinearize(const SCEV *Expr,
   1616                      SmallVectorImpl<const SCEV *> &Subscripts,
   1617                      SmallVectorImpl<const SCEV *> &Sizes,
   1618                      const SCEV *ElementSize);
   1619 
   1620     /// Return the DataLayout associated with the module this SCEV instance is
   1621     /// operating on.
   1622     const DataLayout &getDataLayout() const {
   1623       return F.getParent()->getDataLayout();
   1624     }
   1625 
   1626     const SCEVPredicate *getEqualPredicate(const SCEVUnknown *LHS,
   1627                                            const SCEVConstant *RHS);
   1628 
   1629     const SCEVPredicate *
   1630     getWrapPredicate(const SCEVAddRecExpr *AR,
   1631                      SCEVWrapPredicate::IncrementWrapFlags AddedFlags);
   1632 
   1633     /// Re-writes the SCEV according to the Predicates in \p A.
   1634     const SCEV *rewriteUsingPredicate(const SCEV *S, const Loop *L,
   1635                                       SCEVUnionPredicate &A);
   1636     /// Tries to convert the \p S expression to an AddRec expression,
   1637     /// adding additional predicates to \p Preds as required.
   1638     const SCEVAddRecExpr *
   1639     convertSCEVToAddRecWithPredicates(const SCEV *S, const Loop *L,
   1640                                       SCEVUnionPredicate &Preds);
   1641 
   1642   private:
   1643     /// Compute the backedge taken count knowing the interval difference, the
   1644     /// stride and presence of the equality in the comparison.
   1645     const SCEV *computeBECount(const SCEV *Delta, const SCEV *Stride,
   1646                                bool Equality);
   1647 
   1648     /// Verify if an linear IV with positive stride can overflow when in a
   1649     /// less-than comparison, knowing the invariant term of the comparison,
   1650     /// the stride and the knowledge of NSW/NUW flags on the recurrence.
   1651     bool doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
   1652                             bool IsSigned, bool NoWrap);
   1653 
   1654     /// Verify if an linear IV with negative stride can overflow when in a
   1655     /// greater-than comparison, knowing the invariant term of the comparison,
   1656     /// the stride and the knowledge of NSW/NUW flags on the recurrence.
   1657     bool doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
   1658                             bool IsSigned, bool NoWrap);
   1659 
   1660   private:
   1661     FoldingSet<SCEV> UniqueSCEVs;
   1662     FoldingSet<SCEVPredicate> UniquePreds;
   1663     BumpPtrAllocator SCEVAllocator;
   1664 
   1665     /// The head of a linked list of all SCEVUnknown values that have been
   1666     /// allocated. This is used by releaseMemory to locate them all and call
   1667     /// their destructors.
   1668     SCEVUnknown *FirstUnknown;
   1669   };
   1670 
   1671   /// Analysis pass that exposes the \c ScalarEvolution for a function.
   1672   class ScalarEvolutionAnalysis
   1673       : public AnalysisInfoMixin<ScalarEvolutionAnalysis> {
   1674     friend AnalysisInfoMixin<ScalarEvolutionAnalysis>;
   1675     static char PassID;
   1676 
   1677   public:
   1678     typedef ScalarEvolution Result;
   1679 
   1680     ScalarEvolution run(Function &F, AnalysisManager<Function> &AM);
   1681   };
   1682 
   1683   /// Printer pass for the \c ScalarEvolutionAnalysis results.
   1684   class ScalarEvolutionPrinterPass
   1685       : public PassInfoMixin<ScalarEvolutionPrinterPass> {
   1686     raw_ostream &OS;
   1687 
   1688   public:
   1689     explicit ScalarEvolutionPrinterPass(raw_ostream &OS) : OS(OS) {}
   1690     PreservedAnalyses run(Function &F, AnalysisManager<Function> &AM);
   1691   };
   1692 
   1693   class ScalarEvolutionWrapperPass : public FunctionPass {
   1694     std::unique_ptr<ScalarEvolution> SE;
   1695 
   1696   public:
   1697     static char ID;
   1698 
   1699     ScalarEvolutionWrapperPass();
   1700 
   1701     ScalarEvolution &getSE() { return *SE; }
   1702     const ScalarEvolution &getSE() const { return *SE; }
   1703 
   1704     bool runOnFunction(Function &F) override;
   1705     void releaseMemory() override;
   1706     void getAnalysisUsage(AnalysisUsage &AU) const override;
   1707     void print(raw_ostream &OS, const Module * = nullptr) const override;
   1708     void verifyAnalysis() const override;
   1709   };
   1710 
   1711   /// An interface layer with SCEV used to manage how we see SCEV expressions
   1712   /// for values in the context of existing predicates. We can add new
   1713   /// predicates, but we cannot remove them.
   1714   ///
   1715   /// This layer has multiple purposes:
   1716   ///   - provides a simple interface for SCEV versioning.
   1717   ///   - guarantees that the order of transformations applied on a SCEV
   1718   ///     expression for a single Value is consistent across two different
   1719   ///     getSCEV calls. This means that, for example, once we've obtained
   1720   ///     an AddRec expression for a certain value through expression
   1721   ///     rewriting, we will continue to get an AddRec expression for that
   1722   ///     Value.
   1723   ///   - lowers the number of expression rewrites.
   1724   class PredicatedScalarEvolution {
   1725   public:
   1726     PredicatedScalarEvolution(ScalarEvolution &SE, Loop &L);
   1727     const SCEVUnionPredicate &getUnionPredicate() const;
   1728 
   1729     /// Returns the SCEV expression of V, in the context of the current SCEV
   1730     /// predicate.  The order of transformations applied on the expression of V
   1731     /// returned by ScalarEvolution is guaranteed to be preserved, even when
   1732     /// adding new predicates.
   1733     const SCEV *getSCEV(Value *V);
   1734 
   1735     /// Get the (predicated) backedge count for the analyzed loop.
   1736     const SCEV *getBackedgeTakenCount();
   1737 
   1738     /// Adds a new predicate.
   1739     void addPredicate(const SCEVPredicate &Pred);
   1740 
   1741     /// Attempts to produce an AddRecExpr for V by adding additional SCEV
   1742     /// predicates. If we can't transform the expression into an AddRecExpr we
   1743     /// return nullptr and not add additional SCEV predicates to the current
   1744     /// context.
   1745     const SCEVAddRecExpr *getAsAddRec(Value *V);
   1746 
   1747     /// Proves that V doesn't overflow by adding SCEV predicate.
   1748     void setNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags);
   1749 
   1750     /// Returns true if we've proved that V doesn't wrap by means of a SCEV
   1751     /// predicate.
   1752     bool hasNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags);
   1753 
   1754     /// Returns the ScalarEvolution analysis used.
   1755     ScalarEvolution *getSE() const { return &SE; }
   1756 
   1757     /// We need to explicitly define the copy constructor because of FlagsMap.
   1758     PredicatedScalarEvolution(const PredicatedScalarEvolution&);
   1759 
   1760     /// Print the SCEV mappings done by the Predicated Scalar Evolution.
   1761     /// The printed text is indented by \p Depth.
   1762     void print(raw_ostream &OS, unsigned Depth) const;
   1763 
   1764   private:
   1765     /// Increments the version number of the predicate.  This needs to be called
   1766     /// every time the SCEV predicate changes.
   1767     void updateGeneration();
   1768 
   1769     /// Holds a SCEV and the version number of the SCEV predicate used to
   1770     /// perform the rewrite of the expression.
   1771     typedef std::pair<unsigned, const SCEV *> RewriteEntry;
   1772 
   1773     /// Maps a SCEV to the rewrite result of that SCEV at a certain version
   1774     /// number. If this number doesn't match the current Generation, we will
   1775     /// need to do a rewrite. To preserve the transformation order of previous
   1776     /// rewrites, we will rewrite the previous result instead of the original
   1777     /// SCEV.
   1778     DenseMap<const SCEV *, RewriteEntry> RewriteMap;
   1779 
   1780     /// Records what NoWrap flags we've added to a Value *.
   1781     ValueMap<Value *, SCEVWrapPredicate::IncrementWrapFlags> FlagsMap;
   1782 
   1783     /// The ScalarEvolution analysis.
   1784     ScalarEvolution &SE;
   1785 
   1786     /// The analyzed Loop.
   1787     const Loop &L;
   1788 
   1789     /// The SCEVPredicate that forms our context. We will rewrite all
   1790     /// expressions assuming that this predicate true.
   1791     SCEVUnionPredicate Preds;
   1792 
   1793     /// Marks the version of the SCEV predicate used. When rewriting a SCEV
   1794     /// expression we mark it with the version of the predicate. We use this to
   1795     /// figure out if the predicate has changed from the last rewrite of the
   1796     /// SCEV. If so, we need to perform a new rewrite.
   1797     unsigned Generation;
   1798 
   1799     /// The backedge taken count.
   1800     const SCEV *BackedgeCount;
   1801   };
   1802 }
   1803 
   1804 #endif
   1805