Home | History | Annotate | Download | only in interpolation
      1 /*
      2  * Licensed to the Apache Software Foundation (ASF) under one or more
      3  * contributor license agreements.  See the NOTICE file distributed with
      4  * this work for additional information regarding copyright ownership.
      5  * The ASF licenses this file to You under the Apache License, Version 2.0
      6  * (the "License"); you may not use this file except in compliance with
      7  * the License.  You may obtain a copy of the License at
      8  *
      9  *      http://www.apache.org/licenses/LICENSE-2.0
     10  *
     11  * Unless required by applicable law or agreed to in writing, software
     12  * distributed under the License is distributed on an "AS IS" BASIS,
     13  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     14  * See the License for the specific language governing permissions and
     15  * limitations under the License.
     16  */
     17 package org.apache.commons.math.analysis.interpolation;
     18 
     19 import org.apache.commons.math.exception.DimensionMismatchException;
     20 import org.apache.commons.math.exception.util.LocalizedFormats;
     21 import org.apache.commons.math.exception.NumberIsTooSmallException;
     22 import org.apache.commons.math.analysis.polynomials.PolynomialFunction;
     23 import org.apache.commons.math.analysis.polynomials.PolynomialSplineFunction;
     24 import org.apache.commons.math.util.MathUtils;
     25 
     26 /**
     27  * Computes a natural (also known as "free", "unclamped") cubic spline interpolation for the data set.
     28  * <p>
     29  * The {@link #interpolate(double[], double[])} method returns a {@link PolynomialSplineFunction}
     30  * consisting of n cubic polynomials, defined over the subintervals determined by the x values,
     31  * x[0] < x[i] ... < x[n].  The x values are referred to as "knot points."</p>
     32  * <p>
     33  * The value of the PolynomialSplineFunction at a point x that is greater than or equal to the smallest
     34  * knot point and strictly less than the largest knot point is computed by finding the subinterval to which
     35  * x belongs and computing the value of the corresponding polynomial at <code>x - x[i] </code> where
     36  * <code>i</code> is the index of the subinterval.  See {@link PolynomialSplineFunction} for more details.
     37  * </p>
     38  * <p>
     39  * The interpolating polynomials satisfy: <ol>
     40  * <li>The value of the PolynomialSplineFunction at each of the input x values equals the
     41  *  corresponding y value.</li>
     42  * <li>Adjacent polynomials are equal through two derivatives at the knot points (i.e., adjacent polynomials
     43  *  "match up" at the knot points, as do their first and second derivatives).</li>
     44  * </ol></p>
     45  * <p>
     46  * The cubic spline interpolation algorithm implemented is as described in R.L. Burden, J.D. Faires,
     47  * <u>Numerical Analysis</u>, 4th Ed., 1989, PWS-Kent, ISBN 0-53491-585-X, pp 126-131.
     48  * </p>
     49  *
     50  * @version $Revision: 983921 $ $Date: 2010-08-10 12:46:06 +0200 (mar. 10 aot 2010) $
     51  *
     52  */
     53 public class SplineInterpolator implements UnivariateRealInterpolator {
     54 
     55     /**
     56      * Computes an interpolating function for the data set.
     57      * @param x the arguments for the interpolation points
     58      * @param y the values for the interpolation points
     59      * @return a function which interpolates the data set
     60      * @throws DimensionMismatchException if {@code x} and {@code y}
     61      * have different sizes.
     62      * @throws org.apache.commons.math.exception.NonMonotonousSequenceException
     63      * if {@code x} is not sorted in strict increasing order.
     64      * @throws NumberIsTooSmallException if the size of {@code x} is smaller
     65      * than 3.
     66      */
     67     public PolynomialSplineFunction interpolate(double x[], double y[]) {
     68         if (x.length != y.length) {
     69             throw new DimensionMismatchException(x.length, y.length);
     70         }
     71 
     72         if (x.length < 3) {
     73             throw new NumberIsTooSmallException(LocalizedFormats.NUMBER_OF_POINTS,
     74                                                 x.length, 3, true);
     75         }
     76 
     77         // Number of intervals.  The number of data points is n + 1.
     78         int n = x.length - 1;
     79 
     80         MathUtils.checkOrder(x);
     81 
     82         // Differences between knot points
     83         double h[] = new double[n];
     84         for (int i = 0; i < n; i++) {
     85             h[i] = x[i + 1] - x[i];
     86         }
     87 
     88         double mu[] = new double[n];
     89         double z[] = new double[n + 1];
     90         mu[0] = 0d;
     91         z[0] = 0d;
     92         double g = 0;
     93         for (int i = 1; i < n; i++) {
     94             g = 2d * (x[i+1]  - x[i - 1]) - h[i - 1] * mu[i -1];
     95             mu[i] = h[i] / g;
     96             z[i] = (3d * (y[i + 1] * h[i - 1] - y[i] * (x[i + 1] - x[i - 1])+ y[i - 1] * h[i]) /
     97                     (h[i - 1] * h[i]) - h[i - 1] * z[i - 1]) / g;
     98         }
     99 
    100         // cubic spline coefficients --  b is linear, c quadratic, d is cubic (original y's are constants)
    101         double b[] = new double[n];
    102         double c[] = new double[n + 1];
    103         double d[] = new double[n];
    104 
    105         z[n] = 0d;
    106         c[n] = 0d;
    107 
    108         for (int j = n -1; j >=0; j--) {
    109             c[j] = z[j] - mu[j] * c[j + 1];
    110             b[j] = (y[j + 1] - y[j]) / h[j] - h[j] * (c[j + 1] + 2d * c[j]) / 3d;
    111             d[j] = (c[j + 1] - c[j]) / (3d * h[j]);
    112         }
    113 
    114         PolynomialFunction polynomials[] = new PolynomialFunction[n];
    115         double coefficients[] = new double[4];
    116         for (int i = 0; i < n; i++) {
    117             coefficients[0] = y[i];
    118             coefficients[1] = b[i];
    119             coefficients[2] = c[i];
    120             coefficients[3] = d[i];
    121             polynomials[i] = new PolynomialFunction(coefficients);
    122         }
    123 
    124         return new PolynomialSplineFunction(x, polynomials);
    125     }
    126 
    127 }
    128