Home | History | Annotate | Download | only in src
      1 // Copyright 2011 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #ifndef V8_DOUBLE_H_
      6 #define V8_DOUBLE_H_
      7 
      8 #include "src/diy-fp.h"
      9 
     10 namespace v8 {
     11 namespace internal {
     12 
     13 // We assume that doubles and uint64_t have the same endianness.
     14 inline uint64_t double_to_uint64(double d) { return bit_cast<uint64_t>(d); }
     15 inline double uint64_to_double(uint64_t d64) { return bit_cast<double>(d64); }
     16 
     17 // Helper functions for doubles.
     18 class Double {
     19  public:
     20   static const uint64_t kSignMask = V8_2PART_UINT64_C(0x80000000, 00000000);
     21   static const uint64_t kExponentMask = V8_2PART_UINT64_C(0x7FF00000, 00000000);
     22   static const uint64_t kSignificandMask =
     23       V8_2PART_UINT64_C(0x000FFFFF, FFFFFFFF);
     24   static const uint64_t kHiddenBit = V8_2PART_UINT64_C(0x00100000, 00000000);
     25   static const int kPhysicalSignificandSize = 52;  // Excludes the hidden bit.
     26   static const int kSignificandSize = 53;
     27 
     28   Double() : d64_(0) {}
     29   explicit Double(double d) : d64_(double_to_uint64(d)) {}
     30   explicit Double(uint64_t d64) : d64_(d64) {}
     31   explicit Double(DiyFp diy_fp)
     32     : d64_(DiyFpToUint64(diy_fp)) {}
     33 
     34   // The value encoded by this Double must be greater or equal to +0.0.
     35   // It must not be special (infinity, or NaN).
     36   DiyFp AsDiyFp() const {
     37     DCHECK(Sign() > 0);
     38     DCHECK(!IsSpecial());
     39     return DiyFp(Significand(), Exponent());
     40   }
     41 
     42   // The value encoded by this Double must be strictly greater than 0.
     43   DiyFp AsNormalizedDiyFp() const {
     44     DCHECK(value() > 0.0);
     45     uint64_t f = Significand();
     46     int e = Exponent();
     47 
     48     // The current double could be a denormal.
     49     while ((f & kHiddenBit) == 0) {
     50       f <<= 1;
     51       e--;
     52     }
     53     // Do the final shifts in one go.
     54     f <<= DiyFp::kSignificandSize - kSignificandSize;
     55     e -= DiyFp::kSignificandSize - kSignificandSize;
     56     return DiyFp(f, e);
     57   }
     58 
     59   // Returns the double's bit as uint64.
     60   uint64_t AsUint64() const {
     61     return d64_;
     62   }
     63 
     64   // Returns the next greater double. Returns +infinity on input +infinity.
     65   double NextDouble() const {
     66     if (d64_ == kInfinity) return Double(kInfinity).value();
     67     if (Sign() < 0 && Significand() == 0) {
     68       // -0.0
     69       return 0.0;
     70     }
     71     if (Sign() < 0) {
     72       return Double(d64_ - 1).value();
     73     } else {
     74       return Double(d64_ + 1).value();
     75     }
     76   }
     77 
     78   int Exponent() const {
     79     if (IsDenormal()) return kDenormalExponent;
     80 
     81     uint64_t d64 = AsUint64();
     82     int biased_e =
     83         static_cast<int>((d64 & kExponentMask) >> kPhysicalSignificandSize);
     84     return biased_e - kExponentBias;
     85   }
     86 
     87   uint64_t Significand() const {
     88     uint64_t d64 = AsUint64();
     89     uint64_t significand = d64 & kSignificandMask;
     90     if (!IsDenormal()) {
     91       return significand + kHiddenBit;
     92     } else {
     93       return significand;
     94     }
     95   }
     96 
     97   // Returns true if the double is a denormal.
     98   bool IsDenormal() const {
     99     uint64_t d64 = AsUint64();
    100     return (d64 & kExponentMask) == 0;
    101   }
    102 
    103   // We consider denormals not to be special.
    104   // Hence only Infinity and NaN are special.
    105   bool IsSpecial() const {
    106     uint64_t d64 = AsUint64();
    107     return (d64 & kExponentMask) == kExponentMask;
    108   }
    109 
    110   bool IsInfinite() const {
    111     uint64_t d64 = AsUint64();
    112     return ((d64 & kExponentMask) == kExponentMask) &&
    113         ((d64 & kSignificandMask) == 0);
    114   }
    115 
    116   int Sign() const {
    117     uint64_t d64 = AsUint64();
    118     return (d64 & kSignMask) == 0? 1: -1;
    119   }
    120 
    121   // Precondition: the value encoded by this Double must be greater or equal
    122   // than +0.0.
    123   DiyFp UpperBoundary() const {
    124     DCHECK(Sign() > 0);
    125     return DiyFp(Significand() * 2 + 1, Exponent() - 1);
    126   }
    127 
    128   // Returns the two boundaries of this.
    129   // The bigger boundary (m_plus) is normalized. The lower boundary has the same
    130   // exponent as m_plus.
    131   // Precondition: the value encoded by this Double must be greater than 0.
    132   void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const {
    133     DCHECK(value() > 0.0);
    134     DiyFp v = this->AsDiyFp();
    135     bool significand_is_zero = (v.f() == kHiddenBit);
    136     DiyFp m_plus = DiyFp::Normalize(DiyFp((v.f() << 1) + 1, v.e() - 1));
    137     DiyFp m_minus;
    138     if (significand_is_zero && v.e() != kDenormalExponent) {
    139       // The boundary is closer. Think of v = 1000e10 and v- = 9999e9.
    140       // Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but
    141       // at a distance of 1e8.
    142       // The only exception is for the smallest normal: the largest denormal is
    143       // at the same distance as its successor.
    144       // Note: denormals have the same exponent as the smallest normals.
    145       m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2);
    146     } else {
    147       m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1);
    148     }
    149     m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e()));
    150     m_minus.set_e(m_plus.e());
    151     *out_m_plus = m_plus;
    152     *out_m_minus = m_minus;
    153   }
    154 
    155   double value() const { return uint64_to_double(d64_); }
    156 
    157   // Returns the significand size for a given order of magnitude.
    158   // If v = f*2^e with 2^p-1 <= f <= 2^p then p+e is v's order of magnitude.
    159   // This function returns the number of significant binary digits v will have
    160   // once its encoded into a double. In almost all cases this is equal to
    161   // kSignificandSize. The only exception are denormals. They start with leading
    162   // zeroes and their effective significand-size is hence smaller.
    163   static int SignificandSizeForOrderOfMagnitude(int order) {
    164     if (order >= (kDenormalExponent + kSignificandSize)) {
    165       return kSignificandSize;
    166     }
    167     if (order <= kDenormalExponent) return 0;
    168     return order - kDenormalExponent;
    169   }
    170 
    171  private:
    172   static const int kExponentBias = 0x3FF + kPhysicalSignificandSize;
    173   static const int kDenormalExponent = -kExponentBias + 1;
    174   static const int kMaxExponent = 0x7FF - kExponentBias;
    175   static const uint64_t kInfinity = V8_2PART_UINT64_C(0x7FF00000, 00000000);
    176 
    177   const uint64_t d64_;
    178 
    179   static uint64_t DiyFpToUint64(DiyFp diy_fp) {
    180     uint64_t significand = diy_fp.f();
    181     int exponent = diy_fp.e();
    182     while (significand > kHiddenBit + kSignificandMask) {
    183       significand >>= 1;
    184       exponent++;
    185     }
    186     if (exponent >= kMaxExponent) {
    187       return kInfinity;
    188     }
    189     if (exponent < kDenormalExponent) {
    190       return 0;
    191     }
    192     while (exponent > kDenormalExponent && (significand & kHiddenBit) == 0) {
    193       significand <<= 1;
    194       exponent--;
    195     }
    196     uint64_t biased_exponent;
    197     if (exponent == kDenormalExponent && (significand & kHiddenBit) == 0) {
    198       biased_exponent = 0;
    199     } else {
    200       biased_exponent = static_cast<uint64_t>(exponent + kExponentBias);
    201     }
    202     return (significand & kSignificandMask) |
    203         (biased_exponent << kPhysicalSignificandSize);
    204   }
    205 };
    206 
    207 }  // namespace internal
    208 }  // namespace v8
    209 
    210 #endif  // V8_DOUBLE_H_
    211