1 /* 2 * Copyright 2006 The Android Open Source Project 3 * 4 * Use of this source code is governed by a BSD-style license that can be 5 * found in the LICENSE file. 6 */ 7 8 #ifndef SkScalar_DEFINED 9 #define SkScalar_DEFINED 10 11 #include "../private/SkFloatingPoint.h" 12 13 #undef SK_SCALAR_IS_FLOAT 14 #define SK_SCALAR_IS_FLOAT 1 15 16 typedef float SkScalar; 17 18 #define SK_Scalar1 1.0f 19 #define SK_ScalarHalf 0.5f 20 #define SK_ScalarSqrt2 1.41421356f 21 #define SK_ScalarPI 3.14159265f 22 #define SK_ScalarTanPIOver8 0.414213562f 23 #define SK_ScalarRoot2Over2 0.707106781f 24 #define SK_ScalarMax 3.402823466e+38f 25 #define SK_ScalarInfinity SK_FloatInfinity 26 #define SK_ScalarNegativeInfinity SK_FloatNegativeInfinity 27 #define SK_ScalarNaN SK_FloatNaN 28 29 #define SkScalarFloorToScalar(x) sk_float_floor(x) 30 #define SkScalarCeilToScalar(x) sk_float_ceil(x) 31 #define SkScalarRoundToScalar(x) sk_float_floor((x) + 0.5f) 32 #define SkScalarTruncToScalar(x) sk_float_trunc(x) 33 34 #define SkScalarFloorToInt(x) sk_float_floor2int(x) 35 #define SkScalarCeilToInt(x) sk_float_ceil2int(x) 36 #define SkScalarRoundToInt(x) sk_float_round2int(x) 37 38 #define SkScalarAbs(x) sk_float_abs(x) 39 #define SkScalarCopySign(x, y) sk_float_copysign(x, y) 40 #define SkScalarMod(x, y) sk_float_mod(x,y) 41 #define SkScalarSqrt(x) sk_float_sqrt(x) 42 #define SkScalarPow(b, e) sk_float_pow(b, e) 43 44 #define SkScalarSin(radians) (float)sk_float_sin(radians) 45 #define SkScalarCos(radians) (float)sk_float_cos(radians) 46 #define SkScalarTan(radians) (float)sk_float_tan(radians) 47 #define SkScalarASin(val) (float)sk_float_asin(val) 48 #define SkScalarACos(val) (float)sk_float_acos(val) 49 #define SkScalarATan2(y, x) (float)sk_float_atan2(y,x) 50 #define SkScalarExp(x) (float)sk_float_exp(x) 51 #define SkScalarLog(x) (float)sk_float_log(x) 52 #define SkScalarLog2(x) (float)sk_float_log2(x) 53 54 ////////////////////////////////////////////////////////////////////////////////////////////////// 55 56 #define SkIntToScalar(x) static_cast<SkScalar>(x) 57 #define SkIntToFloat(x) static_cast<float>(x) 58 #define SkScalarTruncToInt(x) static_cast<int>(x) 59 60 #define SkScalarToFloat(x) static_cast<float>(x) 61 #define SkFloatToScalar(x) static_cast<SkScalar>(x) 62 #define SkScalarToDouble(x) static_cast<double>(x) 63 #define SkDoubleToScalar(x) static_cast<SkScalar>(x) 64 65 #define SK_ScalarMin (-SK_ScalarMax) 66 67 static inline bool SkScalarIsNaN(SkScalar x) { return x != x; } 68 69 /** Returns true if x is not NaN and not infinite 70 */ 71 static inline bool SkScalarIsFinite(SkScalar x) { 72 // We rely on the following behavior of infinities and nans 73 // 0 * finite --> 0 74 // 0 * infinity --> NaN 75 // 0 * NaN --> NaN 76 SkScalar prod = x * 0; 77 // At this point, prod will either be NaN or 0 78 return !SkScalarIsNaN(prod); 79 } 80 81 static inline bool SkScalarsAreFinite(SkScalar a, SkScalar b) { 82 SkScalar prod = 0; 83 prod *= a; 84 prod *= b; 85 // At this point, prod will either be NaN or 0 86 return !SkScalarIsNaN(prod); 87 } 88 89 static inline bool SkScalarsAreFinite(const SkScalar array[], int count) { 90 SkScalar prod = 0; 91 for (int i = 0; i < count; ++i) { 92 prod *= array[i]; 93 } 94 // At this point, prod will either be NaN or 0 95 return !SkScalarIsNaN(prod); 96 } 97 98 /** 99 * Variant of SkScalarRoundToInt, that performs the rounding step (adding 0.5) explicitly using 100 * double, to avoid possibly losing the low bit(s) of the answer before calling floor(). 101 * 102 * This routine will likely be slower than SkScalarRoundToInt(), and should only be used when the 103 * extra precision is known to be valuable. 104 * 105 * In particular, this catches the following case: 106 * SkScalar x = 0.49999997; 107 * int ix = SkScalarRoundToInt(x); 108 * SkASSERT(0 == ix); // <--- fails 109 * ix = SkDScalarRoundToInt(x); 110 * SkASSERT(0 == ix); // <--- succeeds 111 */ 112 static inline int SkDScalarRoundToInt(SkScalar x) { 113 double xx = x; 114 xx += 0.5; 115 return (int)floor(xx); 116 } 117 118 /** Returns the fractional part of the scalar. */ 119 static inline SkScalar SkScalarFraction(SkScalar x) { 120 return x - SkScalarTruncToScalar(x); 121 } 122 123 static inline SkScalar SkScalarClampMax(SkScalar x, SkScalar max) { 124 x = SkTMin(x, max); 125 x = SkTMax<SkScalar>(x, 0); 126 return x; 127 } 128 129 static inline SkScalar SkScalarPin(SkScalar x, SkScalar min, SkScalar max) { 130 return SkTPin(x, min, max); 131 } 132 133 SkScalar SkScalarSinCos(SkScalar radians, SkScalar* cosValue); 134 135 static inline SkScalar SkScalarSquare(SkScalar x) { return x * x; } 136 137 #define SkScalarInvert(x) (SK_Scalar1 / (x)) 138 #define SkScalarFastInvert(x) (SK_Scalar1 / (x)) 139 #define SkScalarAve(a, b) (((a) + (b)) * SK_ScalarHalf) 140 #define SkScalarHalf(a) ((a) * SK_ScalarHalf) 141 142 #define SkDegreesToRadians(degrees) ((degrees) * (SK_ScalarPI / 180)) 143 #define SkRadiansToDegrees(radians) ((radians) * (180 / SK_ScalarPI)) 144 145 static inline SkScalar SkMaxScalar(SkScalar a, SkScalar b) { return a > b ? a : b; } 146 static inline SkScalar SkMinScalar(SkScalar a, SkScalar b) { return a < b ? a : b; } 147 148 static inline bool SkScalarIsInt(SkScalar x) { 149 return x == (SkScalar)(int)x; 150 } 151 152 /** 153 * Returns -1 || 0 || 1 depending on the sign of value: 154 * -1 if x < 0 155 * 0 if x == 0 156 * 1 if x > 0 157 */ 158 static inline int SkScalarSignAsInt(SkScalar x) { 159 return x < 0 ? -1 : (x > 0); 160 } 161 162 // Scalar result version of above 163 static inline SkScalar SkScalarSignAsScalar(SkScalar x) { 164 return x < 0 ? -SK_Scalar1 : ((x > 0) ? SK_Scalar1 : 0); 165 } 166 167 #define SK_ScalarNearlyZero (SK_Scalar1 / (1 << 12)) 168 169 static inline bool SkScalarNearlyZero(SkScalar x, 170 SkScalar tolerance = SK_ScalarNearlyZero) { 171 SkASSERT(tolerance >= 0); 172 return SkScalarAbs(x) <= tolerance; 173 } 174 175 static inline bool SkScalarNearlyEqual(SkScalar x, SkScalar y, 176 SkScalar tolerance = SK_ScalarNearlyZero) { 177 SkASSERT(tolerance >= 0); 178 return SkScalarAbs(x-y) <= tolerance; 179 } 180 181 /** Linearly interpolate between A and B, based on t. 182 If t is 0, return A 183 If t is 1, return B 184 else interpolate. 185 t must be [0..SK_Scalar1] 186 */ 187 static inline SkScalar SkScalarInterp(SkScalar A, SkScalar B, SkScalar t) { 188 SkASSERT(t >= 0 && t <= SK_Scalar1); 189 return A + (B - A) * t; 190 } 191 192 /** Interpolate along the function described by (keys[length], values[length]) 193 for the passed searchKey. SearchKeys outside the range keys[0]-keys[Length] 194 clamp to the min or max value. This function was inspired by a desire 195 to change the multiplier for thickness in fakeBold; therefore it assumes 196 the number of pairs (length) will be small, and a linear search is used. 197 Repeated keys are allowed for discontinuous functions (so long as keys is 198 monotonically increasing), and if key is the value of a repeated scalar in 199 keys, the first one will be used. However, that may change if a binary 200 search is used. 201 */ 202 SkScalar SkScalarInterpFunc(SkScalar searchKey, const SkScalar keys[], 203 const SkScalar values[], int length); 204 205 /* 206 * Helper to compare an array of scalars. 207 */ 208 static inline bool SkScalarsEqual(const SkScalar a[], const SkScalar b[], int n) { 209 SkASSERT(n >= 0); 210 for (int i = 0; i < n; ++i) { 211 if (a[i] != b[i]) { 212 return false; 213 } 214 } 215 return true; 216 } 217 218 #ifdef SK_SUPPORT_LEGACY_SCALARMUL 219 #define SkScalarMul(a, b) ((SkScalar)(a) * (b)) 220 #define SkScalarMulAdd(a, b, c) ((SkScalar)(a) * (b) + (c)) 221 #define SkScalarMulDiv(a, b, c) ((SkScalar)(a) * (b) / (c)) 222 #endif 223 224 #endif 225