1 // Copyright 2013 Google Inc. All Rights Reserved. 2 // 3 // Use of this source code is governed by a BSD-style license 4 // that can be found in the COPYING file in the root of the source 5 // tree. An additional intellectual property rights grant can be found 6 // in the file PATENTS. All contributing project authors may 7 // be found in the AUTHORS file in the root of the source tree. 8 // ----------------------------------------------------------------------------- 9 // 10 // Implement gradient smoothing: we replace a current alpha value by its 11 // surrounding average if it's close enough (that is: the change will be less 12 // than the minimum distance between two quantized level). 13 // We use sliding window for computing the 2d moving average. 14 // 15 // Author: Skal (pascal.massimino (at) gmail.com) 16 17 #include "./quant_levels_dec_utils.h" 18 19 #include <string.h> // for memset 20 21 #include "./utils.h" 22 23 // #define USE_DITHERING // uncomment to enable ordered dithering (not vital) 24 25 #define FIX 16 // fix-point precision for averaging 26 #define LFIX 2 // extra precision for look-up table 27 #define LUT_SIZE ((1 << (8 + LFIX)) - 1) // look-up table size 28 29 #if defined(USE_DITHERING) 30 31 #define DFIX 4 // extra precision for ordered dithering 32 #define DSIZE 4 // dithering size (must be a power of two) 33 // cf. http://en.wikipedia.org/wiki/Ordered_dithering 34 static const uint8_t kOrderedDither[DSIZE][DSIZE] = { 35 { 0, 8, 2, 10 }, // coefficients are in DFIX fixed-point precision 36 { 12, 4, 14, 6 }, 37 { 3, 11, 1, 9 }, 38 { 15, 7, 13, 5 } 39 }; 40 41 #else 42 #define DFIX 0 43 #endif 44 45 typedef struct { 46 int width_, height_; // dimension 47 int stride_; // stride in bytes 48 int row_; // current input row being processed 49 uint8_t* src_; // input pointer 50 uint8_t* dst_; // output pointer 51 52 int radius_; // filter radius (=delay) 53 int scale_; // normalization factor, in FIX bits precision 54 55 void* mem_; // all memory 56 57 // various scratch buffers 58 uint16_t* start_; 59 uint16_t* cur_; 60 uint16_t* end_; 61 uint16_t* top_; 62 uint16_t* average_; 63 64 // input levels distribution 65 int num_levels_; // number of quantized levels 66 int min_, max_; // min and max level values 67 int min_level_dist_; // smallest distance between two consecutive levels 68 69 int16_t* correction_; // size = 1 + 2*LUT_SIZE -> ~4k memory 70 } SmoothParams; 71 72 //------------------------------------------------------------------------------ 73 74 #define CLIP_MASK (int)(~0U << (8 + DFIX)) 75 static WEBP_INLINE uint8_t clip_8b(int v) { 76 return (!(v & CLIP_MASK)) ? (uint8_t)(v >> DFIX) : (v < 0) ? 0u : 255u; 77 } 78 79 // vertical accumulation 80 static void VFilter(SmoothParams* const p) { 81 const uint8_t* src = p->src_; 82 const int w = p->width_; 83 uint16_t* const cur = p->cur_; 84 const uint16_t* const top = p->top_; 85 uint16_t* const out = p->end_; 86 uint16_t sum = 0; // all arithmetic is modulo 16bit 87 int x; 88 89 for (x = 0; x < w; ++x) { 90 uint16_t new_value; 91 sum += src[x]; 92 new_value = top[x] + sum; 93 out[x] = new_value - cur[x]; // vertical sum of 'r' pixels. 94 cur[x] = new_value; 95 } 96 // move input pointers one row down 97 p->top_ = p->cur_; 98 p->cur_ += w; 99 if (p->cur_ == p->end_) p->cur_ = p->start_; // roll-over 100 // We replicate edges, as it's somewhat easier as a boundary condition. 101 // That's why we don't update the 'src' pointer on top/bottom area: 102 if (p->row_ >= 0 && p->row_ < p->height_ - 1) { 103 p->src_ += p->stride_; 104 } 105 } 106 107 // horizontal accumulation. We use mirror replication of missing pixels, as it's 108 // a little easier to implement (surprisingly). 109 static void HFilter(SmoothParams* const p) { 110 const uint16_t* const in = p->end_; 111 uint16_t* const out = p->average_; 112 const uint32_t scale = p->scale_; 113 const int w = p->width_; 114 const int r = p->radius_; 115 116 int x; 117 for (x = 0; x <= r; ++x) { // left mirroring 118 const uint16_t delta = in[x + r - 1] + in[r - x]; 119 out[x] = (delta * scale) >> FIX; 120 } 121 for (; x < w - r; ++x) { // bulk middle run 122 const uint16_t delta = in[x + r] - in[x - r - 1]; 123 out[x] = (delta * scale) >> FIX; 124 } 125 for (; x < w; ++x) { // right mirroring 126 const uint16_t delta = 127 2 * in[w - 1] - in[2 * w - 2 - r - x] - in[x - r - 1]; 128 out[x] = (delta * scale) >> FIX; 129 } 130 } 131 132 // emit one filtered output row 133 static void ApplyFilter(SmoothParams* const p) { 134 const uint16_t* const average = p->average_; 135 const int w = p->width_; 136 const int16_t* const correction = p->correction_; 137 #if defined(USE_DITHERING) 138 const uint8_t* const dither = kOrderedDither[p->row_ % DSIZE]; 139 #endif 140 uint8_t* const dst = p->dst_; 141 int x; 142 for (x = 0; x < w; ++x) { 143 const int v = dst[x]; 144 if (v < p->max_ && v > p->min_) { 145 const int c = (v << DFIX) + correction[average[x] - (v << LFIX)]; 146 #if defined(USE_DITHERING) 147 dst[x] = clip_8b(c + dither[x % DSIZE]); 148 #else 149 dst[x] = clip_8b(c); 150 #endif 151 } 152 } 153 p->dst_ += p->stride_; // advance output pointer 154 } 155 156 //------------------------------------------------------------------------------ 157 // Initialize correction table 158 159 static void InitCorrectionLUT(int16_t* const lut, int min_dist) { 160 // The correction curve is: 161 // f(x) = x for x <= threshold2 162 // f(x) = 0 for x >= threshold1 163 // and a linear interpolation for range x=[threshold2, threshold1] 164 // (along with f(-x) = -f(x) symmetry). 165 // Note that: threshold2 = 3/4 * threshold1 166 const int threshold1 = min_dist << LFIX; 167 const int threshold2 = (3 * threshold1) >> 2; 168 const int max_threshold = threshold2 << DFIX; 169 const int delta = threshold1 - threshold2; 170 int i; 171 for (i = 1; i <= LUT_SIZE; ++i) { 172 int c = (i <= threshold2) ? (i << DFIX) 173 : (i < threshold1) ? max_threshold * (threshold1 - i) / delta 174 : 0; 175 c >>= LFIX; 176 lut[+i] = +c; 177 lut[-i] = -c; 178 } 179 lut[0] = 0; 180 } 181 182 static void CountLevels(SmoothParams* const p) { 183 int i, j, last_level; 184 uint8_t used_levels[256] = { 0 }; 185 const uint8_t* data = p->src_; 186 p->min_ = 255; 187 p->max_ = 0; 188 for (j = 0; j < p->height_; ++j) { 189 for (i = 0; i < p->width_; ++i) { 190 const int v = data[i]; 191 if (v < p->min_) p->min_ = v; 192 if (v > p->max_) p->max_ = v; 193 used_levels[v] = 1; 194 } 195 data += p->stride_; 196 } 197 // Compute the mininum distance between two non-zero levels. 198 p->min_level_dist_ = p->max_ - p->min_; 199 last_level = -1; 200 for (i = 0; i < 256; ++i) { 201 if (used_levels[i]) { 202 ++p->num_levels_; 203 if (last_level >= 0) { 204 const int level_dist = i - last_level; 205 if (level_dist < p->min_level_dist_) { 206 p->min_level_dist_ = level_dist; 207 } 208 } 209 last_level = i; 210 } 211 } 212 } 213 214 // Initialize all params. 215 static int InitParams(uint8_t* const data, int width, int height, int stride, 216 int radius, SmoothParams* const p) { 217 const int R = 2 * radius + 1; // total size of the kernel 218 219 const size_t size_scratch_m = (R + 1) * width * sizeof(*p->start_); 220 const size_t size_m = width * sizeof(*p->average_); 221 const size_t size_lut = (1 + 2 * LUT_SIZE) * sizeof(*p->correction_); 222 const size_t total_size = size_scratch_m + size_m + size_lut; 223 uint8_t* mem = (uint8_t*)WebPSafeMalloc(1U, total_size); 224 225 if (mem == NULL) return 0; 226 p->mem_ = (void*)mem; 227 228 p->start_ = (uint16_t*)mem; 229 p->cur_ = p->start_; 230 p->end_ = p->start_ + R * width; 231 p->top_ = p->end_ - width; 232 memset(p->top_, 0, width * sizeof(*p->top_)); 233 mem += size_scratch_m; 234 235 p->average_ = (uint16_t*)mem; 236 mem += size_m; 237 238 p->width_ = width; 239 p->height_ = height; 240 p->stride_ = stride; 241 p->src_ = data; 242 p->dst_ = data; 243 p->radius_ = radius; 244 p->scale_ = (1 << (FIX + LFIX)) / (R * R); // normalization constant 245 p->row_ = -radius; 246 247 // analyze the input distribution so we can best-fit the threshold 248 CountLevels(p); 249 250 // correction table 251 p->correction_ = ((int16_t*)mem) + LUT_SIZE; 252 InitCorrectionLUT(p->correction_, p->min_level_dist_); 253 254 return 1; 255 } 256 257 static void CleanupParams(SmoothParams* const p) { 258 WebPSafeFree(p->mem_); 259 } 260 261 int WebPDequantizeLevels(uint8_t* const data, int width, int height, int stride, 262 int strength) { 263 const int radius = 4 * strength / 100; 264 if (strength < 0 || strength > 100) return 0; 265 if (data == NULL || width <= 0 || height <= 0) return 0; // bad params 266 if (radius > 0) { 267 SmoothParams p; 268 memset(&p, 0, sizeof(p)); 269 if (!InitParams(data, width, height, stride, radius, &p)) return 0; 270 if (p.num_levels_ > 2) { 271 for (; p.row_ < p.height_; ++p.row_) { 272 VFilter(&p); // accumulate average of input 273 // Need to wait few rows in order to prime the filter, 274 // before emitting some output. 275 if (p.row_ >= p.radius_) { 276 HFilter(&p); 277 ApplyFilter(&p); 278 } 279 } 280 } 281 CleanupParams(&p); 282 } 283 return 1; 284 } 285