Home | History | Annotate | Download | only in enc
      1 // Copyright 2012 Google Inc. All Rights Reserved.
      2 //
      3 // Use of this source code is governed by a BSD-style license
      4 // that can be found in the COPYING file in the root of the source
      5 // tree. An additional intellectual property rights grant can be found
      6 // in the file PATENTS. All contributing project authors may
      7 // be found in the AUTHORS file in the root of the source tree.
      8 // -----------------------------------------------------------------------------
      9 //
     10 // Author: Jyrki Alakuijala (jyrki (at) google.com)
     11 //
     12 #ifdef HAVE_CONFIG_H
     13 #include "../webp/config.h"
     14 #endif
     15 
     16 #include <math.h>
     17 
     18 #include "./backward_references_enc.h"
     19 #include "./histogram_enc.h"
     20 #include "../dsp/lossless.h"
     21 #include "../dsp/lossless_common.h"
     22 #include "../utils/utils.h"
     23 
     24 #define MAX_COST 1.e38
     25 
     26 // Number of partitions for the three dominant (literal, red and blue) symbol
     27 // costs.
     28 #define NUM_PARTITIONS 4
     29 // The size of the bin-hash corresponding to the three dominant costs.
     30 #define BIN_SIZE (NUM_PARTITIONS * NUM_PARTITIONS * NUM_PARTITIONS)
     31 // Maximum number of histograms allowed in greedy combining algorithm.
     32 #define MAX_HISTO_GREEDY 100
     33 
     34 static void HistogramClear(VP8LHistogram* const p) {
     35   uint32_t* const literal = p->literal_;
     36   const int cache_bits = p->palette_code_bits_;
     37   const int histo_size = VP8LGetHistogramSize(cache_bits);
     38   memset(p, 0, histo_size);
     39   p->palette_code_bits_ = cache_bits;
     40   p->literal_ = literal;
     41 }
     42 
     43 // Swap two histogram pointers.
     44 static void HistogramSwap(VP8LHistogram** const A, VP8LHistogram** const B) {
     45   VP8LHistogram* const tmp = *A;
     46   *A = *B;
     47   *B = tmp;
     48 }
     49 
     50 static void HistogramCopy(const VP8LHistogram* const src,
     51                           VP8LHistogram* const dst) {
     52   uint32_t* const dst_literal = dst->literal_;
     53   const int dst_cache_bits = dst->palette_code_bits_;
     54   const int histo_size = VP8LGetHistogramSize(dst_cache_bits);
     55   assert(src->palette_code_bits_ == dst_cache_bits);
     56   memcpy(dst, src, histo_size);
     57   dst->literal_ = dst_literal;
     58 }
     59 
     60 int VP8LGetHistogramSize(int cache_bits) {
     61   const int literal_size = VP8LHistogramNumCodes(cache_bits);
     62   const size_t total_size = sizeof(VP8LHistogram) + sizeof(int) * literal_size;
     63   assert(total_size <= (size_t)0x7fffffff);
     64   return (int)total_size;
     65 }
     66 
     67 void VP8LFreeHistogram(VP8LHistogram* const histo) {
     68   WebPSafeFree(histo);
     69 }
     70 
     71 void VP8LFreeHistogramSet(VP8LHistogramSet* const histo) {
     72   WebPSafeFree(histo);
     73 }
     74 
     75 void VP8LHistogramStoreRefs(const VP8LBackwardRefs* const refs,
     76                             VP8LHistogram* const histo) {
     77   VP8LRefsCursor c = VP8LRefsCursorInit(refs);
     78   while (VP8LRefsCursorOk(&c)) {
     79     VP8LHistogramAddSinglePixOrCopy(histo, c.cur_pos);
     80     VP8LRefsCursorNext(&c);
     81   }
     82 }
     83 
     84 void VP8LHistogramCreate(VP8LHistogram* const p,
     85                          const VP8LBackwardRefs* const refs,
     86                          int palette_code_bits) {
     87   if (palette_code_bits >= 0) {
     88     p->palette_code_bits_ = palette_code_bits;
     89   }
     90   HistogramClear(p);
     91   VP8LHistogramStoreRefs(refs, p);
     92 }
     93 
     94 void VP8LHistogramInit(VP8LHistogram* const p, int palette_code_bits) {
     95   p->palette_code_bits_ = palette_code_bits;
     96   HistogramClear(p);
     97 }
     98 
     99 VP8LHistogram* VP8LAllocateHistogram(int cache_bits) {
    100   VP8LHistogram* histo = NULL;
    101   const int total_size = VP8LGetHistogramSize(cache_bits);
    102   uint8_t* const memory = (uint8_t*)WebPSafeMalloc(total_size, sizeof(*memory));
    103   if (memory == NULL) return NULL;
    104   histo = (VP8LHistogram*)memory;
    105   // literal_ won't necessary be aligned.
    106   histo->literal_ = (uint32_t*)(memory + sizeof(VP8LHistogram));
    107   VP8LHistogramInit(histo, cache_bits);
    108   return histo;
    109 }
    110 
    111 VP8LHistogramSet* VP8LAllocateHistogramSet(int size, int cache_bits) {
    112   int i;
    113   VP8LHistogramSet* set;
    114   const int histo_size = VP8LGetHistogramSize(cache_bits);
    115   const size_t total_size =
    116       sizeof(*set) + size * (sizeof(*set->histograms) +
    117       histo_size + WEBP_ALIGN_CST);
    118   uint8_t* memory = (uint8_t*)WebPSafeMalloc(total_size, sizeof(*memory));
    119   if (memory == NULL) return NULL;
    120 
    121   set = (VP8LHistogramSet*)memory;
    122   memory += sizeof(*set);
    123   set->histograms = (VP8LHistogram**)memory;
    124   memory += size * sizeof(*set->histograms);
    125   set->max_size = size;
    126   set->size = size;
    127   for (i = 0; i < size; ++i) {
    128     memory = (uint8_t*)WEBP_ALIGN(memory);
    129     set->histograms[i] = (VP8LHistogram*)memory;
    130     // literal_ won't necessary be aligned.
    131     set->histograms[i]->literal_ = (uint32_t*)(memory + sizeof(VP8LHistogram));
    132     VP8LHistogramInit(set->histograms[i], cache_bits);
    133     memory += histo_size;
    134   }
    135   return set;
    136 }
    137 
    138 // -----------------------------------------------------------------------------
    139 
    140 void VP8LHistogramAddSinglePixOrCopy(VP8LHistogram* const histo,
    141                                      const PixOrCopy* const v) {
    142   if (PixOrCopyIsLiteral(v)) {
    143     ++histo->alpha_[PixOrCopyLiteral(v, 3)];
    144     ++histo->red_[PixOrCopyLiteral(v, 2)];
    145     ++histo->literal_[PixOrCopyLiteral(v, 1)];
    146     ++histo->blue_[PixOrCopyLiteral(v, 0)];
    147   } else if (PixOrCopyIsCacheIdx(v)) {
    148     const int literal_ix =
    149         NUM_LITERAL_CODES + NUM_LENGTH_CODES + PixOrCopyCacheIdx(v);
    150     ++histo->literal_[literal_ix];
    151   } else {
    152     int code, extra_bits;
    153     VP8LPrefixEncodeBits(PixOrCopyLength(v), &code, &extra_bits);
    154     ++histo->literal_[NUM_LITERAL_CODES + code];
    155     VP8LPrefixEncodeBits(PixOrCopyDistance(v), &code, &extra_bits);
    156     ++histo->distance_[code];
    157   }
    158 }
    159 
    160 // -----------------------------------------------------------------------------
    161 // Entropy-related functions.
    162 
    163 static WEBP_INLINE double BitsEntropyRefine(const VP8LBitEntropy* entropy) {
    164   double mix;
    165   if (entropy->nonzeros < 5) {
    166     if (entropy->nonzeros <= 1) {
    167       return 0;
    168     }
    169     // Two symbols, they will be 0 and 1 in a Huffman code.
    170     // Let's mix in a bit of entropy to favor good clustering when
    171     // distributions of these are combined.
    172     if (entropy->nonzeros == 2) {
    173       return 0.99 * entropy->sum + 0.01 * entropy->entropy;
    174     }
    175     // No matter what the entropy says, we cannot be better than min_limit
    176     // with Huffman coding. I am mixing a bit of entropy into the
    177     // min_limit since it produces much better (~0.5 %) compression results
    178     // perhaps because of better entropy clustering.
    179     if (entropy->nonzeros == 3) {
    180       mix = 0.95;
    181     } else {
    182       mix = 0.7;  // nonzeros == 4.
    183     }
    184   } else {
    185     mix = 0.627;
    186   }
    187 
    188   {
    189     double min_limit = 2 * entropy->sum - entropy->max_val;
    190     min_limit = mix * min_limit + (1.0 - mix) * entropy->entropy;
    191     return (entropy->entropy < min_limit) ? min_limit : entropy->entropy;
    192   }
    193 }
    194 
    195 double VP8LBitsEntropy(const uint32_t* const array, int n,
    196                        uint32_t* const trivial_symbol) {
    197   VP8LBitEntropy entropy;
    198   VP8LBitsEntropyUnrefined(array, n, &entropy);
    199   if (trivial_symbol != NULL) {
    200     *trivial_symbol =
    201         (entropy.nonzeros == 1) ? entropy.nonzero_code : VP8L_NON_TRIVIAL_SYM;
    202   }
    203 
    204   return BitsEntropyRefine(&entropy);
    205 }
    206 
    207 static double InitialHuffmanCost(void) {
    208   // Small bias because Huffman code length is typically not stored in
    209   // full length.
    210   static const int kHuffmanCodeOfHuffmanCodeSize = CODE_LENGTH_CODES * 3;
    211   static const double kSmallBias = 9.1;
    212   return kHuffmanCodeOfHuffmanCodeSize - kSmallBias;
    213 }
    214 
    215 // Finalize the Huffman cost based on streak numbers and length type (<3 or >=3)
    216 static double FinalHuffmanCost(const VP8LStreaks* const stats) {
    217   // The constants in this function are experimental and got rounded from
    218   // their original values in 1/8 when switched to 1/1024.
    219   double retval = InitialHuffmanCost();
    220   // Second coefficient: Many zeros in the histogram are covered efficiently
    221   // by a run-length encode. Originally 2/8.
    222   retval += stats->counts[0] * 1.5625 + 0.234375 * stats->streaks[0][1];
    223   // Second coefficient: Constant values are encoded less efficiently, but still
    224   // RLE'ed. Originally 6/8.
    225   retval += stats->counts[1] * 2.578125 + 0.703125 * stats->streaks[1][1];
    226   // 0s are usually encoded more efficiently than non-0s.
    227   // Originally 15/8.
    228   retval += 1.796875 * stats->streaks[0][0];
    229   // Originally 26/8.
    230   retval += 3.28125 * stats->streaks[1][0];
    231   return retval;
    232 }
    233 
    234 // Get the symbol entropy for the distribution 'population'.
    235 // Set 'trivial_sym', if there's only one symbol present in the distribution.
    236 static double PopulationCost(const uint32_t* const population, int length,
    237                              uint32_t* const trivial_sym) {
    238   VP8LBitEntropy bit_entropy;
    239   VP8LStreaks stats;
    240   VP8LGetEntropyUnrefined(population, length, &bit_entropy, &stats);
    241   if (trivial_sym != NULL) {
    242     *trivial_sym = (bit_entropy.nonzeros == 1) ? bit_entropy.nonzero_code
    243                                                : VP8L_NON_TRIVIAL_SYM;
    244   }
    245 
    246   return BitsEntropyRefine(&bit_entropy) + FinalHuffmanCost(&stats);
    247 }
    248 
    249 // trivial_at_end is 1 if the two histograms only have one element that is
    250 // non-zero: both the zero-th one, or both the last one.
    251 static WEBP_INLINE double GetCombinedEntropy(const uint32_t* const X,
    252                                              const uint32_t* const Y,
    253                                              int length, int trivial_at_end) {
    254   VP8LStreaks stats;
    255   if (trivial_at_end) {
    256     // This configuration is due to palettization that transforms an indexed
    257     // pixel into 0xff000000 | (pixel << 8) in VP8LBundleColorMap.
    258     // BitsEntropyRefine is 0 for histograms with only one non-zero value.
    259     // Only FinalHuffmanCost needs to be evaluated.
    260     memset(&stats, 0, sizeof(stats));
    261     // Deal with the non-zero value at index 0 or length-1.
    262     stats.streaks[1][0] += 1;
    263     // Deal with the following/previous zero streak.
    264     stats.counts[0] += 1;
    265     stats.streaks[0][1] += length - 1;
    266     return FinalHuffmanCost(&stats);
    267   } else {
    268     VP8LBitEntropy bit_entropy;
    269     VP8LGetCombinedEntropyUnrefined(X, Y, length, &bit_entropy, &stats);
    270 
    271     return BitsEntropyRefine(&bit_entropy) + FinalHuffmanCost(&stats);
    272   }
    273 }
    274 
    275 // Estimates the Entropy + Huffman + other block overhead size cost.
    276 double VP8LHistogramEstimateBits(const VP8LHistogram* const p) {
    277   return
    278       PopulationCost(
    279           p->literal_, VP8LHistogramNumCodes(p->palette_code_bits_), NULL)
    280       + PopulationCost(p->red_, NUM_LITERAL_CODES, NULL)
    281       + PopulationCost(p->blue_, NUM_LITERAL_CODES, NULL)
    282       + PopulationCost(p->alpha_, NUM_LITERAL_CODES, NULL)
    283       + PopulationCost(p->distance_, NUM_DISTANCE_CODES, NULL)
    284       + VP8LExtraCost(p->literal_ + NUM_LITERAL_CODES, NUM_LENGTH_CODES)
    285       + VP8LExtraCost(p->distance_, NUM_DISTANCE_CODES);
    286 }
    287 
    288 // -----------------------------------------------------------------------------
    289 // Various histogram combine/cost-eval functions
    290 
    291 static int GetCombinedHistogramEntropy(const VP8LHistogram* const a,
    292                                        const VP8LHistogram* const b,
    293                                        double cost_threshold,
    294                                        double* cost) {
    295   const int palette_code_bits = a->palette_code_bits_;
    296   int trivial_at_end = 0;
    297   assert(a->palette_code_bits_ == b->palette_code_bits_);
    298   *cost += GetCombinedEntropy(a->literal_, b->literal_,
    299                               VP8LHistogramNumCodes(palette_code_bits), 0);
    300   *cost += VP8LExtraCostCombined(a->literal_ + NUM_LITERAL_CODES,
    301                                  b->literal_ + NUM_LITERAL_CODES,
    302                                  NUM_LENGTH_CODES);
    303   if (*cost > cost_threshold) return 0;
    304 
    305   if (a->trivial_symbol_ != VP8L_NON_TRIVIAL_SYM &&
    306       a->trivial_symbol_ == b->trivial_symbol_) {
    307     // A, R and B are all 0 or 0xff.
    308     const uint32_t color_a = (a->trivial_symbol_ >> 24) & 0xff;
    309     const uint32_t color_r = (a->trivial_symbol_ >> 16) & 0xff;
    310     const uint32_t color_b = (a->trivial_symbol_ >> 0) & 0xff;
    311     if ((color_a == 0 || color_a == 0xff) &&
    312         (color_r == 0 || color_r == 0xff) &&
    313         (color_b == 0 || color_b == 0xff)) {
    314       trivial_at_end = 1;
    315     }
    316   }
    317 
    318   *cost +=
    319       GetCombinedEntropy(a->red_, b->red_, NUM_LITERAL_CODES, trivial_at_end);
    320   if (*cost > cost_threshold) return 0;
    321 
    322   *cost +=
    323       GetCombinedEntropy(a->blue_, b->blue_, NUM_LITERAL_CODES, trivial_at_end);
    324   if (*cost > cost_threshold) return 0;
    325 
    326   *cost += GetCombinedEntropy(a->alpha_, b->alpha_, NUM_LITERAL_CODES,
    327                               trivial_at_end);
    328   if (*cost > cost_threshold) return 0;
    329 
    330   *cost +=
    331       GetCombinedEntropy(a->distance_, b->distance_, NUM_DISTANCE_CODES, 0);
    332   *cost +=
    333       VP8LExtraCostCombined(a->distance_, b->distance_, NUM_DISTANCE_CODES);
    334   if (*cost > cost_threshold) return 0;
    335 
    336   return 1;
    337 }
    338 
    339 static WEBP_INLINE void HistogramAdd(const VP8LHistogram* const a,
    340                                      const VP8LHistogram* const b,
    341                                      VP8LHistogram* const out) {
    342   VP8LHistogramAdd(a, b, out);
    343   out->trivial_symbol_ = (a->trivial_symbol_ == b->trivial_symbol_)
    344                        ? a->trivial_symbol_
    345                        : VP8L_NON_TRIVIAL_SYM;
    346 }
    347 
    348 // Performs out = a + b, computing the cost C(a+b) - C(a) - C(b) while comparing
    349 // to the threshold value 'cost_threshold'. The score returned is
    350 //  Score = C(a+b) - C(a) - C(b), where C(a) + C(b) is known and fixed.
    351 // Since the previous score passed is 'cost_threshold', we only need to compare
    352 // the partial cost against 'cost_threshold + C(a) + C(b)' to possibly bail-out
    353 // early.
    354 static double HistogramAddEval(const VP8LHistogram* const a,
    355                                const VP8LHistogram* const b,
    356                                VP8LHistogram* const out,
    357                                double cost_threshold) {
    358   double cost = 0;
    359   const double sum_cost = a->bit_cost_ + b->bit_cost_;
    360   cost_threshold += sum_cost;
    361 
    362   if (GetCombinedHistogramEntropy(a, b, cost_threshold, &cost)) {
    363     HistogramAdd(a, b, out);
    364     out->bit_cost_ = cost;
    365     out->palette_code_bits_ = a->palette_code_bits_;
    366   }
    367 
    368   return cost - sum_cost;
    369 }
    370 
    371 // Same as HistogramAddEval(), except that the resulting histogram
    372 // is not stored. Only the cost C(a+b) - C(a) is evaluated. We omit
    373 // the term C(b) which is constant over all the evaluations.
    374 static double HistogramAddThresh(const VP8LHistogram* const a,
    375                                  const VP8LHistogram* const b,
    376                                  double cost_threshold) {
    377   double cost = -a->bit_cost_;
    378   GetCombinedHistogramEntropy(a, b, cost_threshold, &cost);
    379   return cost;
    380 }
    381 
    382 // -----------------------------------------------------------------------------
    383 
    384 // The structure to keep track of cost range for the three dominant entropy
    385 // symbols.
    386 // TODO(skal): Evaluate if float can be used here instead of double for
    387 // representing the entropy costs.
    388 typedef struct {
    389   double literal_max_;
    390   double literal_min_;
    391   double red_max_;
    392   double red_min_;
    393   double blue_max_;
    394   double blue_min_;
    395 } DominantCostRange;
    396 
    397 static void DominantCostRangeInit(DominantCostRange* const c) {
    398   c->literal_max_ = 0.;
    399   c->literal_min_ = MAX_COST;
    400   c->red_max_ = 0.;
    401   c->red_min_ = MAX_COST;
    402   c->blue_max_ = 0.;
    403   c->blue_min_ = MAX_COST;
    404 }
    405 
    406 static void UpdateDominantCostRange(
    407     const VP8LHistogram* const h, DominantCostRange* const c) {
    408   if (c->literal_max_ < h->literal_cost_) c->literal_max_ = h->literal_cost_;
    409   if (c->literal_min_ > h->literal_cost_) c->literal_min_ = h->literal_cost_;
    410   if (c->red_max_ < h->red_cost_) c->red_max_ = h->red_cost_;
    411   if (c->red_min_ > h->red_cost_) c->red_min_ = h->red_cost_;
    412   if (c->blue_max_ < h->blue_cost_) c->blue_max_ = h->blue_cost_;
    413   if (c->blue_min_ > h->blue_cost_) c->blue_min_ = h->blue_cost_;
    414 }
    415 
    416 static void UpdateHistogramCost(VP8LHistogram* const h) {
    417   uint32_t alpha_sym, red_sym, blue_sym;
    418   const double alpha_cost =
    419       PopulationCost(h->alpha_, NUM_LITERAL_CODES, &alpha_sym);
    420   const double distance_cost =
    421       PopulationCost(h->distance_, NUM_DISTANCE_CODES, NULL) +
    422       VP8LExtraCost(h->distance_, NUM_DISTANCE_CODES);
    423   const int num_codes = VP8LHistogramNumCodes(h->palette_code_bits_);
    424   h->literal_cost_ = PopulationCost(h->literal_, num_codes, NULL) +
    425                      VP8LExtraCost(h->literal_ + NUM_LITERAL_CODES,
    426                                    NUM_LENGTH_CODES);
    427   h->red_cost_ = PopulationCost(h->red_, NUM_LITERAL_CODES, &red_sym);
    428   h->blue_cost_ = PopulationCost(h->blue_, NUM_LITERAL_CODES, &blue_sym);
    429   h->bit_cost_ = h->literal_cost_ + h->red_cost_ + h->blue_cost_ +
    430                  alpha_cost + distance_cost;
    431   if ((alpha_sym | red_sym | blue_sym) == VP8L_NON_TRIVIAL_SYM) {
    432     h->trivial_symbol_ = VP8L_NON_TRIVIAL_SYM;
    433   } else {
    434     h->trivial_symbol_ =
    435         ((uint32_t)alpha_sym << 24) | (red_sym << 16) | (blue_sym << 0);
    436   }
    437 }
    438 
    439 static int GetBinIdForEntropy(double min, double max, double val) {
    440   const double range = max - min;
    441   if (range > 0.) {
    442     const double delta = val - min;
    443     return (int)((NUM_PARTITIONS - 1e-6) * delta / range);
    444   } else {
    445     return 0;
    446   }
    447 }
    448 
    449 static int GetHistoBinIndex(const VP8LHistogram* const h,
    450                             const DominantCostRange* const c, int low_effort) {
    451   int bin_id = GetBinIdForEntropy(c->literal_min_, c->literal_max_,
    452                                   h->literal_cost_);
    453   assert(bin_id < NUM_PARTITIONS);
    454   if (!low_effort) {
    455     bin_id = bin_id * NUM_PARTITIONS
    456            + GetBinIdForEntropy(c->red_min_, c->red_max_, h->red_cost_);
    457     bin_id = bin_id * NUM_PARTITIONS
    458            + GetBinIdForEntropy(c->blue_min_, c->blue_max_, h->blue_cost_);
    459     assert(bin_id < BIN_SIZE);
    460   }
    461   return bin_id;
    462 }
    463 
    464 // Construct the histograms from backward references.
    465 static void HistogramBuild(
    466     int xsize, int histo_bits, const VP8LBackwardRefs* const backward_refs,
    467     VP8LHistogramSet* const image_histo) {
    468   int x = 0, y = 0;
    469   const int histo_xsize = VP8LSubSampleSize(xsize, histo_bits);
    470   VP8LHistogram** const histograms = image_histo->histograms;
    471   VP8LRefsCursor c = VP8LRefsCursorInit(backward_refs);
    472   assert(histo_bits > 0);
    473   while (VP8LRefsCursorOk(&c)) {
    474     const PixOrCopy* const v = c.cur_pos;
    475     const int ix = (y >> histo_bits) * histo_xsize + (x >> histo_bits);
    476     VP8LHistogramAddSinglePixOrCopy(histograms[ix], v);
    477     x += PixOrCopyLength(v);
    478     while (x >= xsize) {
    479       x -= xsize;
    480       ++y;
    481     }
    482     VP8LRefsCursorNext(&c);
    483   }
    484 }
    485 
    486 // Copies the histograms and computes its bit_cost.
    487 static void HistogramCopyAndAnalyze(
    488     VP8LHistogramSet* const orig_histo, VP8LHistogramSet* const image_histo) {
    489   int i;
    490   const int histo_size = orig_histo->size;
    491   VP8LHistogram** const orig_histograms = orig_histo->histograms;
    492   VP8LHistogram** const histograms = image_histo->histograms;
    493   for (i = 0; i < histo_size; ++i) {
    494     VP8LHistogram* const histo = orig_histograms[i];
    495     UpdateHistogramCost(histo);
    496     // Copy histograms from orig_histo[] to image_histo[].
    497     HistogramCopy(histo, histograms[i]);
    498   }
    499 }
    500 
    501 // Partition histograms to different entropy bins for three dominant (literal,
    502 // red and blue) symbol costs and compute the histogram aggregate bit_cost.
    503 static void HistogramAnalyzeEntropyBin(VP8LHistogramSet* const image_histo,
    504                                        uint16_t* const bin_map,
    505                                        int low_effort) {
    506   int i;
    507   VP8LHistogram** const histograms = image_histo->histograms;
    508   const int histo_size = image_histo->size;
    509   DominantCostRange cost_range;
    510   DominantCostRangeInit(&cost_range);
    511 
    512   // Analyze the dominant (literal, red and blue) entropy costs.
    513   for (i = 0; i < histo_size; ++i) {
    514     UpdateDominantCostRange(histograms[i], &cost_range);
    515   }
    516 
    517   // bin-hash histograms on three of the dominant (literal, red and blue)
    518   // symbol costs and store the resulting bin_id for each histogram.
    519   for (i = 0; i < histo_size; ++i) {
    520     bin_map[i] = GetHistoBinIndex(histograms[i], &cost_range, low_effort);
    521   }
    522 }
    523 
    524 // Compact image_histo[] by merging some histograms with same bin_id together if
    525 // it's advantageous.
    526 static VP8LHistogram* HistogramCombineEntropyBin(
    527     VP8LHistogramSet* const image_histo,
    528     VP8LHistogram* cur_combo,
    529     const uint16_t* const bin_map, int bin_map_size, int num_bins,
    530     double combine_cost_factor, int low_effort) {
    531   VP8LHistogram** const histograms = image_histo->histograms;
    532   int idx;
    533   // Work in-place: processed histograms are put at the beginning of
    534   // image_histo[]. At the end, we just have to truncate the array.
    535   int size = 0;
    536   struct {
    537     int16_t first;    // position of the histogram that accumulates all
    538                       // histograms with the same bin_id
    539     uint16_t num_combine_failures;   // number of combine failures per bin_id
    540   } bin_info[BIN_SIZE];
    541 
    542   assert(num_bins <= BIN_SIZE);
    543   for (idx = 0; idx < num_bins; ++idx) {
    544     bin_info[idx].first = -1;
    545     bin_info[idx].num_combine_failures = 0;
    546   }
    547 
    548   for (idx = 0; idx < bin_map_size; ++idx) {
    549     const int bin_id = bin_map[idx];
    550     const int first = bin_info[bin_id].first;
    551     assert(size <= idx);
    552     if (first == -1) {
    553       // just move histogram #idx to its final position
    554       histograms[size] = histograms[idx];
    555       bin_info[bin_id].first = size++;
    556     } else if (low_effort) {
    557       HistogramAdd(histograms[idx], histograms[first], histograms[first]);
    558     } else {
    559       // try to merge #idx into #first (both share the same bin_id)
    560       const double bit_cost = histograms[idx]->bit_cost_;
    561       const double bit_cost_thresh = -bit_cost * combine_cost_factor;
    562       const double curr_cost_diff =
    563           HistogramAddEval(histograms[first], histograms[idx],
    564                            cur_combo, bit_cost_thresh);
    565       if (curr_cost_diff < bit_cost_thresh) {
    566         // Try to merge two histograms only if the combo is a trivial one or
    567         // the two candidate histograms are already non-trivial.
    568         // For some images, 'try_combine' turns out to be false for a lot of
    569         // histogram pairs. In that case, we fallback to combining
    570         // histograms as usual to avoid increasing the header size.
    571         const int try_combine =
    572             (cur_combo->trivial_symbol_ != VP8L_NON_TRIVIAL_SYM) ||
    573             ((histograms[idx]->trivial_symbol_ == VP8L_NON_TRIVIAL_SYM) &&
    574              (histograms[first]->trivial_symbol_ == VP8L_NON_TRIVIAL_SYM));
    575         const int max_combine_failures = 32;
    576         if (try_combine ||
    577             bin_info[bin_id].num_combine_failures >= max_combine_failures) {
    578           // move the (better) merged histogram to its final slot
    579           HistogramSwap(&cur_combo, &histograms[first]);
    580         } else {
    581           histograms[size++] = histograms[idx];
    582           ++bin_info[bin_id].num_combine_failures;
    583         }
    584       } else {
    585         histograms[size++] = histograms[idx];
    586       }
    587     }
    588   }
    589   image_histo->size = size;
    590   if (low_effort) {
    591     // for low_effort case, update the final cost when everything is merged
    592     for (idx = 0; idx < size; ++idx) {
    593       UpdateHistogramCost(histograms[idx]);
    594     }
    595   }
    596   return cur_combo;
    597 }
    598 
    599 static uint32_t MyRand(uint32_t* const seed) {
    600   *seed = (*seed * 16807ull) & 0xffffffffu;
    601   if (*seed == 0) {
    602     *seed = 1;
    603   }
    604   return *seed;
    605 }
    606 
    607 // -----------------------------------------------------------------------------
    608 // Histogram pairs priority queue
    609 
    610 // Pair of histograms. Negative idx1 value means that pair is out-of-date.
    611 typedef struct {
    612   int idx1;
    613   int idx2;
    614   double cost_diff;
    615   double cost_combo;
    616 } HistogramPair;
    617 
    618 typedef struct {
    619   HistogramPair* queue;
    620   int size;
    621   int max_size;
    622 } HistoQueue;
    623 
    624 static int HistoQueueInit(HistoQueue* const histo_queue, const int max_index) {
    625   histo_queue->size = 0;
    626   // max_index^2 for the queue size is safe. If you look at
    627   // HistogramCombineGreedy, and imagine that UpdateQueueFront always pushes
    628   // data to the queue, you insert at most:
    629   // - max_index*(max_index-1)/2 (the first two for loops)
    630   // - max_index - 1 in the last for loop at the first iteration of the while
    631   //   loop, max_index - 2 at the second iteration ... therefore
    632   //   max_index*(max_index-1)/2 overall too
    633   histo_queue->max_size = max_index * max_index;
    634   // We allocate max_size + 1 because the last element at index "size" is
    635   // used as temporary data (and it could be up to max_size).
    636   histo_queue->queue = (HistogramPair*)WebPSafeMalloc(
    637       histo_queue->max_size + 1, sizeof(*histo_queue->queue));
    638   return histo_queue->queue != NULL;
    639 }
    640 
    641 static void HistoQueueClear(HistoQueue* const histo_queue) {
    642   assert(histo_queue != NULL);
    643   WebPSafeFree(histo_queue->queue);
    644 }
    645 
    646 static void SwapHistogramPairs(HistogramPair *p1,
    647                                HistogramPair *p2) {
    648   const HistogramPair tmp = *p1;
    649   *p1 = *p2;
    650   *p2 = tmp;
    651 }
    652 
    653 // Given a valid priority queue in range [0, queue_size) this function checks
    654 // whether histo_queue[queue_size] should be accepted and swaps it with the
    655 // front if it is smaller. Otherwise, it leaves it as is.
    656 static void UpdateQueueFront(HistoQueue* const histo_queue) {
    657   if (histo_queue->queue[histo_queue->size].cost_diff >= 0) return;
    658 
    659   if (histo_queue->queue[histo_queue->size].cost_diff <
    660       histo_queue->queue[0].cost_diff) {
    661     SwapHistogramPairs(histo_queue->queue,
    662                        histo_queue->queue + histo_queue->size);
    663   }
    664   ++histo_queue->size;
    665 
    666   // We cannot add more elements than the capacity.
    667   // The allocation adds an extra element to the official capacity so that
    668   // histo_queue->queue[histo_queue->max_size] is read/written within bound.
    669   assert(histo_queue->size <= histo_queue->max_size);
    670 }
    671 
    672 // -----------------------------------------------------------------------------
    673 
    674 static void PreparePair(VP8LHistogram** histograms, int idx1, int idx2,
    675                         HistogramPair* const pair) {
    676   VP8LHistogram* h1;
    677   VP8LHistogram* h2;
    678   double sum_cost;
    679 
    680   if (idx1 > idx2) {
    681     const int tmp = idx2;
    682     idx2 = idx1;
    683     idx1 = tmp;
    684   }
    685   pair->idx1 = idx1;
    686   pair->idx2 = idx2;
    687   h1 = histograms[idx1];
    688   h2 = histograms[idx2];
    689   sum_cost = h1->bit_cost_ + h2->bit_cost_;
    690   pair->cost_combo = 0.;
    691   GetCombinedHistogramEntropy(h1, h2, sum_cost, &pair->cost_combo);
    692   pair->cost_diff = pair->cost_combo - sum_cost;
    693 }
    694 
    695 // Combines histograms by continuously choosing the one with the highest cost
    696 // reduction.
    697 static int HistogramCombineGreedy(VP8LHistogramSet* const image_histo) {
    698   int ok = 0;
    699   int image_histo_size = image_histo->size;
    700   int i, j;
    701   VP8LHistogram** const histograms = image_histo->histograms;
    702   // Indexes of remaining histograms.
    703   int* const clusters =
    704       (int*)WebPSafeMalloc(image_histo_size, sizeof(*clusters));
    705   // Priority queue of histogram pairs.
    706   HistoQueue histo_queue;
    707 
    708   if (!HistoQueueInit(&histo_queue, image_histo_size) || clusters == NULL) {
    709     goto End;
    710   }
    711 
    712   for (i = 0; i < image_histo_size; ++i) {
    713     // Initialize clusters indexes.
    714     clusters[i] = i;
    715     for (j = i + 1; j < image_histo_size; ++j) {
    716       // Initialize positions array.
    717       PreparePair(histograms, i, j, &histo_queue.queue[histo_queue.size]);
    718       UpdateQueueFront(&histo_queue);
    719     }
    720   }
    721 
    722   while (image_histo_size > 1 && histo_queue.size > 0) {
    723     HistogramPair* copy_to;
    724     const int idx1 = histo_queue.queue[0].idx1;
    725     const int idx2 = histo_queue.queue[0].idx2;
    726     HistogramAdd(histograms[idx2], histograms[idx1], histograms[idx1]);
    727     histograms[idx1]->bit_cost_ = histo_queue.queue[0].cost_combo;
    728     // Remove merged histogram.
    729     for (i = 0; i + 1 < image_histo_size; ++i) {
    730       if (clusters[i] >= idx2) {
    731         clusters[i] = clusters[i + 1];
    732       }
    733     }
    734     --image_histo_size;
    735 
    736     // Remove pairs intersecting the just combined best pair. This will
    737     // therefore pop the head of the queue.
    738     copy_to = histo_queue.queue;
    739     for (i = 0; i < histo_queue.size; ++i) {
    740       HistogramPair* const p = histo_queue.queue + i;
    741       if (p->idx1 == idx1 || p->idx2 == idx1 ||
    742           p->idx1 == idx2 || p->idx2 == idx2) {
    743         // Do not copy the invalid pair.
    744         continue;
    745       }
    746       if (p->cost_diff < histo_queue.queue[0].cost_diff) {
    747         // Replace the top of the queue if we found better.
    748         SwapHistogramPairs(histo_queue.queue, p);
    749       }
    750       SwapHistogramPairs(copy_to, p);
    751       ++copy_to;
    752     }
    753     histo_queue.size = (int)(copy_to - histo_queue.queue);
    754 
    755     // Push new pairs formed with combined histogram to the queue.
    756     for (i = 0; i < image_histo_size; ++i) {
    757       if (clusters[i] != idx1) {
    758         PreparePair(histograms, idx1, clusters[i],
    759                     &histo_queue.queue[histo_queue.size]);
    760         UpdateQueueFront(&histo_queue);
    761       }
    762     }
    763   }
    764   // Move remaining histograms to the beginning of the array.
    765   for (i = 0; i < image_histo_size; ++i) {
    766     if (i != clusters[i]) {  // swap the two histograms
    767       HistogramSwap(&histograms[i], &histograms[clusters[i]]);
    768     }
    769   }
    770 
    771   image_histo->size = image_histo_size;
    772   ok = 1;
    773 
    774  End:
    775   WebPSafeFree(clusters);
    776   HistoQueueClear(&histo_queue);
    777   return ok;
    778 }
    779 
    780 static void HistogramCombineStochastic(VP8LHistogramSet* const image_histo,
    781                                        VP8LHistogram* tmp_histo,
    782                                        VP8LHistogram* best_combo,
    783                                        int quality, int min_cluster_size) {
    784   int iter;
    785   uint32_t seed = 0;
    786   int tries_with_no_success = 0;
    787   int image_histo_size = image_histo->size;
    788   const int iter_mult = (quality < 25) ? 2 : 2 + (quality - 25) / 8;
    789   const int outer_iters = image_histo_size * iter_mult;
    790   const int num_pairs = image_histo_size / 2;
    791   const int num_tries_no_success = outer_iters / 2;
    792   int idx2_max = image_histo_size - 1;
    793   int do_brute_dorce = 0;
    794   VP8LHistogram** const histograms = image_histo->histograms;
    795 
    796   // Collapse similar histograms in 'image_histo'.
    797   ++min_cluster_size;
    798   for (iter = 0;
    799        iter < outer_iters && image_histo_size >= min_cluster_size;
    800        ++iter) {
    801     double best_cost_diff = 0.;
    802     int best_idx1 = -1, best_idx2 = 1;
    803     int j;
    804     int num_tries =
    805         (num_pairs < image_histo_size) ? num_pairs : image_histo_size;
    806     // Use a brute force approach if:
    807     // - stochastic has not worked for a while and
    808     // - if the number of iterations for brute force is less than the number of
    809     // iterations if we never find a match ever again stochastically (hence
    810     // num_tries times the number of remaining outer iterations).
    811     do_brute_dorce =
    812         (tries_with_no_success > 10) &&
    813         (idx2_max * (idx2_max + 1) < 2 * num_tries * (outer_iters - iter));
    814     if (do_brute_dorce) num_tries = idx2_max;
    815 
    816     seed += iter;
    817     for (j = 0; j < num_tries; ++j) {
    818       double curr_cost_diff;
    819       // Choose two histograms at random and try to combine them.
    820       uint32_t idx1, idx2;
    821       if (do_brute_dorce) {
    822         // Use a brute force approach.
    823         idx1 = (uint32_t)j;
    824         idx2 = (uint32_t)idx2_max;
    825       } else {
    826         const uint32_t tmp = (j & 7) + 1;
    827         const uint32_t diff =
    828             (tmp < 3) ? tmp : MyRand(&seed) % (image_histo_size - 1);
    829         idx1 = MyRand(&seed) % image_histo_size;
    830         idx2 = (idx1 + diff + 1) % image_histo_size;
    831         if (idx1 == idx2) {
    832           continue;
    833         }
    834       }
    835 
    836       // Calculate cost reduction on combining.
    837       curr_cost_diff = HistogramAddEval(histograms[idx1], histograms[idx2],
    838                                         tmp_histo, best_cost_diff);
    839       if (curr_cost_diff < best_cost_diff) {  // found a better pair?
    840         HistogramSwap(&best_combo, &tmp_histo);
    841         best_cost_diff = curr_cost_diff;
    842         best_idx1 = idx1;
    843         best_idx2 = idx2;
    844       }
    845     }
    846     if (do_brute_dorce) --idx2_max;
    847 
    848     if (best_idx1 >= 0) {
    849       HistogramSwap(&best_combo, &histograms[best_idx1]);
    850       // swap best_idx2 slot with last one (which is now unused)
    851       --image_histo_size;
    852       if (idx2_max >= image_histo_size) idx2_max = image_histo_size - 1;
    853       if (best_idx2 != image_histo_size) {
    854         HistogramSwap(&histograms[image_histo_size], &histograms[best_idx2]);
    855         histograms[image_histo_size] = NULL;
    856       }
    857       tries_with_no_success = 0;
    858     }
    859     if (++tries_with_no_success >= num_tries_no_success || idx2_max == 0) {
    860       break;
    861     }
    862   }
    863   image_histo->size = image_histo_size;
    864 }
    865 
    866 // -----------------------------------------------------------------------------
    867 // Histogram refinement
    868 
    869 // Find the best 'out' histogram for each of the 'in' histograms.
    870 // Note: we assume that out[]->bit_cost_ is already up-to-date.
    871 static void HistogramRemap(const VP8LHistogramSet* const in,
    872                            const VP8LHistogramSet* const out,
    873                            uint16_t* const symbols) {
    874   int i;
    875   VP8LHistogram** const in_histo = in->histograms;
    876   VP8LHistogram** const out_histo = out->histograms;
    877   const int in_size = in->size;
    878   const int out_size = out->size;
    879   if (out_size > 1) {
    880     for (i = 0; i < in_size; ++i) {
    881       int best_out = 0;
    882       double best_bits = MAX_COST;
    883       int k;
    884       for (k = 0; k < out_size; ++k) {
    885         const double cur_bits =
    886             HistogramAddThresh(out_histo[k], in_histo[i], best_bits);
    887         if (k == 0 || cur_bits < best_bits) {
    888           best_bits = cur_bits;
    889           best_out = k;
    890         }
    891       }
    892       symbols[i] = best_out;
    893     }
    894   } else {
    895     assert(out_size == 1);
    896     for (i = 0; i < in_size; ++i) {
    897       symbols[i] = 0;
    898     }
    899   }
    900 
    901   // Recompute each out based on raw and symbols.
    902   for (i = 0; i < out_size; ++i) {
    903     HistogramClear(out_histo[i]);
    904   }
    905 
    906   for (i = 0; i < in_size; ++i) {
    907     const int idx = symbols[i];
    908     HistogramAdd(in_histo[i], out_histo[idx], out_histo[idx]);
    909   }
    910 }
    911 
    912 static double GetCombineCostFactor(int histo_size, int quality) {
    913   double combine_cost_factor = 0.16;
    914   if (quality < 90) {
    915     if (histo_size > 256) combine_cost_factor /= 2.;
    916     if (histo_size > 512) combine_cost_factor /= 2.;
    917     if (histo_size > 1024) combine_cost_factor /= 2.;
    918     if (quality <= 50) combine_cost_factor /= 2.;
    919   }
    920   return combine_cost_factor;
    921 }
    922 
    923 int VP8LGetHistoImageSymbols(int xsize, int ysize,
    924                              const VP8LBackwardRefs* const refs,
    925                              int quality, int low_effort,
    926                              int histo_bits, int cache_bits,
    927                              VP8LHistogramSet* const image_histo,
    928                              VP8LHistogramSet* const tmp_histos,
    929                              uint16_t* const histogram_symbols) {
    930   int ok = 0;
    931   const int histo_xsize = histo_bits ? VP8LSubSampleSize(xsize, histo_bits) : 1;
    932   const int histo_ysize = histo_bits ? VP8LSubSampleSize(ysize, histo_bits) : 1;
    933   const int image_histo_raw_size = histo_xsize * histo_ysize;
    934   VP8LHistogramSet* const orig_histo =
    935       VP8LAllocateHistogramSet(image_histo_raw_size, cache_bits);
    936   VP8LHistogram* cur_combo;
    937   // Don't attempt linear bin-partition heuristic for
    938   // histograms of small sizes (as bin_map will be very sparse) and
    939   // maximum quality q==100 (to preserve the compression gains at that level).
    940   const int entropy_combine_num_bins = low_effort ? NUM_PARTITIONS : BIN_SIZE;
    941   const int entropy_combine =
    942       (orig_histo->size > entropy_combine_num_bins * 2) && (quality < 100);
    943 
    944   if (orig_histo == NULL) goto Error;
    945 
    946   // Construct the histograms from backward references.
    947   HistogramBuild(xsize, histo_bits, refs, orig_histo);
    948   // Copies the histograms and computes its bit_cost.
    949   HistogramCopyAndAnalyze(orig_histo, image_histo);
    950 
    951   cur_combo = tmp_histos->histograms[1];  // pick up working slot
    952   if (entropy_combine) {
    953     const int bin_map_size = orig_histo->size;
    954     // Reuse histogram_symbols storage. By definition, it's guaranteed to be ok.
    955     uint16_t* const bin_map = histogram_symbols;
    956     const double combine_cost_factor =
    957         GetCombineCostFactor(image_histo_raw_size, quality);
    958 
    959     HistogramAnalyzeEntropyBin(orig_histo, bin_map, low_effort);
    960     // Collapse histograms with similar entropy.
    961     cur_combo = HistogramCombineEntropyBin(image_histo, cur_combo,
    962                                            bin_map, bin_map_size,
    963                                            entropy_combine_num_bins,
    964                                            combine_cost_factor, low_effort);
    965   }
    966 
    967   // Don't combine the histograms using stochastic and greedy heuristics for
    968   // low-effort compression mode.
    969   if (!low_effort || !entropy_combine) {
    970     const float x = quality / 100.f;
    971     // cubic ramp between 1 and MAX_HISTO_GREEDY:
    972     const int threshold_size = (int)(1 + (x * x * x) * (MAX_HISTO_GREEDY - 1));
    973     HistogramCombineStochastic(image_histo, tmp_histos->histograms[0],
    974                                cur_combo, quality, threshold_size);
    975     if ((image_histo->size <= threshold_size) &&
    976         !HistogramCombineGreedy(image_histo)) {
    977       goto Error;
    978     }
    979   }
    980 
    981   // TODO(vikasa): Optimize HistogramRemap for low-effort compression mode also.
    982   // Find the optimal map from original histograms to the final ones.
    983   HistogramRemap(orig_histo, image_histo, histogram_symbols);
    984 
    985   ok = 1;
    986 
    987  Error:
    988   VP8LFreeHistogramSet(orig_histo);
    989   return ok;
    990 }
    991