Home | History | Annotate | Download | only in runtime
      1 /*
      2  * Copyright (C) 2011 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #ifndef ART_RUNTIME_MEMORY_REGION_H_
     18 #define ART_RUNTIME_MEMORY_REGION_H_
     19 
     20 #include <stdint.h>
     21 #include <type_traits>
     22 
     23 #include "arch/instruction_set.h"
     24 #include "base/bit_utils.h"
     25 #include "base/casts.h"
     26 #include "base/logging.h"
     27 #include "base/macros.h"
     28 #include "base/value_object.h"
     29 #include "globals.h"
     30 
     31 namespace art {
     32 
     33 // Memory regions are useful for accessing memory with bounds check in
     34 // debug mode. They can be safely passed by value and do not assume ownership
     35 // of the region.
     36 class MemoryRegion FINAL : public ValueObject {
     37  public:
     38   struct ContentEquals {
     39     constexpr bool operator()(const MemoryRegion& lhs, const MemoryRegion& rhs) const {
     40       return lhs.size() == rhs.size() && memcmp(lhs.begin(), rhs.begin(), lhs.size()) == 0;
     41     }
     42   };
     43 
     44   MemoryRegion() : pointer_(nullptr), size_(0) {}
     45   MemoryRegion(void* pointer_in, uintptr_t size_in) : pointer_(pointer_in), size_(size_in) {}
     46 
     47   void* pointer() const { return pointer_; }
     48   size_t size() const { return size_; }
     49   size_t size_in_bits() const { return size_ * kBitsPerByte; }
     50 
     51   static size_t pointer_offset() {
     52     return OFFSETOF_MEMBER(MemoryRegion, pointer_);
     53   }
     54 
     55   uint8_t* begin() const { return reinterpret_cast<uint8_t*>(pointer_); }
     56   uint8_t* end() const { return begin() + size_; }
     57 
     58   // Load value of type `T` at `offset`.  The memory address corresponding
     59   // to `offset` should be word-aligned (on ARM, this is a requirement).
     60   template<typename T>
     61   ALWAYS_INLINE T Load(uintptr_t offset) const {
     62     T* address = ComputeInternalPointer<T>(offset);
     63     DCHECK(IsWordAligned(address));
     64     return *address;
     65   }
     66 
     67   // Store `value` (of type `T`) at `offset`.  The memory address
     68   // corresponding to `offset` should be word-aligned (on ARM, this is
     69   // a requirement).
     70   template<typename T>
     71   ALWAYS_INLINE void Store(uintptr_t offset, T value) const {
     72     T* address = ComputeInternalPointer<T>(offset);
     73     DCHECK(IsWordAligned(address));
     74     *address = value;
     75   }
     76 
     77   // Load value of type `T` at `offset`.  The memory address corresponding
     78   // to `offset` does not need to be word-aligned.
     79   template<typename T>
     80   ALWAYS_INLINE T LoadUnaligned(uintptr_t offset) const {
     81     // Equivalent unsigned integer type corresponding to T.
     82     typedef typename std::make_unsigned<T>::type U;
     83     U equivalent_unsigned_integer_value = 0;
     84     // Read the value byte by byte in a little-endian fashion.
     85     for (size_t i = 0; i < sizeof(U); ++i) {
     86       equivalent_unsigned_integer_value +=
     87           *ComputeInternalPointer<uint8_t>(offset + i) << (i * kBitsPerByte);
     88     }
     89     return bit_cast<T, U>(equivalent_unsigned_integer_value);
     90   }
     91 
     92   // Store `value` (of type `T`) at `offset`.  The memory address
     93   // corresponding to `offset` does not need to be word-aligned.
     94   template<typename T>
     95   ALWAYS_INLINE void StoreUnaligned(uintptr_t offset, T value) const {
     96     // Equivalent unsigned integer type corresponding to T.
     97     typedef typename std::make_unsigned<T>::type U;
     98     U equivalent_unsigned_integer_value = bit_cast<U, T>(value);
     99     // Write the value byte by byte in a little-endian fashion.
    100     for (size_t i = 0; i < sizeof(U); ++i) {
    101       *ComputeInternalPointer<uint8_t>(offset + i) =
    102           (equivalent_unsigned_integer_value >> (i * kBitsPerByte)) & 0xFF;
    103     }
    104   }
    105 
    106   template<typename T>
    107   ALWAYS_INLINE T* PointerTo(uintptr_t offset) const {
    108     return ComputeInternalPointer<T>(offset);
    109   }
    110 
    111   // Load a single bit in the region. The bit at offset 0 is the least
    112   // significant bit in the first byte.
    113   ALWAYS_INLINE bool LoadBit(uintptr_t bit_offset) const {
    114     uint8_t bit_mask;
    115     uint8_t byte = *ComputeBitPointer(bit_offset, &bit_mask);
    116     return byte & bit_mask;
    117   }
    118 
    119   ALWAYS_INLINE void StoreBit(uintptr_t bit_offset, bool value) const {
    120     uint8_t bit_mask;
    121     uint8_t* byte = ComputeBitPointer(bit_offset, &bit_mask);
    122     if (value) {
    123       *byte |= bit_mask;
    124     } else {
    125       *byte &= ~bit_mask;
    126     }
    127   }
    128 
    129   // Load `length` bits from the region starting at bit offset `bit_offset`.
    130   // The bit at the smallest offset is the least significant bit in the
    131   // loaded value.  `length` must not be larger than the number of bits
    132   // contained in the return value (32).
    133   ALWAYS_INLINE uint32_t LoadBits(uintptr_t bit_offset, size_t length) const {
    134     DCHECK_LE(length, BitSizeOf<uint32_t>());
    135     DCHECK_LE(bit_offset + length, size_in_bits());
    136     if (UNLIKELY(length == 0)) {
    137       // Do not touch any memory if the range is empty.
    138       return 0;
    139     }
    140     const uint8_t* address = begin() + bit_offset / kBitsPerByte;
    141     const uint32_t shift = bit_offset & (kBitsPerByte - 1);
    142     // Load the value (reading only the strictly needed bytes).
    143     const uint32_t load_bit_count = shift + length;
    144     uint32_t value = address[0] >> shift;
    145     if (load_bit_count > 8) {
    146       value |= static_cast<uint32_t>(address[1]) << (8 - shift);
    147       if (load_bit_count > 16) {
    148         value |= static_cast<uint32_t>(address[2]) << (16 - shift);
    149         if (load_bit_count > 24) {
    150           value |= static_cast<uint32_t>(address[3]) << (24 - shift);
    151           if (load_bit_count > 32) {
    152             value |= static_cast<uint32_t>(address[4]) << (32 - shift);
    153           }
    154         }
    155       }
    156     }
    157     // Clear unwanted most significant bits.
    158     uint32_t clear_bit_count = BitSizeOf(value) - length;
    159     value = (value << clear_bit_count) >> clear_bit_count;
    160     for (size_t i = 0; i < length; ++i) {
    161       DCHECK_EQ((value >> i) & 1, LoadBit(bit_offset + i));
    162     }
    163     return value;
    164   }
    165 
    166   // Store `value` on `length` bits in the region starting at bit offset
    167   // `bit_offset`.  The bit at the smallest offset is the least significant
    168   // bit of the stored `value`.  `value` must not be larger than `length`
    169   // bits.
    170   void StoreBits(uintptr_t bit_offset, uint32_t value, size_t length);
    171 
    172   void CopyFrom(size_t offset, const MemoryRegion& from) const;
    173 
    174   template<class Vector>
    175   void CopyFromVector(size_t offset, Vector& vector) const {
    176     if (!vector.empty()) {
    177       CopyFrom(offset, MemoryRegion(vector.data(), vector.size()));
    178     }
    179   }
    180 
    181   // Compute a sub memory region based on an existing one.
    182   ALWAYS_INLINE MemoryRegion Subregion(uintptr_t offset, uintptr_t size_in) const {
    183     CHECK_GE(this->size(), size_in);
    184     CHECK_LE(offset,  this->size() - size_in);
    185     return MemoryRegion(reinterpret_cast<void*>(begin() + offset), size_in);
    186   }
    187 
    188   // Compute an extended memory region based on an existing one.
    189   ALWAYS_INLINE void Extend(const MemoryRegion& region, uintptr_t extra) {
    190     pointer_ = region.pointer();
    191     size_ = (region.size() + extra);
    192   }
    193 
    194  private:
    195   template<typename T>
    196   ALWAYS_INLINE T* ComputeInternalPointer(size_t offset) const {
    197     CHECK_GE(size(), sizeof(T));
    198     CHECK_LE(offset, size() - sizeof(T));
    199     return reinterpret_cast<T*>(begin() + offset);
    200   }
    201 
    202   // Locate the bit with the given offset. Returns a pointer to the byte
    203   // containing the bit, and sets bit_mask to the bit within that byte.
    204   ALWAYS_INLINE uint8_t* ComputeBitPointer(uintptr_t bit_offset, uint8_t* bit_mask) const {
    205     uintptr_t bit_remainder = (bit_offset & (kBitsPerByte - 1));
    206     *bit_mask = (1U << bit_remainder);
    207     uintptr_t byte_offset = (bit_offset >> kBitsPerByteLog2);
    208     return ComputeInternalPointer<uint8_t>(byte_offset);
    209   }
    210 
    211   // Is `address` aligned on a machine word?
    212   template<typename T> static constexpr bool IsWordAligned(const T* address) {
    213     // Word alignment in bytes.
    214     size_t kWordAlignment = static_cast<size_t>(GetInstructionSetPointerSize(kRuntimeISA));
    215     return IsAlignedParam(address, kWordAlignment);
    216   }
    217 
    218   void* pointer_;
    219   size_t size_;
    220 };
    221 
    222 }  // namespace art
    223 
    224 #endif  // ART_RUNTIME_MEMORY_REGION_H_
    225