Home | History | Annotate | Download | only in bfd
      1 /* linker.c -- BFD linker routines
      2    Copyright (C) 1993-2014 Free Software Foundation, Inc.
      3    Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support
      4 
      5    This file is part of BFD, the Binary File Descriptor library.
      6 
      7    This program is free software; you can redistribute it and/or modify
      8    it under the terms of the GNU General Public License as published by
      9    the Free Software Foundation; either version 3 of the License, or
     10    (at your option) any later version.
     11 
     12    This program is distributed in the hope that it will be useful,
     13    but WITHOUT ANY WARRANTY; without even the implied warranty of
     14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     15    GNU General Public License for more details.
     16 
     17    You should have received a copy of the GNU General Public License
     18    along with this program; if not, write to the Free Software
     19    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
     20    MA 02110-1301, USA.  */
     21 
     22 #include "sysdep.h"
     23 #include "bfd.h"
     24 #include "libbfd.h"
     25 #include "bfdlink.h"
     26 #include "genlink.h"
     27 
     28 /*
     29 SECTION
     30 	Linker Functions
     31 
     32 @cindex Linker
     33 	The linker uses three special entry points in the BFD target
     34 	vector.  It is not necessary to write special routines for
     35 	these entry points when creating a new BFD back end, since
     36 	generic versions are provided.  However, writing them can
     37 	speed up linking and make it use significantly less runtime
     38 	memory.
     39 
     40 	The first routine creates a hash table used by the other
     41 	routines.  The second routine adds the symbols from an object
     42 	file to the hash table.  The third routine takes all the
     43 	object files and links them together to create the output
     44 	file.  These routines are designed so that the linker proper
     45 	does not need to know anything about the symbols in the object
     46 	files that it is linking.  The linker merely arranges the
     47 	sections as directed by the linker script and lets BFD handle
     48 	the details of symbols and relocs.
     49 
     50 	The second routine and third routines are passed a pointer to
     51 	a <<struct bfd_link_info>> structure (defined in
     52 	<<bfdlink.h>>) which holds information relevant to the link,
     53 	including the linker hash table (which was created by the
     54 	first routine) and a set of callback functions to the linker
     55 	proper.
     56 
     57 	The generic linker routines are in <<linker.c>>, and use the
     58 	header file <<genlink.h>>.  As of this writing, the only back
     59 	ends which have implemented versions of these routines are
     60 	a.out (in <<aoutx.h>>) and ECOFF (in <<ecoff.c>>).  The a.out
     61 	routines are used as examples throughout this section.
     62 
     63 @menu
     64 @* Creating a Linker Hash Table::
     65 @* Adding Symbols to the Hash Table::
     66 @* Performing the Final Link::
     67 @end menu
     68 
     69 INODE
     70 Creating a Linker Hash Table, Adding Symbols to the Hash Table, Linker Functions, Linker Functions
     71 SUBSECTION
     72 	Creating a linker hash table
     73 
     74 @cindex _bfd_link_hash_table_create in target vector
     75 @cindex target vector (_bfd_link_hash_table_create)
     76 	The linker routines must create a hash table, which must be
     77 	derived from <<struct bfd_link_hash_table>> described in
     78 	<<bfdlink.c>>.  @xref{Hash Tables}, for information on how to
     79 	create a derived hash table.  This entry point is called using
     80 	the target vector of the linker output file.
     81 
     82 	The <<_bfd_link_hash_table_create>> entry point must allocate
     83 	and initialize an instance of the desired hash table.  If the
     84 	back end does not require any additional information to be
     85 	stored with the entries in the hash table, the entry point may
     86 	simply create a <<struct bfd_link_hash_table>>.  Most likely,
     87 	however, some additional information will be needed.
     88 
     89 	For example, with each entry in the hash table the a.out
     90 	linker keeps the index the symbol has in the final output file
     91 	(this index number is used so that when doing a relocatable
     92 	link the symbol index used in the output file can be quickly
     93 	filled in when copying over a reloc).  The a.out linker code
     94 	defines the required structures and functions for a hash table
     95 	derived from <<struct bfd_link_hash_table>>.  The a.out linker
     96 	hash table is created by the function
     97 	<<NAME(aout,link_hash_table_create)>>; it simply allocates
     98 	space for the hash table, initializes it, and returns a
     99 	pointer to it.
    100 
    101 	When writing the linker routines for a new back end, you will
    102 	generally not know exactly which fields will be required until
    103 	you have finished.  You should simply create a new hash table
    104 	which defines no additional fields, and then simply add fields
    105 	as they become necessary.
    106 
    107 INODE
    108 Adding Symbols to the Hash Table, Performing the Final Link, Creating a Linker Hash Table, Linker Functions
    109 SUBSECTION
    110 	Adding symbols to the hash table
    111 
    112 @cindex _bfd_link_add_symbols in target vector
    113 @cindex target vector (_bfd_link_add_symbols)
    114 	The linker proper will call the <<_bfd_link_add_symbols>>
    115 	entry point for each object file or archive which is to be
    116 	linked (typically these are the files named on the command
    117 	line, but some may also come from the linker script).  The
    118 	entry point is responsible for examining the file.  For an
    119 	object file, BFD must add any relevant symbol information to
    120 	the hash table.  For an archive, BFD must determine which
    121 	elements of the archive should be used and adding them to the
    122 	link.
    123 
    124 	The a.out version of this entry point is
    125 	<<NAME(aout,link_add_symbols)>>.
    126 
    127 @menu
    128 @* Differing file formats::
    129 @* Adding symbols from an object file::
    130 @* Adding symbols from an archive::
    131 @end menu
    132 
    133 INODE
    134 Differing file formats, Adding symbols from an object file, Adding Symbols to the Hash Table, Adding Symbols to the Hash Table
    135 SUBSUBSECTION
    136 	Differing file formats
    137 
    138 	Normally all the files involved in a link will be of the same
    139 	format, but it is also possible to link together different
    140 	format object files, and the back end must support that.  The
    141 	<<_bfd_link_add_symbols>> entry point is called via the target
    142 	vector of the file to be added.  This has an important
    143 	consequence: the function may not assume that the hash table
    144 	is the type created by the corresponding
    145 	<<_bfd_link_hash_table_create>> vector.  All the
    146 	<<_bfd_link_add_symbols>> function can assume about the hash
    147 	table is that it is derived from <<struct
    148 	bfd_link_hash_table>>.
    149 
    150 	Sometimes the <<_bfd_link_add_symbols>> function must store
    151 	some information in the hash table entry to be used by the
    152 	<<_bfd_final_link>> function.  In such a case the output bfd
    153 	xvec must be checked to make sure that the hash table was
    154 	created by an object file of the same format.
    155 
    156 	The <<_bfd_final_link>> routine must be prepared to handle a
    157 	hash entry without any extra information added by the
    158 	<<_bfd_link_add_symbols>> function.  A hash entry without
    159 	extra information will also occur when the linker script
    160 	directs the linker to create a symbol.  Note that, regardless
    161 	of how a hash table entry is added, all the fields will be
    162 	initialized to some sort of null value by the hash table entry
    163 	initialization function.
    164 
    165 	See <<ecoff_link_add_externals>> for an example of how to
    166 	check the output bfd before saving information (in this
    167 	case, the ECOFF external symbol debugging information) in a
    168 	hash table entry.
    169 
    170 INODE
    171 Adding symbols from an object file, Adding symbols from an archive, Differing file formats, Adding Symbols to the Hash Table
    172 SUBSUBSECTION
    173 	Adding symbols from an object file
    174 
    175 	When the <<_bfd_link_add_symbols>> routine is passed an object
    176 	file, it must add all externally visible symbols in that
    177 	object file to the hash table.  The actual work of adding the
    178 	symbol to the hash table is normally handled by the function
    179 	<<_bfd_generic_link_add_one_symbol>>.  The
    180 	<<_bfd_link_add_symbols>> routine is responsible for reading
    181 	all the symbols from the object file and passing the correct
    182 	information to <<_bfd_generic_link_add_one_symbol>>.
    183 
    184 	The <<_bfd_link_add_symbols>> routine should not use
    185 	<<bfd_canonicalize_symtab>> to read the symbols.  The point of
    186 	providing this routine is to avoid the overhead of converting
    187 	the symbols into generic <<asymbol>> structures.
    188 
    189 @findex _bfd_generic_link_add_one_symbol
    190 	<<_bfd_generic_link_add_one_symbol>> handles the details of
    191 	combining common symbols, warning about multiple definitions,
    192 	and so forth.  It takes arguments which describe the symbol to
    193 	add, notably symbol flags, a section, and an offset.  The
    194 	symbol flags include such things as <<BSF_WEAK>> or
    195 	<<BSF_INDIRECT>>.  The section is a section in the object
    196 	file, or something like <<bfd_und_section_ptr>> for an undefined
    197 	symbol or <<bfd_com_section_ptr>> for a common symbol.
    198 
    199 	If the <<_bfd_final_link>> routine is also going to need to
    200 	read the symbol information, the <<_bfd_link_add_symbols>>
    201 	routine should save it somewhere attached to the object file
    202 	BFD.  However, the information should only be saved if the
    203 	<<keep_memory>> field of the <<info>> argument is TRUE, so
    204 	that the <<-no-keep-memory>> linker switch is effective.
    205 
    206 	The a.out function which adds symbols from an object file is
    207 	<<aout_link_add_object_symbols>>, and most of the interesting
    208 	work is in <<aout_link_add_symbols>>.  The latter saves
    209 	pointers to the hash tables entries created by
    210 	<<_bfd_generic_link_add_one_symbol>> indexed by symbol number,
    211 	so that the <<_bfd_final_link>> routine does not have to call
    212 	the hash table lookup routine to locate the entry.
    213 
    214 INODE
    215 Adding symbols from an archive, , Adding symbols from an object file, Adding Symbols to the Hash Table
    216 SUBSUBSECTION
    217 	Adding symbols from an archive
    218 
    219 	When the <<_bfd_link_add_symbols>> routine is passed an
    220 	archive, it must look through the symbols defined by the
    221 	archive and decide which elements of the archive should be
    222 	included in the link.  For each such element it must call the
    223 	<<add_archive_element>> linker callback, and it must add the
    224 	symbols from the object file to the linker hash table.  (The
    225 	callback may in fact indicate that a replacement BFD should be
    226 	used, in which case the symbols from that BFD should be added
    227 	to the linker hash table instead.)
    228 
    229 @findex _bfd_generic_link_add_archive_symbols
    230 	In most cases the work of looking through the symbols in the
    231 	archive should be done by the
    232 	<<_bfd_generic_link_add_archive_symbols>> function.
    233 	<<_bfd_generic_link_add_archive_symbols>> is passed a function
    234 	to call to make the final decision about adding an archive
    235 	element to the link and to do the actual work of adding the
    236 	symbols to the linker hash table.  If the element is to
    237 	be included, the <<add_archive_element>> linker callback
    238 	routine must be called with the element as an argument, and
    239 	the element's symbols must be added to the linker hash table
    240 	just as though the element had itself been passed to the
    241 	<<_bfd_link_add_symbols>> function.
    242 
    243 	When the a.out <<_bfd_link_add_symbols>> function receives an
    244 	archive, it calls <<_bfd_generic_link_add_archive_symbols>>
    245 	passing <<aout_link_check_archive_element>> as the function
    246 	argument. <<aout_link_check_archive_element>> calls
    247 	<<aout_link_check_ar_symbols>>.  If the latter decides to add
    248 	the element (an element is only added if it provides a real,
    249 	non-common, definition for a previously undefined or common
    250 	symbol) it calls the <<add_archive_element>> callback and then
    251 	<<aout_link_check_archive_element>> calls
    252 	<<aout_link_add_symbols>> to actually add the symbols to the
    253 	linker hash table - possibly those of a substitute BFD, if the
    254 	<<add_archive_element>> callback avails itself of that option.
    255 
    256 	The ECOFF back end is unusual in that it does not normally
    257 	call <<_bfd_generic_link_add_archive_symbols>>, because ECOFF
    258 	archives already contain a hash table of symbols.  The ECOFF
    259 	back end searches the archive itself to avoid the overhead of
    260 	creating a new hash table.
    261 
    262 INODE
    263 Performing the Final Link, , Adding Symbols to the Hash Table, Linker Functions
    264 SUBSECTION
    265 	Performing the final link
    266 
    267 @cindex _bfd_link_final_link in target vector
    268 @cindex target vector (_bfd_final_link)
    269 	When all the input files have been processed, the linker calls
    270 	the <<_bfd_final_link>> entry point of the output BFD.  This
    271 	routine is responsible for producing the final output file,
    272 	which has several aspects.  It must relocate the contents of
    273 	the input sections and copy the data into the output sections.
    274 	It must build an output symbol table including any local
    275 	symbols from the input files and the global symbols from the
    276 	hash table.  When producing relocatable output, it must
    277 	modify the input relocs and write them into the output file.
    278 	There may also be object format dependent work to be done.
    279 
    280 	The linker will also call the <<write_object_contents>> entry
    281 	point when the BFD is closed.  The two entry points must work
    282 	together in order to produce the correct output file.
    283 
    284 	The details of how this works are inevitably dependent upon
    285 	the specific object file format.  The a.out
    286 	<<_bfd_final_link>> routine is <<NAME(aout,final_link)>>.
    287 
    288 @menu
    289 @* Information provided by the linker::
    290 @* Relocating the section contents::
    291 @* Writing the symbol table::
    292 @end menu
    293 
    294 INODE
    295 Information provided by the linker, Relocating the section contents, Performing the Final Link, Performing the Final Link
    296 SUBSUBSECTION
    297 	Information provided by the linker
    298 
    299 	Before the linker calls the <<_bfd_final_link>> entry point,
    300 	it sets up some data structures for the function to use.
    301 
    302 	The <<input_bfds>> field of the <<bfd_link_info>> structure
    303 	will point to a list of all the input files included in the
    304 	link.  These files are linked through the <<link.next>> field
    305 	of the <<bfd>> structure.
    306 
    307 	Each section in the output file will have a list of
    308 	<<link_order>> structures attached to the <<map_head.link_order>>
    309 	field (the <<link_order>> structure is defined in
    310 	<<bfdlink.h>>).  These structures describe how to create the
    311 	contents of the output section in terms of the contents of
    312 	various input sections, fill constants, and, eventually, other
    313 	types of information.  They also describe relocs that must be
    314 	created by the BFD backend, but do not correspond to any input
    315 	file; this is used to support -Ur, which builds constructors
    316 	while generating a relocatable object file.
    317 
    318 INODE
    319 Relocating the section contents, Writing the symbol table, Information provided by the linker, Performing the Final Link
    320 SUBSUBSECTION
    321 	Relocating the section contents
    322 
    323 	The <<_bfd_final_link>> function should look through the
    324 	<<link_order>> structures attached to each section of the
    325 	output file.  Each <<link_order>> structure should either be
    326 	handled specially, or it should be passed to the function
    327 	<<_bfd_default_link_order>> which will do the right thing
    328 	(<<_bfd_default_link_order>> is defined in <<linker.c>>).
    329 
    330 	For efficiency, a <<link_order>> of type
    331 	<<bfd_indirect_link_order>> whose associated section belongs
    332 	to a BFD of the same format as the output BFD must be handled
    333 	specially.  This type of <<link_order>> describes part of an
    334 	output section in terms of a section belonging to one of the
    335 	input files.  The <<_bfd_final_link>> function should read the
    336 	contents of the section and any associated relocs, apply the
    337 	relocs to the section contents, and write out the modified
    338 	section contents.  If performing a relocatable link, the
    339 	relocs themselves must also be modified and written out.
    340 
    341 @findex _bfd_relocate_contents
    342 @findex _bfd_final_link_relocate
    343 	The functions <<_bfd_relocate_contents>> and
    344 	<<_bfd_final_link_relocate>> provide some general support for
    345 	performing the actual relocations, notably overflow checking.
    346 	Their arguments include information about the symbol the
    347 	relocation is against and a <<reloc_howto_type>> argument
    348 	which describes the relocation to perform.  These functions
    349 	are defined in <<reloc.c>>.
    350 
    351 	The a.out function which handles reading, relocating, and
    352 	writing section contents is <<aout_link_input_section>>.  The
    353 	actual relocation is done in <<aout_link_input_section_std>>
    354 	and <<aout_link_input_section_ext>>.
    355 
    356 INODE
    357 Writing the symbol table, , Relocating the section contents, Performing the Final Link
    358 SUBSUBSECTION
    359 	Writing the symbol table
    360 
    361 	The <<_bfd_final_link>> function must gather all the symbols
    362 	in the input files and write them out.  It must also write out
    363 	all the symbols in the global hash table.  This must be
    364 	controlled by the <<strip>> and <<discard>> fields of the
    365 	<<bfd_link_info>> structure.
    366 
    367 	The local symbols of the input files will not have been
    368 	entered into the linker hash table.  The <<_bfd_final_link>>
    369 	routine must consider each input file and include the symbols
    370 	in the output file.  It may be convenient to do this when
    371 	looking through the <<link_order>> structures, or it may be
    372 	done by stepping through the <<input_bfds>> list.
    373 
    374 	The <<_bfd_final_link>> routine must also traverse the global
    375 	hash table to gather all the externally visible symbols.  It
    376 	is possible that most of the externally visible symbols may be
    377 	written out when considering the symbols of each input file,
    378 	but it is still necessary to traverse the hash table since the
    379 	linker script may have defined some symbols that are not in
    380 	any of the input files.
    381 
    382 	The <<strip>> field of the <<bfd_link_info>> structure
    383 	controls which symbols are written out.  The possible values
    384 	are listed in <<bfdlink.h>>.  If the value is <<strip_some>>,
    385 	then the <<keep_hash>> field of the <<bfd_link_info>>
    386 	structure is a hash table of symbols to keep; each symbol
    387 	should be looked up in this hash table, and only symbols which
    388 	are present should be included in the output file.
    389 
    390 	If the <<strip>> field of the <<bfd_link_info>> structure
    391 	permits local symbols to be written out, the <<discard>> field
    392 	is used to further controls which local symbols are included
    393 	in the output file.  If the value is <<discard_l>>, then all
    394 	local symbols which begin with a certain prefix are discarded;
    395 	this is controlled by the <<bfd_is_local_label_name>> entry point.
    396 
    397 	The a.out backend handles symbols by calling
    398 	<<aout_link_write_symbols>> on each input BFD and then
    399 	traversing the global hash table with the function
    400 	<<aout_link_write_other_symbol>>.  It builds a string table
    401 	while writing out the symbols, which is written to the output
    402 	file at the end of <<NAME(aout,final_link)>>.
    403 */
    404 
    405 static bfd_boolean generic_link_add_object_symbols
    406   (bfd *, struct bfd_link_info *, bfd_boolean collect);
    407 static bfd_boolean generic_link_add_symbols
    408   (bfd *, struct bfd_link_info *, bfd_boolean);
    409 static bfd_boolean generic_link_check_archive_element_no_collect
    410   (bfd *, struct bfd_link_info *, struct bfd_link_hash_entry *, const char *,
    411    bfd_boolean *);
    412 static bfd_boolean generic_link_check_archive_element_collect
    413   (bfd *, struct bfd_link_info *, struct bfd_link_hash_entry *, const char *,
    414    bfd_boolean *);
    415 static bfd_boolean generic_link_check_archive_element
    416   (bfd *, struct bfd_link_info *, struct bfd_link_hash_entry *, const char *,
    417    bfd_boolean *, bfd_boolean);
    418 static bfd_boolean generic_link_add_symbol_list
    419   (bfd *, struct bfd_link_info *, bfd_size_type count, asymbol **,
    420    bfd_boolean);
    421 static bfd_boolean generic_add_output_symbol
    422   (bfd *, size_t *psymalloc, asymbol *);
    423 static bfd_boolean default_data_link_order
    424   (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *);
    425 static bfd_boolean default_indirect_link_order
    426   (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *,
    427    bfd_boolean);
    428 
    429 /* The link hash table structure is defined in bfdlink.h.  It provides
    430    a base hash table which the backend specific hash tables are built
    431    upon.  */
    432 
    433 /* Routine to create an entry in the link hash table.  */
    434 
    435 struct bfd_hash_entry *
    436 _bfd_link_hash_newfunc (struct bfd_hash_entry *entry,
    437 			struct bfd_hash_table *table,
    438 			const char *string)
    439 {
    440   /* Allocate the structure if it has not already been allocated by a
    441      subclass.  */
    442   if (entry == NULL)
    443     {
    444       entry = (struct bfd_hash_entry *)
    445           bfd_hash_allocate (table, sizeof (struct bfd_link_hash_entry));
    446       if (entry == NULL)
    447 	return entry;
    448     }
    449 
    450   /* Call the allocation method of the superclass.  */
    451   entry = bfd_hash_newfunc (entry, table, string);
    452   if (entry)
    453     {
    454       struct bfd_link_hash_entry *h = (struct bfd_link_hash_entry *) entry;
    455 
    456       /* Initialize the local fields.  */
    457       memset ((char *) &h->root + sizeof (h->root), 0,
    458 	      sizeof (*h) - sizeof (h->root));
    459     }
    460 
    461   return entry;
    462 }
    463 
    464 /* Initialize a link hash table.  The BFD argument is the one
    465    responsible for creating this table.  */
    466 
    467 bfd_boolean
    468 _bfd_link_hash_table_init
    469   (struct bfd_link_hash_table *table,
    470    bfd *abfd ATTRIBUTE_UNUSED,
    471    struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
    472 				      struct bfd_hash_table *,
    473 				      const char *),
    474    unsigned int entsize)
    475 {
    476   bfd_boolean ret;
    477 
    478   BFD_ASSERT (!abfd->is_linker_output && !abfd->link.hash);
    479   table->undefs = NULL;
    480   table->undefs_tail = NULL;
    481   table->type = bfd_link_generic_hash_table;
    482 
    483   ret = bfd_hash_table_init (&table->table, newfunc, entsize);
    484   if (ret)
    485     {
    486       /* Arrange for destruction of this hash table on closing ABFD.  */
    487       table->hash_table_free = _bfd_generic_link_hash_table_free;
    488       abfd->link.hash = table;
    489       abfd->is_linker_output = TRUE;
    490     }
    491   return ret;
    492 }
    493 
    494 /* Look up a symbol in a link hash table.  If follow is TRUE, we
    495    follow bfd_link_hash_indirect and bfd_link_hash_warning links to
    496    the real symbol.  */
    497 
    498 struct bfd_link_hash_entry *
    499 bfd_link_hash_lookup (struct bfd_link_hash_table *table,
    500 		      const char *string,
    501 		      bfd_boolean create,
    502 		      bfd_boolean copy,
    503 		      bfd_boolean follow)
    504 {
    505   struct bfd_link_hash_entry *ret;
    506 
    507   ret = ((struct bfd_link_hash_entry *)
    508 	 bfd_hash_lookup (&table->table, string, create, copy));
    509 
    510   if (follow && ret != NULL)
    511     {
    512       while (ret->type == bfd_link_hash_indirect
    513 	     || ret->type == bfd_link_hash_warning)
    514 	ret = ret->u.i.link;
    515     }
    516 
    517   return ret;
    518 }
    519 
    520 /* Look up a symbol in the main linker hash table if the symbol might
    521    be wrapped.  This should only be used for references to an
    522    undefined symbol, not for definitions of a symbol.  */
    523 
    524 struct bfd_link_hash_entry *
    525 bfd_wrapped_link_hash_lookup (bfd *abfd,
    526 			      struct bfd_link_info *info,
    527 			      const char *string,
    528 			      bfd_boolean create,
    529 			      bfd_boolean copy,
    530 			      bfd_boolean follow)
    531 {
    532   bfd_size_type amt;
    533 
    534   if (info->wrap_hash != NULL)
    535     {
    536       const char *l;
    537       char prefix = '\0';
    538 
    539       l = string;
    540       if (*l == bfd_get_symbol_leading_char (abfd) || *l == info->wrap_char)
    541 	{
    542 	  prefix = *l;
    543 	  ++l;
    544 	}
    545 
    546 #undef WRAP
    547 #define WRAP "__wrap_"
    548 
    549       if (bfd_hash_lookup (info->wrap_hash, l, FALSE, FALSE) != NULL)
    550 	{
    551 	  char *n;
    552 	  struct bfd_link_hash_entry *h;
    553 
    554 	  /* This symbol is being wrapped.  We want to replace all
    555              references to SYM with references to __wrap_SYM.  */
    556 
    557 	  amt = strlen (l) + sizeof WRAP + 1;
    558 	  n = (char *) bfd_malloc (amt);
    559 	  if (n == NULL)
    560 	    return NULL;
    561 
    562 	  n[0] = prefix;
    563 	  n[1] = '\0';
    564 	  strcat (n, WRAP);
    565 	  strcat (n, l);
    566 	  h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
    567 	  free (n);
    568 	  return h;
    569 	}
    570 
    571 #undef  REAL
    572 #define REAL "__real_"
    573 
    574       if (*l == '_'
    575 	  && CONST_STRNEQ (l, REAL)
    576 	  && bfd_hash_lookup (info->wrap_hash, l + sizeof REAL - 1,
    577 			      FALSE, FALSE) != NULL)
    578 	{
    579 	  char *n;
    580 	  struct bfd_link_hash_entry *h;
    581 
    582 	  /* This is a reference to __real_SYM, where SYM is being
    583              wrapped.  We want to replace all references to __real_SYM
    584              with references to SYM.  */
    585 
    586 	  amt = strlen (l + sizeof REAL - 1) + 2;
    587 	  n = (char *) bfd_malloc (amt);
    588 	  if (n == NULL)
    589 	    return NULL;
    590 
    591 	  n[0] = prefix;
    592 	  n[1] = '\0';
    593 	  strcat (n, l + sizeof REAL - 1);
    594 	  h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
    595 	  free (n);
    596 	  return h;
    597 	}
    598 
    599 #undef REAL
    600     }
    601 
    602   return bfd_link_hash_lookup (info->hash, string, create, copy, follow);
    603 }
    604 
    605 /* If H is a wrapped symbol, ie. the symbol name starts with "__wrap_"
    606    and the remainder is found in wrap_hash, return the real symbol.  */
    607 
    608 struct bfd_link_hash_entry *
    609 unwrap_hash_lookup (struct bfd_link_info *info,
    610 		    bfd *input_bfd,
    611 		    struct bfd_link_hash_entry *h)
    612 {
    613   const char *l = h->root.string;
    614 
    615   if (*l == bfd_get_symbol_leading_char (input_bfd)
    616       || *l == info->wrap_char)
    617     ++l;
    618 
    619   if (CONST_STRNEQ (l, WRAP))
    620     {
    621       l += sizeof WRAP - 1;
    622 
    623       if (bfd_hash_lookup (info->wrap_hash, l, FALSE, FALSE) != NULL)
    624 	{
    625 	  char save = 0;
    626 	  if (l - (sizeof WRAP - 1) != h->root.string)
    627 	    {
    628 	      --l;
    629 	      save = *l;
    630 	      *(char *) l = *h->root.string;
    631 	    }
    632 	  h = bfd_link_hash_lookup (info->hash, l, FALSE, FALSE, FALSE);
    633 	  if (save)
    634 	    *(char *) l = save;
    635 	}
    636     }
    637   return h;
    638 }
    639 #undef WRAP
    640 
    641 /* Traverse a generic link hash table.  Differs from bfd_hash_traverse
    642    in the treatment of warning symbols.  When warning symbols are
    643    created they replace the real symbol, so you don't get to see the
    644    real symbol in a bfd_hash_travere.  This traversal calls func with
    645    the real symbol.  */
    646 
    647 void
    648 bfd_link_hash_traverse
    649   (struct bfd_link_hash_table *htab,
    650    bfd_boolean (*func) (struct bfd_link_hash_entry *, void *),
    651    void *info)
    652 {
    653   unsigned int i;
    654 
    655   htab->table.frozen = 1;
    656   for (i = 0; i < htab->table.size; i++)
    657     {
    658       struct bfd_link_hash_entry *p;
    659 
    660       p = (struct bfd_link_hash_entry *) htab->table.table[i];
    661       for (; p != NULL; p = (struct bfd_link_hash_entry *) p->root.next)
    662 	if (!(*func) (p->type == bfd_link_hash_warning ? p->u.i.link : p, info))
    663 	  goto out;
    664     }
    665  out:
    666   htab->table.frozen = 0;
    667 }
    668 
    669 /* Add a symbol to the linker hash table undefs list.  */
    670 
    671 void
    672 bfd_link_add_undef (struct bfd_link_hash_table *table,
    673 		    struct bfd_link_hash_entry *h)
    674 {
    675   BFD_ASSERT (h->u.undef.next == NULL);
    676   if (table->undefs_tail != NULL)
    677     table->undefs_tail->u.undef.next = h;
    678   if (table->undefs == NULL)
    679     table->undefs = h;
    680   table->undefs_tail = h;
    681 }
    682 
    683 /* The undefs list was designed so that in normal use we don't need to
    684    remove entries.  However, if symbols on the list are changed from
    685    bfd_link_hash_undefined to either bfd_link_hash_undefweak or
    686    bfd_link_hash_new for some reason, then they must be removed from the
    687    list.  Failure to do so might result in the linker attempting to add
    688    the symbol to the list again at a later stage.  */
    689 
    690 void
    691 bfd_link_repair_undef_list (struct bfd_link_hash_table *table)
    692 {
    693   struct bfd_link_hash_entry **pun;
    694 
    695   pun = &table->undefs;
    696   while (*pun != NULL)
    697     {
    698       struct bfd_link_hash_entry *h = *pun;
    699 
    700       if (h->type == bfd_link_hash_new
    701 	  || h->type == bfd_link_hash_undefweak)
    702 	{
    703 	  *pun = h->u.undef.next;
    704 	  h->u.undef.next = NULL;
    705 	  if (h == table->undefs_tail)
    706 	    {
    707 	      if (pun == &table->undefs)
    708 		table->undefs_tail = NULL;
    709 	      else
    710 		/* pun points at an u.undef.next field.  Go back to
    711 		   the start of the link_hash_entry.  */
    712 		table->undefs_tail = (struct bfd_link_hash_entry *)
    713 		  ((char *) pun - ((char *) &h->u.undef.next - (char *) h));
    714 	      break;
    715 	    }
    716 	}
    717       else
    718 	pun = &h->u.undef.next;
    719     }
    720 }
    721 
    722 /* Routine to create an entry in a generic link hash table.  */
    724 
    725 struct bfd_hash_entry *
    726 _bfd_generic_link_hash_newfunc (struct bfd_hash_entry *entry,
    727 				struct bfd_hash_table *table,
    728 				const char *string)
    729 {
    730   /* Allocate the structure if it has not already been allocated by a
    731      subclass.  */
    732   if (entry == NULL)
    733     {
    734       entry = (struct bfd_hash_entry *)
    735 	bfd_hash_allocate (table, sizeof (struct generic_link_hash_entry));
    736       if (entry == NULL)
    737 	return entry;
    738     }
    739 
    740   /* Call the allocation method of the superclass.  */
    741   entry = _bfd_link_hash_newfunc (entry, table, string);
    742   if (entry)
    743     {
    744       struct generic_link_hash_entry *ret;
    745 
    746       /* Set local fields.  */
    747       ret = (struct generic_link_hash_entry *) entry;
    748       ret->written = FALSE;
    749       ret->sym = NULL;
    750     }
    751 
    752   return entry;
    753 }
    754 
    755 /* Create a generic link hash table.  */
    756 
    757 struct bfd_link_hash_table *
    758 _bfd_generic_link_hash_table_create (bfd *abfd)
    759 {
    760   struct generic_link_hash_table *ret;
    761   bfd_size_type amt = sizeof (struct generic_link_hash_table);
    762 
    763   ret = (struct generic_link_hash_table *) bfd_malloc (amt);
    764   if (ret == NULL)
    765     return NULL;
    766   if (! _bfd_link_hash_table_init (&ret->root, abfd,
    767 				   _bfd_generic_link_hash_newfunc,
    768 				   sizeof (struct generic_link_hash_entry)))
    769     {
    770       free (ret);
    771       return NULL;
    772     }
    773   return &ret->root;
    774 }
    775 
    776 void
    777 _bfd_generic_link_hash_table_free (bfd *obfd)
    778 {
    779   struct generic_link_hash_table *ret;
    780 
    781   BFD_ASSERT (obfd->is_linker_output && obfd->link.hash);
    782   ret = (struct generic_link_hash_table *) obfd->link.hash;
    783   bfd_hash_table_free (&ret->root.table);
    784   free (ret);
    785   obfd->link.hash = NULL;
    786   obfd->is_linker_output = FALSE;
    787 }
    788 
    789 /* Grab the symbols for an object file when doing a generic link.  We
    790    store the symbols in the outsymbols field.  We need to keep them
    791    around for the entire link to ensure that we only read them once.
    792    If we read them multiple times, we might wind up with relocs and
    793    the hash table pointing to different instances of the symbol
    794    structure.  */
    795 
    796 bfd_boolean
    797 bfd_generic_link_read_symbols (bfd *abfd)
    798 {
    799   if (bfd_get_outsymbols (abfd) == NULL)
    800     {
    801       long symsize;
    802       long symcount;
    803 
    804       symsize = bfd_get_symtab_upper_bound (abfd);
    805       if (symsize < 0)
    806 	return FALSE;
    807       bfd_get_outsymbols (abfd) = (struct bfd_symbol **) bfd_alloc (abfd,
    808                                                                     symsize);
    809       if (bfd_get_outsymbols (abfd) == NULL && symsize != 0)
    810 	return FALSE;
    811       symcount = bfd_canonicalize_symtab (abfd, bfd_get_outsymbols (abfd));
    812       if (symcount < 0)
    813 	return FALSE;
    814       bfd_get_symcount (abfd) = symcount;
    815     }
    816 
    817   return TRUE;
    818 }
    819 
    820 /* Generic function to add symbols to from an object file to the
    822    global hash table.  This version does not automatically collect
    823    constructors by name.  */
    824 
    825 bfd_boolean
    826 _bfd_generic_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
    827 {
    828   return generic_link_add_symbols (abfd, info, FALSE);
    829 }
    830 
    831 /* Generic function to add symbols from an object file to the global
    832    hash table.  This version automatically collects constructors by
    833    name, as the collect2 program does.  It should be used for any
    834    target which does not provide some other mechanism for setting up
    835    constructors and destructors; these are approximately those targets
    836    for which gcc uses collect2 and do not support stabs.  */
    837 
    838 bfd_boolean
    839 _bfd_generic_link_add_symbols_collect (bfd *abfd, struct bfd_link_info *info)
    840 {
    841   return generic_link_add_symbols (abfd, info, TRUE);
    842 }
    843 
    844 /* Indicate that we are only retrieving symbol values from this
    845    section.  We want the symbols to act as though the values in the
    846    file are absolute.  */
    847 
    848 void
    849 _bfd_generic_link_just_syms (asection *sec,
    850 			     struct bfd_link_info *info ATTRIBUTE_UNUSED)
    851 {
    852   sec->sec_info_type = SEC_INFO_TYPE_JUST_SYMS;
    853   sec->output_section = bfd_abs_section_ptr;
    854   sec->output_offset = sec->vma;
    855 }
    856 
    857 /* Copy the symbol type and other attributes for a linker script
    858    assignment from HSRC to HDEST.
    859    The default implementation does nothing.  */
    860 void
    861 _bfd_generic_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
    862     struct bfd_link_hash_entry *hdest ATTRIBUTE_UNUSED,
    863     struct bfd_link_hash_entry *hsrc ATTRIBUTE_UNUSED)
    864 {
    865 }
    866 
    867 /* Add symbols from an object file to the global hash table.  */
    868 
    869 static bfd_boolean
    870 generic_link_add_symbols (bfd *abfd,
    871 			  struct bfd_link_info *info,
    872 			  bfd_boolean collect)
    873 {
    874   bfd_boolean ret;
    875 
    876   switch (bfd_get_format (abfd))
    877     {
    878     case bfd_object:
    879       ret = generic_link_add_object_symbols (abfd, info, collect);
    880       break;
    881     case bfd_archive:
    882       ret = (_bfd_generic_link_add_archive_symbols
    883 	     (abfd, info,
    884 	      (collect
    885 	       ? generic_link_check_archive_element_collect
    886 	       : generic_link_check_archive_element_no_collect)));
    887       break;
    888     default:
    889       bfd_set_error (bfd_error_wrong_format);
    890       ret = FALSE;
    891     }
    892 
    893   return ret;
    894 }
    895 
    896 /* Add symbols from an object file to the global hash table.  */
    897 
    898 static bfd_boolean
    899 generic_link_add_object_symbols (bfd *abfd,
    900 				 struct bfd_link_info *info,
    901 				 bfd_boolean collect)
    902 {
    903   bfd_size_type symcount;
    904   struct bfd_symbol **outsyms;
    905 
    906   if (!bfd_generic_link_read_symbols (abfd))
    907     return FALSE;
    908   symcount = _bfd_generic_link_get_symcount (abfd);
    909   outsyms = _bfd_generic_link_get_symbols (abfd);
    910   return generic_link_add_symbol_list (abfd, info, symcount, outsyms, collect);
    911 }
    912 
    913 /* Generic function to add symbols from an archive file to the global
    915    hash file.  This function presumes that the archive symbol table
    916    has already been read in (this is normally done by the
    917    bfd_check_format entry point).  It looks through the archive symbol
    918    table for symbols that are undefined or common in the linker global
    919    symbol hash table.  When one is found, the CHECKFN argument is used
    920    to see if an object file should be included.  This allows targets
    921    to customize common symbol behaviour.  CHECKFN should set *PNEEDED
    922    to TRUE if the object file should be included, and must also call
    923    the bfd_link_info add_archive_element callback function and handle
    924    adding the symbols to the global hash table.  CHECKFN must notice
    925    if the callback indicates a substitute BFD, and arrange to add
    926    those symbols instead if it does so.  CHECKFN should only return
    927    FALSE if some sort of error occurs.  */
    928 
    929 bfd_boolean
    930 _bfd_generic_link_add_archive_symbols
    931   (bfd *abfd,
    932    struct bfd_link_info *info,
    933    bfd_boolean (*checkfn) (bfd *, struct bfd_link_info *,
    934 			   struct bfd_link_hash_entry *, const char *,
    935 			   bfd_boolean *))
    936 {
    937   bfd_boolean loop;
    938   bfd_size_type amt;
    939   unsigned char *included;
    940 
    941   if (! bfd_has_map (abfd))
    942     {
    943       /* An empty archive is a special case.  */
    944       if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
    945 	return TRUE;
    946       bfd_set_error (bfd_error_no_armap);
    947       return FALSE;
    948     }
    949 
    950   amt = bfd_ardata (abfd)->symdef_count;
    951   if (amt == 0)
    952     return TRUE;
    953   amt *= sizeof (*included);
    954   included = (unsigned char *) bfd_zmalloc (amt);
    955   if (included == NULL)
    956     return FALSE;
    957 
    958   do
    959     {
    960       carsym *arsyms;
    961       carsym *arsym_end;
    962       carsym *arsym;
    963       unsigned int indx;
    964       file_ptr last_ar_offset = -1;
    965       bfd_boolean needed = FALSE;
    966       bfd *element = NULL;
    967 
    968       loop = FALSE;
    969       arsyms = bfd_ardata (abfd)->symdefs;
    970       arsym_end = arsyms + bfd_ardata (abfd)->symdef_count;
    971       for (arsym = arsyms, indx = 0; arsym < arsym_end; arsym++, indx++)
    972 	{
    973 	  struct bfd_link_hash_entry *h;
    974 	  struct bfd_link_hash_entry *undefs_tail;
    975 
    976 	  if (included[indx])
    977 	    continue;
    978 	  if (needed && arsym->file_offset == last_ar_offset)
    979 	    {
    980 	      included[indx] = 1;
    981 	      continue;
    982 	    }
    983 
    984 	  h = bfd_link_hash_lookup (info->hash, arsym->name,
    985 				    FALSE, FALSE, TRUE);
    986 
    987 	  if (h == NULL
    988 	      && info->pei386_auto_import
    989 	      && CONST_STRNEQ (arsym->name, "__imp_"))
    990 	    h = bfd_link_hash_lookup (info->hash, arsym->name + 6,
    991 				      FALSE, FALSE, TRUE);
    992 	  if (h == NULL)
    993 	    continue;
    994 
    995 	  if (h->type != bfd_link_hash_undefined
    996 	      && h->type != bfd_link_hash_common)
    997 	    {
    998 	      if (h->type != bfd_link_hash_undefweak)
    999 		/* Symbol must be defined.  Don't check it again.  */
   1000 		included[indx] = 1;
   1001 	      continue;
   1002 	    }
   1003 
   1004 	  if (last_ar_offset != arsym->file_offset)
   1005 	    {
   1006 	      last_ar_offset = arsym->file_offset;
   1007 	      element = _bfd_get_elt_at_filepos (abfd, last_ar_offset);
   1008 	      if (element == NULL
   1009 		  || !bfd_check_format (element, bfd_object))
   1010 		goto error_return;
   1011 	    }
   1012 
   1013 	  undefs_tail = info->hash->undefs_tail;
   1014 
   1015 	  /* CHECKFN will see if this element should be included, and
   1016 	     go ahead and include it if appropriate.  */
   1017 	  if (! (*checkfn) (element, info, h, arsym->name, &needed))
   1018 	    goto error_return;
   1019 
   1020 	  if (needed)
   1021 	    {
   1022 	      unsigned int mark;
   1023 
   1024 	      /* Look backward to mark all symbols from this object file
   1025 		 which we have already seen in this pass.  */
   1026 	      mark = indx;
   1027 	      do
   1028 		{
   1029 		  included[mark] = 1;
   1030 		  if (mark == 0)
   1031 		    break;
   1032 		  --mark;
   1033 		}
   1034 	      while (arsyms[mark].file_offset == last_ar_offset);
   1035 
   1036 	      if (undefs_tail != info->hash->undefs_tail)
   1037 		loop = TRUE;
   1038 	    }
   1039 	}
   1040     } while (loop);
   1041 
   1042   free (included);
   1043   return TRUE;
   1044 
   1045  error_return:
   1046   free (included);
   1047   return FALSE;
   1048 }
   1049 
   1050 /* See if we should include an archive element.  This version is used
   1052    when we do not want to automatically collect constructors based on
   1053    the symbol name, presumably because we have some other mechanism
   1054    for finding them.  */
   1055 
   1056 static bfd_boolean
   1057 generic_link_check_archive_element_no_collect (bfd *abfd,
   1058 					       struct bfd_link_info *info,
   1059 					       struct bfd_link_hash_entry *h,
   1060 					       const char *name,
   1061 					       bfd_boolean *pneeded)
   1062 {
   1063   return generic_link_check_archive_element (abfd, info, h, name, pneeded,
   1064 					     FALSE);
   1065 }
   1066 
   1067 /* See if we should include an archive element.  This version is used
   1068    when we want to automatically collect constructors based on the
   1069    symbol name, as collect2 does.  */
   1070 
   1071 static bfd_boolean
   1072 generic_link_check_archive_element_collect (bfd *abfd,
   1073 					    struct bfd_link_info *info,
   1074 					    struct bfd_link_hash_entry *h,
   1075 					    const char *name,
   1076 					    bfd_boolean *pneeded)
   1077 {
   1078   return generic_link_check_archive_element (abfd, info, h, name, pneeded,
   1079 					     TRUE);
   1080 }
   1081 
   1082 /* See if we should include an archive element.  Optionally collect
   1083    constructors.  */
   1084 
   1085 static bfd_boolean
   1086 generic_link_check_archive_element (bfd *abfd,
   1087 				    struct bfd_link_info *info,
   1088 				    struct bfd_link_hash_entry *h,
   1089 				    const char *name ATTRIBUTE_UNUSED,
   1090 				    bfd_boolean *pneeded,
   1091 				    bfd_boolean collect)
   1092 {
   1093   asymbol **pp, **ppend;
   1094 
   1095   *pneeded = FALSE;
   1096 
   1097   if (!bfd_generic_link_read_symbols (abfd))
   1098     return FALSE;
   1099 
   1100   pp = _bfd_generic_link_get_symbols (abfd);
   1101   ppend = pp + _bfd_generic_link_get_symcount (abfd);
   1102   for (; pp < ppend; pp++)
   1103     {
   1104       asymbol *p;
   1105 
   1106       p = *pp;
   1107 
   1108       /* We are only interested in globally visible symbols.  */
   1109       if (! bfd_is_com_section (p->section)
   1110 	  && (p->flags & (BSF_GLOBAL | BSF_INDIRECT | BSF_WEAK)) == 0)
   1111 	continue;
   1112 
   1113       /* We are only interested if we know something about this
   1114 	 symbol, and it is undefined or common.  An undefined weak
   1115 	 symbol (type bfd_link_hash_undefweak) is not considered to be
   1116 	 a reference when pulling files out of an archive.  See the
   1117 	 SVR4 ABI, p. 4-27.  */
   1118       h = bfd_link_hash_lookup (info->hash, bfd_asymbol_name (p), FALSE,
   1119 				FALSE, TRUE);
   1120       if (h == NULL
   1121 	  || (h->type != bfd_link_hash_undefined
   1122 	      && h->type != bfd_link_hash_common))
   1123 	continue;
   1124 
   1125       /* P is a symbol we are looking for.  */
   1126 
   1127       if (! bfd_is_com_section (p->section)
   1128 	  || (h->type == bfd_link_hash_undefined
   1129 	      && h->u.undef.abfd == NULL))
   1130 	{
   1131 	  /* P is not a common symbol, or an undefined reference was
   1132 	     created from outside BFD such as from a linker -u option.
   1133 	     This object file defines the symbol, so pull it in.  */
   1134 	  *pneeded = TRUE;
   1135 	  if (!(*info->callbacks
   1136 		->add_archive_element) (info, abfd, bfd_asymbol_name (p),
   1137 					&abfd))
   1138 	    return FALSE;
   1139 	  /* Potentially, the add_archive_element hook may have set a
   1140 	     substitute BFD for us.  */
   1141 	  return generic_link_add_object_symbols (abfd, info, collect);
   1142 	}
   1143 
   1144       /* P is a common symbol.  */
   1145 
   1146       if (h->type == bfd_link_hash_undefined)
   1147 	{
   1148 	  bfd *symbfd;
   1149 	  bfd_vma size;
   1150 	  unsigned int power;
   1151 
   1152 	  /* Turn the symbol into a common symbol but do not link in
   1153 	     the object file.  This is how a.out works.  Object
   1154 	     formats that require different semantics must implement
   1155 	     this function differently.  This symbol is already on the
   1156 	     undefs list.  We add the section to a common section
   1157 	     attached to symbfd to ensure that it is in a BFD which
   1158 	     will be linked in.  */
   1159 	  symbfd = h->u.undef.abfd;
   1160 	  h->type = bfd_link_hash_common;
   1161 	  h->u.c.p = (struct bfd_link_hash_common_entry *)
   1162 	    bfd_hash_allocate (&info->hash->table,
   1163 			       sizeof (struct bfd_link_hash_common_entry));
   1164 	  if (h->u.c.p == NULL)
   1165 	    return FALSE;
   1166 
   1167 	  size = bfd_asymbol_value (p);
   1168 	  h->u.c.size = size;
   1169 
   1170 	  power = bfd_log2 (size);
   1171 	  if (power > 4)
   1172 	    power = 4;
   1173 	  h->u.c.p->alignment_power = power;
   1174 
   1175 	  if (p->section == bfd_com_section_ptr)
   1176 	    h->u.c.p->section = bfd_make_section_old_way (symbfd, "COMMON");
   1177 	  else
   1178 	    h->u.c.p->section = bfd_make_section_old_way (symbfd,
   1179 							  p->section->name);
   1180 	  h->u.c.p->section->flags |= SEC_ALLOC;
   1181 	}
   1182       else
   1183 	{
   1184 	  /* Adjust the size of the common symbol if necessary.  This
   1185 	     is how a.out works.  Object formats that require
   1186 	     different semantics must implement this function
   1187 	     differently.  */
   1188 	  if (bfd_asymbol_value (p) > h->u.c.size)
   1189 	    h->u.c.size = bfd_asymbol_value (p);
   1190 	}
   1191     }
   1192 
   1193   /* This archive element is not needed.  */
   1194   return TRUE;
   1195 }
   1196 
   1197 /* Add the symbols from an object file to the global hash table.  ABFD
   1198    is the object file.  INFO is the linker information.  SYMBOL_COUNT
   1199    is the number of symbols.  SYMBOLS is the list of symbols.  COLLECT
   1200    is TRUE if constructors should be automatically collected by name
   1201    as is done by collect2.  */
   1202 
   1203 static bfd_boolean
   1204 generic_link_add_symbol_list (bfd *abfd,
   1205 			      struct bfd_link_info *info,
   1206 			      bfd_size_type symbol_count,
   1207 			      asymbol **symbols,
   1208 			      bfd_boolean collect)
   1209 {
   1210   asymbol **pp, **ppend;
   1211 
   1212   pp = symbols;
   1213   ppend = symbols + symbol_count;
   1214   for (; pp < ppend; pp++)
   1215     {
   1216       asymbol *p;
   1217 
   1218       p = *pp;
   1219 
   1220       if ((p->flags & (BSF_INDIRECT
   1221 		       | BSF_WARNING
   1222 		       | BSF_GLOBAL
   1223 		       | BSF_CONSTRUCTOR
   1224 		       | BSF_WEAK)) != 0
   1225 	  || bfd_is_und_section (bfd_get_section (p))
   1226 	  || bfd_is_com_section (bfd_get_section (p))
   1227 	  || bfd_is_ind_section (bfd_get_section (p)))
   1228 	{
   1229 	  const char *name;
   1230 	  const char *string;
   1231 	  struct generic_link_hash_entry *h;
   1232 	  struct bfd_link_hash_entry *bh;
   1233 
   1234 	  string = name = bfd_asymbol_name (p);
   1235 	  if (((p->flags & BSF_INDIRECT) != 0
   1236 	       || bfd_is_ind_section (p->section))
   1237 	      && pp + 1 < ppend)
   1238 	    {
   1239 	      pp++;
   1240 	      string = bfd_asymbol_name (*pp);
   1241 	    }
   1242 	  else if ((p->flags & BSF_WARNING) != 0
   1243 		   && pp + 1 < ppend)
   1244 	    {
   1245 	      /* The name of P is actually the warning string, and the
   1246 		 next symbol is the one to warn about.  */
   1247 	      pp++;
   1248 	      name = bfd_asymbol_name (*pp);
   1249 	    }
   1250 
   1251 	  bh = NULL;
   1252 	  if (! (_bfd_generic_link_add_one_symbol
   1253 		 (info, abfd, name, p->flags, bfd_get_section (p),
   1254 		  p->value, string, FALSE, collect, &bh)))
   1255 	    return FALSE;
   1256 	  h = (struct generic_link_hash_entry *) bh;
   1257 
   1258 	  /* If this is a constructor symbol, and the linker didn't do
   1259              anything with it, then we want to just pass the symbol
   1260              through to the output file.  This will happen when
   1261              linking with -r.  */
   1262 	  if ((p->flags & BSF_CONSTRUCTOR) != 0
   1263 	      && (h == NULL || h->root.type == bfd_link_hash_new))
   1264 	    {
   1265 	      p->udata.p = NULL;
   1266 	      continue;
   1267 	    }
   1268 
   1269 	  /* Save the BFD symbol so that we don't lose any backend
   1270 	     specific information that may be attached to it.  We only
   1271 	     want this one if it gives more information than the
   1272 	     existing one; we don't want to replace a defined symbol
   1273 	     with an undefined one.  This routine may be called with a
   1274 	     hash table other than the generic hash table, so we only
   1275 	     do this if we are certain that the hash table is a
   1276 	     generic one.  */
   1277 	  if (info->output_bfd->xvec == abfd->xvec)
   1278 	    {
   1279 	      if (h->sym == NULL
   1280 		  || (! bfd_is_und_section (bfd_get_section (p))
   1281 		      && (! bfd_is_com_section (bfd_get_section (p))
   1282 			  || bfd_is_und_section (bfd_get_section (h->sym)))))
   1283 		{
   1284 		  h->sym = p;
   1285 		  /* BSF_OLD_COMMON is a hack to support COFF reloc
   1286 		     reading, and it should go away when the COFF
   1287 		     linker is switched to the new version.  */
   1288 		  if (bfd_is_com_section (bfd_get_section (p)))
   1289 		    p->flags |= BSF_OLD_COMMON;
   1290 		}
   1291 	    }
   1292 
   1293 	  /* Store a back pointer from the symbol to the hash
   1294 	     table entry for the benefit of relaxation code until
   1295 	     it gets rewritten to not use asymbol structures.
   1296 	     Setting this is also used to check whether these
   1297 	     symbols were set up by the generic linker.  */
   1298 	  p->udata.p = h;
   1299 	}
   1300     }
   1301 
   1302   return TRUE;
   1303 }
   1304 
   1305 /* We use a state table to deal with adding symbols from an object
   1307    file.  The first index into the state table describes the symbol
   1308    from the object file.  The second index into the state table is the
   1309    type of the symbol in the hash table.  */
   1310 
   1311 /* The symbol from the object file is turned into one of these row
   1312    values.  */
   1313 
   1314 enum link_row
   1315 {
   1316   UNDEF_ROW,		/* Undefined.  */
   1317   UNDEFW_ROW,		/* Weak undefined.  */
   1318   DEF_ROW,		/* Defined.  */
   1319   DEFW_ROW,		/* Weak defined.  */
   1320   COMMON_ROW,		/* Common.  */
   1321   INDR_ROW,		/* Indirect.  */
   1322   WARN_ROW,		/* Warning.  */
   1323   SET_ROW		/* Member of set.  */
   1324 };
   1325 
   1326 /* apparently needed for Hitachi 3050R(HI-UX/WE2)? */
   1327 #undef FAIL
   1328 
   1329 /* The actions to take in the state table.  */
   1330 
   1331 enum link_action
   1332 {
   1333   FAIL,		/* Abort.  */
   1334   UND,		/* Mark symbol undefined.  */
   1335   WEAK,		/* Mark symbol weak undefined.  */
   1336   DEF,		/* Mark symbol defined.  */
   1337   DEFW,		/* Mark symbol weak defined.  */
   1338   COM,		/* Mark symbol common.  */
   1339   REF,		/* Mark defined symbol referenced.  */
   1340   CREF,		/* Possibly warn about common reference to defined symbol.  */
   1341   CDEF,		/* Define existing common symbol.  */
   1342   NOACT,	/* No action.  */
   1343   BIG,		/* Mark symbol common using largest size.  */
   1344   MDEF,		/* Multiple definition error.  */
   1345   MIND,		/* Multiple indirect symbols.  */
   1346   IND,		/* Make indirect symbol.  */
   1347   CIND,		/* Make indirect symbol from existing common symbol.  */
   1348   SET,		/* Add value to set.  */
   1349   MWARN,	/* Make warning symbol.  */
   1350   WARN,		/* Warn if referenced, else MWARN.  */
   1351   CYCLE,	/* Repeat with symbol pointed to.  */
   1352   REFC,		/* Mark indirect symbol referenced and then CYCLE.  */
   1353   WARNC		/* Issue warning and then CYCLE.  */
   1354 };
   1355 
   1356 /* The state table itself.  The first index is a link_row and the
   1357    second index is a bfd_link_hash_type.  */
   1358 
   1359 static const enum link_action link_action[8][8] =
   1360 {
   1361   /* current\prev    new    undef  undefw def    defw   com    indr   warn  */
   1362   /* UNDEF_ROW 	*/  {UND,   NOACT, UND,   REF,   REF,   NOACT, REFC,  WARNC },
   1363   /* UNDEFW_ROW	*/  {WEAK,  NOACT, NOACT, REF,   REF,   NOACT, REFC,  WARNC },
   1364   /* DEF_ROW 	*/  {DEF,   DEF,   DEF,   MDEF,  DEF,   CDEF,  MDEF,  CYCLE },
   1365   /* DEFW_ROW 	*/  {DEFW,  DEFW,  DEFW,  NOACT, NOACT, NOACT, NOACT, CYCLE },
   1366   /* COMMON_ROW	*/  {COM,   COM,   COM,   CREF,  COM,   BIG,   REFC,  WARNC },
   1367   /* INDR_ROW	*/  {IND,   IND,   IND,   MDEF,  IND,   CIND,  MIND,  CYCLE },
   1368   /* WARN_ROW   */  {MWARN, WARN,  WARN,  WARN,  WARN,  WARN,  WARN,  NOACT },
   1369   /* SET_ROW	*/  {SET,   SET,   SET,   SET,   SET,   SET,   CYCLE, CYCLE }
   1370 };
   1371 
   1372 /* Most of the entries in the LINK_ACTION table are straightforward,
   1373    but a few are somewhat subtle.
   1374 
   1375    A reference to an indirect symbol (UNDEF_ROW/indr or
   1376    UNDEFW_ROW/indr) is counted as a reference both to the indirect
   1377    symbol and to the symbol the indirect symbol points to.
   1378 
   1379    A reference to a warning symbol (UNDEF_ROW/warn or UNDEFW_ROW/warn)
   1380    causes the warning to be issued.
   1381 
   1382    A common definition of an indirect symbol (COMMON_ROW/indr) is
   1383    treated as a multiple definition error.  Likewise for an indirect
   1384    definition of a common symbol (INDR_ROW/com).
   1385 
   1386    An indirect definition of a warning (INDR_ROW/warn) does not cause
   1387    the warning to be issued.
   1388 
   1389    If a warning is created for an indirect symbol (WARN_ROW/indr) no
   1390    warning is created for the symbol the indirect symbol points to.
   1391 
   1392    Adding an entry to a set does not count as a reference to a set,
   1393    and no warning is issued (SET_ROW/warn).  */
   1394 
   1395 /* Return the BFD in which a hash entry has been defined, if known.  */
   1396 
   1397 static bfd *
   1398 hash_entry_bfd (struct bfd_link_hash_entry *h)
   1399 {
   1400   while (h->type == bfd_link_hash_warning)
   1401     h = h->u.i.link;
   1402   switch (h->type)
   1403     {
   1404     default:
   1405       return NULL;
   1406     case bfd_link_hash_undefined:
   1407     case bfd_link_hash_undefweak:
   1408       return h->u.undef.abfd;
   1409     case bfd_link_hash_defined:
   1410     case bfd_link_hash_defweak:
   1411       return h->u.def.section->owner;
   1412     case bfd_link_hash_common:
   1413       return h->u.c.p->section->owner;
   1414     }
   1415   /*NOTREACHED*/
   1416 }
   1417 
   1418 /* Add a symbol to the global hash table.
   1419    ABFD is the BFD the symbol comes from.
   1420    NAME is the name of the symbol.
   1421    FLAGS is the BSF_* bits associated with the symbol.
   1422    SECTION is the section in which the symbol is defined; this may be
   1423      bfd_und_section_ptr or bfd_com_section_ptr.
   1424    VALUE is the value of the symbol, relative to the section.
   1425    STRING is used for either an indirect symbol, in which case it is
   1426      the name of the symbol to indirect to, or a warning symbol, in
   1427      which case it is the warning string.
   1428    COPY is TRUE if NAME or STRING must be copied into locally
   1429      allocated memory if they need to be saved.
   1430    COLLECT is TRUE if we should automatically collect gcc constructor
   1431      or destructor names as collect2 does.
   1432    HASHP, if not NULL, is a place to store the created hash table
   1433      entry; if *HASHP is not NULL, the caller has already looked up
   1434      the hash table entry, and stored it in *HASHP.  */
   1435 
   1436 bfd_boolean
   1437 _bfd_generic_link_add_one_symbol (struct bfd_link_info *info,
   1438 				  bfd *abfd,
   1439 				  const char *name,
   1440 				  flagword flags,
   1441 				  asection *section,
   1442 				  bfd_vma value,
   1443 				  const char *string,
   1444 				  bfd_boolean copy,
   1445 				  bfd_boolean collect,
   1446 				  struct bfd_link_hash_entry **hashp)
   1447 {
   1448   enum link_row row;
   1449   struct bfd_link_hash_entry *h;
   1450   struct bfd_link_hash_entry *inh = NULL;
   1451   bfd_boolean cycle;
   1452 
   1453   BFD_ASSERT (section != NULL);
   1454 
   1455   if (bfd_is_ind_section (section)
   1456       || (flags & BSF_INDIRECT) != 0)
   1457     {
   1458       row = INDR_ROW;
   1459       /* Create the indirect symbol here.  This is for the benefit of
   1460 	 the plugin "notice" function.
   1461 	 STRING is the name of the symbol we want to indirect to.  */
   1462       inh = bfd_wrapped_link_hash_lookup (abfd, info, string, TRUE,
   1463 					  copy, FALSE);
   1464       if (inh == NULL)
   1465 	return FALSE;
   1466     }
   1467   else if ((flags & BSF_WARNING) != 0)
   1468     row = WARN_ROW;
   1469   else if ((flags & BSF_CONSTRUCTOR) != 0)
   1470     row = SET_ROW;
   1471   else if (bfd_is_und_section (section))
   1472     {
   1473       if ((flags & BSF_WEAK) != 0)
   1474 	row = UNDEFW_ROW;
   1475       else
   1476 	row = UNDEF_ROW;
   1477     }
   1478   else if ((flags & BSF_WEAK) != 0)
   1479     row = DEFW_ROW;
   1480   else if (bfd_is_com_section (section))
   1481     {
   1482       row = COMMON_ROW;
   1483       if (strcmp (name, "__gnu_lto_slim") == 0)
   1484 	(*_bfd_error_handler)
   1485 	  (_("%s: plugin needed to handle lto object"),
   1486 	   bfd_get_filename (abfd));
   1487     }
   1488   else
   1489     row = DEF_ROW;
   1490 
   1491   if (hashp != NULL && *hashp != NULL)
   1492     h = *hashp;
   1493   else
   1494     {
   1495       if (row == UNDEF_ROW || row == UNDEFW_ROW)
   1496 	h = bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, copy, FALSE);
   1497       else
   1498 	h = bfd_link_hash_lookup (info->hash, name, TRUE, copy, FALSE);
   1499       if (h == NULL)
   1500 	{
   1501 	  if (hashp != NULL)
   1502 	    *hashp = NULL;
   1503 	  return FALSE;
   1504 	}
   1505     }
   1506 
   1507   if (info->notice_all
   1508       || (info->notice_hash != NULL
   1509 	  && bfd_hash_lookup (info->notice_hash, name, FALSE, FALSE) != NULL))
   1510     {
   1511       if (! (*info->callbacks->notice) (info, h, inh,
   1512 					abfd, section, value, flags))
   1513 	return FALSE;
   1514     }
   1515 
   1516   if (hashp != NULL)
   1517     *hashp = h;
   1518 
   1519   do
   1520     {
   1521       enum link_action action;
   1522 
   1523       cycle = FALSE;
   1524       action = link_action[(int) row][(int) h->type];
   1525       switch (action)
   1526 	{
   1527 	case FAIL:
   1528 	  abort ();
   1529 
   1530 	case NOACT:
   1531 	  /* Do nothing.  */
   1532 	  break;
   1533 
   1534 	case UND:
   1535 	  /* Make a new undefined symbol.  */
   1536 	  h->type = bfd_link_hash_undefined;
   1537 	  h->u.undef.abfd = abfd;
   1538 	  bfd_link_add_undef (info->hash, h);
   1539 	  break;
   1540 
   1541 	case WEAK:
   1542 	  /* Make a new weak undefined symbol.  */
   1543 	  h->type = bfd_link_hash_undefweak;
   1544 	  h->u.undef.abfd = abfd;
   1545 	  break;
   1546 
   1547 	case CDEF:
   1548 	  /* We have found a definition for a symbol which was
   1549 	     previously common.  */
   1550 	  BFD_ASSERT (h->type == bfd_link_hash_common);
   1551 	  if (! ((*info->callbacks->multiple_common)
   1552 		 (info, h, abfd, bfd_link_hash_defined, 0)))
   1553 	    return FALSE;
   1554 	  /* Fall through.  */
   1555 	case DEF:
   1556 	case DEFW:
   1557 	  {
   1558 	    enum bfd_link_hash_type oldtype;
   1559 
   1560 	    /* Define a symbol.  */
   1561 	    oldtype = h->type;
   1562 	    if (action == DEFW)
   1563 	      h->type = bfd_link_hash_defweak;
   1564 	    else
   1565 	      h->type = bfd_link_hash_defined;
   1566 	    h->u.def.section = section;
   1567 	    h->u.def.value = value;
   1568 
   1569 	    /* If we have been asked to, we act like collect2 and
   1570 	       identify all functions that might be global
   1571 	       constructors and destructors and pass them up in a
   1572 	       callback.  We only do this for certain object file
   1573 	       types, since many object file types can handle this
   1574 	       automatically.  */
   1575 	    if (collect && name[0] == '_')
   1576 	      {
   1577 		const char *s;
   1578 
   1579 		/* A constructor or destructor name starts like this:
   1580 		   _+GLOBAL_[_.$][ID][_.$] where the first [_.$] and
   1581 		   the second are the same character (we accept any
   1582 		   character there, in case a new object file format
   1583 		   comes along with even worse naming restrictions).  */
   1584 
   1585 #define CONS_PREFIX "GLOBAL_"
   1586 #define CONS_PREFIX_LEN (sizeof CONS_PREFIX - 1)
   1587 
   1588 		s = name + 1;
   1589 		while (*s == '_')
   1590 		  ++s;
   1591 		if (s[0] == 'G' && CONST_STRNEQ (s, CONS_PREFIX))
   1592 		  {
   1593 		    char c;
   1594 
   1595 		    c = s[CONS_PREFIX_LEN + 1];
   1596 		    if ((c == 'I' || c == 'D')
   1597 			&& s[CONS_PREFIX_LEN] == s[CONS_PREFIX_LEN + 2])
   1598 		      {
   1599 			/* If this is a definition of a symbol which
   1600                            was previously weakly defined, we are in
   1601                            trouble.  We have already added a
   1602                            constructor entry for the weak defined
   1603                            symbol, and now we are trying to add one
   1604                            for the new symbol.  Fortunately, this case
   1605                            should never arise in practice.  */
   1606 			if (oldtype == bfd_link_hash_defweak)
   1607 			  abort ();
   1608 
   1609 			if (! ((*info->callbacks->constructor)
   1610 			       (info, c == 'I',
   1611 				h->root.string, abfd, section, value)))
   1612 			  return FALSE;
   1613 		      }
   1614 		  }
   1615 	      }
   1616 	  }
   1617 
   1618 	  break;
   1619 
   1620 	case COM:
   1621 	  /* We have found a common definition for a symbol.  */
   1622 	  if (h->type == bfd_link_hash_new)
   1623 	    bfd_link_add_undef (info->hash, h);
   1624 	  h->type = bfd_link_hash_common;
   1625 	  h->u.c.p = (struct bfd_link_hash_common_entry *)
   1626 	    bfd_hash_allocate (&info->hash->table,
   1627 			       sizeof (struct bfd_link_hash_common_entry));
   1628 	  if (h->u.c.p == NULL)
   1629 	    return FALSE;
   1630 
   1631 	  h->u.c.size = value;
   1632 
   1633 	  /* Select a default alignment based on the size.  This may
   1634              be overridden by the caller.  */
   1635 	  {
   1636 	    unsigned int power;
   1637 
   1638 	    power = bfd_log2 (value);
   1639 	    if (power > 4)
   1640 	      power = 4;
   1641 	    h->u.c.p->alignment_power = power;
   1642 	  }
   1643 
   1644 	  /* The section of a common symbol is only used if the common
   1645              symbol is actually allocated.  It basically provides a
   1646              hook for the linker script to decide which output section
   1647              the common symbols should be put in.  In most cases, the
   1648              section of a common symbol will be bfd_com_section_ptr,
   1649              the code here will choose a common symbol section named
   1650              "COMMON", and the linker script will contain *(COMMON) in
   1651              the appropriate place.  A few targets use separate common
   1652              sections for small symbols, and they require special
   1653              handling.  */
   1654 	  if (section == bfd_com_section_ptr)
   1655 	    {
   1656 	      h->u.c.p->section = bfd_make_section_old_way (abfd, "COMMON");
   1657 	      h->u.c.p->section->flags |= SEC_ALLOC;
   1658 	    }
   1659 	  else if (section->owner != abfd)
   1660 	    {
   1661 	      h->u.c.p->section = bfd_make_section_old_way (abfd,
   1662 							    section->name);
   1663 	      h->u.c.p->section->flags |= SEC_ALLOC;
   1664 	    }
   1665 	  else
   1666 	    h->u.c.p->section = section;
   1667 	  break;
   1668 
   1669 	case REF:
   1670 	  /* A reference to a defined symbol.  */
   1671 	  if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
   1672 	    h->u.undef.next = h;
   1673 	  break;
   1674 
   1675 	case BIG:
   1676 	  /* We have found a common definition for a symbol which
   1677 	     already had a common definition.  Use the maximum of the
   1678 	     two sizes, and use the section required by the larger symbol.  */
   1679 	  BFD_ASSERT (h->type == bfd_link_hash_common);
   1680 	  if (! ((*info->callbacks->multiple_common)
   1681 		 (info, h, abfd, bfd_link_hash_common, value)))
   1682 	    return FALSE;
   1683 	  if (value > h->u.c.size)
   1684 	    {
   1685 	      unsigned int power;
   1686 
   1687 	      h->u.c.size = value;
   1688 
   1689 	      /* Select a default alignment based on the size.  This may
   1690 		 be overridden by the caller.  */
   1691 	      power = bfd_log2 (value);
   1692 	      if (power > 4)
   1693 		power = 4;
   1694 	      h->u.c.p->alignment_power = power;
   1695 
   1696 	      /* Some systems have special treatment for small commons,
   1697 		 hence we want to select the section used by the larger
   1698 		 symbol.  This makes sure the symbol does not go in a
   1699 		 small common section if it is now too large.  */
   1700 	      if (section == bfd_com_section_ptr)
   1701 		{
   1702 		  h->u.c.p->section
   1703 		    = bfd_make_section_old_way (abfd, "COMMON");
   1704 		  h->u.c.p->section->flags |= SEC_ALLOC;
   1705 		}
   1706 	      else if (section->owner != abfd)
   1707 		{
   1708 		  h->u.c.p->section
   1709 		    = bfd_make_section_old_way (abfd, section->name);
   1710 		  h->u.c.p->section->flags |= SEC_ALLOC;
   1711 		}
   1712 	      else
   1713 		h->u.c.p->section = section;
   1714 	    }
   1715 	  break;
   1716 
   1717 	case CREF:
   1718 	  /* We have found a common definition for a symbol which
   1719 	     was already defined.  */
   1720 	  if (! ((*info->callbacks->multiple_common)
   1721 		 (info, h, abfd, bfd_link_hash_common, value)))
   1722 	    return FALSE;
   1723 	  break;
   1724 
   1725 	case MIND:
   1726 	  /* Multiple indirect symbols.  This is OK if they both point
   1727 	     to the same symbol.  */
   1728 	  if (strcmp (h->u.i.link->root.string, string) == 0)
   1729 	    break;
   1730 	  /* Fall through.  */
   1731 	case MDEF:
   1732 	  /* Handle a multiple definition.  */
   1733 	  if (! ((*info->callbacks->multiple_definition)
   1734 		 (info, h, abfd, section, value)))
   1735 	    return FALSE;
   1736 	  break;
   1737 
   1738 	case CIND:
   1739 	  /* Create an indirect symbol from an existing common symbol.  */
   1740 	  BFD_ASSERT (h->type == bfd_link_hash_common);
   1741 	  if (! ((*info->callbacks->multiple_common)
   1742 		 (info, h, abfd, bfd_link_hash_indirect, 0)))
   1743 	    return FALSE;
   1744 	  /* Fall through.  */
   1745 	case IND:
   1746 	  if (inh->type == bfd_link_hash_indirect
   1747 	      && inh->u.i.link == h)
   1748 	    {
   1749 	      (*_bfd_error_handler)
   1750 		(_("%B: indirect symbol `%s' to `%s' is a loop"),
   1751 		 abfd, name, string);
   1752 	      bfd_set_error (bfd_error_invalid_operation);
   1753 	      return FALSE;
   1754 	    }
   1755 	  if (inh->type == bfd_link_hash_new)
   1756 	    {
   1757 	      inh->type = bfd_link_hash_undefined;
   1758 	      inh->u.undef.abfd = abfd;
   1759 	      bfd_link_add_undef (info->hash, inh);
   1760 	    }
   1761 
   1762 	  /* If the indirect symbol has been referenced, we need to
   1763 	     push the reference down to the symbol we are referencing.  */
   1764 	  if (h->type != bfd_link_hash_new)
   1765 	    {
   1766 	      /* ??? If inh->type == bfd_link_hash_undefweak this
   1767 		 converts inh to bfd_link_hash_undefined.  */
   1768 	      row = UNDEF_ROW;
   1769 	      cycle = TRUE;
   1770 	    }
   1771 
   1772 	  h->type = bfd_link_hash_indirect;
   1773 	  h->u.i.link = inh;
   1774 	  /* Not setting h = h->u.i.link here means that when cycle is
   1775 	     set above we'll always go to REFC, and then cycle again
   1776 	     to the indirected symbol.  This means that any successful
   1777 	     change of an existing symbol to indirect counts as a
   1778 	     reference.  ??? That may not be correct when the existing
   1779 	     symbol was defweak.  */
   1780 	  break;
   1781 
   1782 	case SET:
   1783 	  /* Add an entry to a set.  */
   1784 	  if (! (*info->callbacks->add_to_set) (info, h, BFD_RELOC_CTOR,
   1785 						abfd, section, value))
   1786 	    return FALSE;
   1787 	  break;
   1788 
   1789 	case WARNC:
   1790 	  /* Issue a warning and cycle, except when the reference is
   1791 	     in LTO IR.  */
   1792 	  if (h->u.i.warning != NULL
   1793 	      && (abfd->flags & BFD_PLUGIN) == 0)
   1794 	    {
   1795 	      if (! (*info->callbacks->warning) (info, h->u.i.warning,
   1796 						 h->root.string, abfd,
   1797 						 NULL, 0))
   1798 		return FALSE;
   1799 	      /* Only issue a warning once.  */
   1800 	      h->u.i.warning = NULL;
   1801 	    }
   1802 	  /* Fall through.  */
   1803 	case CYCLE:
   1804 	  /* Try again with the referenced symbol.  */
   1805 	  h = h->u.i.link;
   1806 	  cycle = TRUE;
   1807 	  break;
   1808 
   1809 	case REFC:
   1810 	  /* A reference to an indirect symbol.  */
   1811 	  if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
   1812 	    h->u.undef.next = h;
   1813 	  h = h->u.i.link;
   1814 	  cycle = TRUE;
   1815 	  break;
   1816 
   1817 	case WARN:
   1818 	  /* Warn if this symbol has been referenced already from non-IR,
   1819 	     otherwise add a warning.  */
   1820 	  if ((!info->lto_plugin_active
   1821 	       && (h->u.undef.next != NULL || info->hash->undefs_tail == h))
   1822 	      || h->non_ir_ref)
   1823 	    {
   1824 	      if (! (*info->callbacks->warning) (info, string, h->root.string,
   1825 						 hash_entry_bfd (h), NULL, 0))
   1826 		return FALSE;
   1827 	      break;
   1828 	    }
   1829 	  /* Fall through.  */
   1830 	case MWARN:
   1831 	  /* Make a warning symbol.  */
   1832 	  {
   1833 	    struct bfd_link_hash_entry *sub;
   1834 
   1835 	    /* STRING is the warning to give.  */
   1836 	    sub = ((struct bfd_link_hash_entry *)
   1837 		   ((*info->hash->table.newfunc)
   1838 		    (NULL, &info->hash->table, h->root.string)));
   1839 	    if (sub == NULL)
   1840 	      return FALSE;
   1841 	    *sub = *h;
   1842 	    sub->type = bfd_link_hash_warning;
   1843 	    sub->u.i.link = h;
   1844 	    if (! copy)
   1845 	      sub->u.i.warning = string;
   1846 	    else
   1847 	      {
   1848 		char *w;
   1849 		size_t len = strlen (string) + 1;
   1850 
   1851 		w = (char *) bfd_hash_allocate (&info->hash->table, len);
   1852 		if (w == NULL)
   1853 		  return FALSE;
   1854 		memcpy (w, string, len);
   1855 		sub->u.i.warning = w;
   1856 	      }
   1857 
   1858 	    bfd_hash_replace (&info->hash->table,
   1859 			      (struct bfd_hash_entry *) h,
   1860 			      (struct bfd_hash_entry *) sub);
   1861 	    if (hashp != NULL)
   1862 	      *hashp = sub;
   1863 	  }
   1864 	  break;
   1865 	}
   1866     }
   1867   while (cycle);
   1868 
   1869   return TRUE;
   1870 }
   1871 
   1872 /* Generic final link routine.  */
   1874 
   1875 bfd_boolean
   1876 _bfd_generic_final_link (bfd *abfd, struct bfd_link_info *info)
   1877 {
   1878   bfd *sub;
   1879   asection *o;
   1880   struct bfd_link_order *p;
   1881   size_t outsymalloc;
   1882   struct generic_write_global_symbol_info wginfo;
   1883 
   1884   bfd_get_outsymbols (abfd) = NULL;
   1885   bfd_get_symcount (abfd) = 0;
   1886   outsymalloc = 0;
   1887 
   1888   /* Mark all sections which will be included in the output file.  */
   1889   for (o = abfd->sections; o != NULL; o = o->next)
   1890     for (p = o->map_head.link_order; p != NULL; p = p->next)
   1891       if (p->type == bfd_indirect_link_order)
   1892 	p->u.indirect.section->linker_mark = TRUE;
   1893 
   1894   /* Build the output symbol table.  */
   1895   for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
   1896     if (! _bfd_generic_link_output_symbols (abfd, sub, info, &outsymalloc))
   1897       return FALSE;
   1898 
   1899   /* Accumulate the global symbols.  */
   1900   wginfo.info = info;
   1901   wginfo.output_bfd = abfd;
   1902   wginfo.psymalloc = &outsymalloc;
   1903   _bfd_generic_link_hash_traverse (_bfd_generic_hash_table (info),
   1904 				   _bfd_generic_link_write_global_symbol,
   1905 				   &wginfo);
   1906 
   1907   /* Make sure we have a trailing NULL pointer on OUTSYMBOLS.  We
   1908      shouldn't really need one, since we have SYMCOUNT, but some old
   1909      code still expects one.  */
   1910   if (! generic_add_output_symbol (abfd, &outsymalloc, NULL))
   1911     return FALSE;
   1912 
   1913   if (info->relocatable)
   1914     {
   1915       /* Allocate space for the output relocs for each section.  */
   1916       for (o = abfd->sections; o != NULL; o = o->next)
   1917 	{
   1918 	  o->reloc_count = 0;
   1919 	  for (p = o->map_head.link_order; p != NULL; p = p->next)
   1920 	    {
   1921 	      if (p->type == bfd_section_reloc_link_order
   1922 		  || p->type == bfd_symbol_reloc_link_order)
   1923 		++o->reloc_count;
   1924 	      else if (p->type == bfd_indirect_link_order)
   1925 		{
   1926 		  asection *input_section;
   1927 		  bfd *input_bfd;
   1928 		  long relsize;
   1929 		  arelent **relocs;
   1930 		  asymbol **symbols;
   1931 		  long reloc_count;
   1932 
   1933 		  input_section = p->u.indirect.section;
   1934 		  input_bfd = input_section->owner;
   1935 		  relsize = bfd_get_reloc_upper_bound (input_bfd,
   1936 						       input_section);
   1937 		  if (relsize < 0)
   1938 		    return FALSE;
   1939 		  relocs = (arelent **) bfd_malloc (relsize);
   1940 		  if (!relocs && relsize != 0)
   1941 		    return FALSE;
   1942 		  symbols = _bfd_generic_link_get_symbols (input_bfd);
   1943 		  reloc_count = bfd_canonicalize_reloc (input_bfd,
   1944 							input_section,
   1945 							relocs,
   1946 							symbols);
   1947 		  free (relocs);
   1948 		  if (reloc_count < 0)
   1949 		    return FALSE;
   1950 		  BFD_ASSERT ((unsigned long) reloc_count
   1951 			      == input_section->reloc_count);
   1952 		  o->reloc_count += reloc_count;
   1953 		}
   1954 	    }
   1955 	  if (o->reloc_count > 0)
   1956 	    {
   1957 	      bfd_size_type amt;
   1958 
   1959 	      amt = o->reloc_count;
   1960 	      amt *= sizeof (arelent *);
   1961 	      o->orelocation = (struct reloc_cache_entry **) bfd_alloc (abfd, amt);
   1962 	      if (!o->orelocation)
   1963 		return FALSE;
   1964 	      o->flags |= SEC_RELOC;
   1965 	      /* Reset the count so that it can be used as an index
   1966 		 when putting in the output relocs.  */
   1967 	      o->reloc_count = 0;
   1968 	    }
   1969 	}
   1970     }
   1971 
   1972   /* Handle all the link order information for the sections.  */
   1973   for (o = abfd->sections; o != NULL; o = o->next)
   1974     {
   1975       for (p = o->map_head.link_order; p != NULL; p = p->next)
   1976 	{
   1977 	  switch (p->type)
   1978 	    {
   1979 	    case bfd_section_reloc_link_order:
   1980 	    case bfd_symbol_reloc_link_order:
   1981 	      if (! _bfd_generic_reloc_link_order (abfd, info, o, p))
   1982 		return FALSE;
   1983 	      break;
   1984 	    case bfd_indirect_link_order:
   1985 	      if (! default_indirect_link_order (abfd, info, o, p, TRUE))
   1986 		return FALSE;
   1987 	      break;
   1988 	    default:
   1989 	      if (! _bfd_default_link_order (abfd, info, o, p))
   1990 		return FALSE;
   1991 	      break;
   1992 	    }
   1993 	}
   1994     }
   1995 
   1996   return TRUE;
   1997 }
   1998 
   1999 /* Add an output symbol to the output BFD.  */
   2000 
   2001 static bfd_boolean
   2002 generic_add_output_symbol (bfd *output_bfd, size_t *psymalloc, asymbol *sym)
   2003 {
   2004   if (bfd_get_symcount (output_bfd) >= *psymalloc)
   2005     {
   2006       asymbol **newsyms;
   2007       bfd_size_type amt;
   2008 
   2009       if (*psymalloc == 0)
   2010 	*psymalloc = 124;
   2011       else
   2012 	*psymalloc *= 2;
   2013       amt = *psymalloc;
   2014       amt *= sizeof (asymbol *);
   2015       newsyms = (asymbol **) bfd_realloc (bfd_get_outsymbols (output_bfd), amt);
   2016       if (newsyms == NULL)
   2017 	return FALSE;
   2018       bfd_get_outsymbols (output_bfd) = newsyms;
   2019     }
   2020 
   2021   bfd_get_outsymbols (output_bfd) [bfd_get_symcount (output_bfd)] = sym;
   2022   if (sym != NULL)
   2023     ++ bfd_get_symcount (output_bfd);
   2024 
   2025   return TRUE;
   2026 }
   2027 
   2028 /* Handle the symbols for an input BFD.  */
   2029 
   2030 bfd_boolean
   2031 _bfd_generic_link_output_symbols (bfd *output_bfd,
   2032 				  bfd *input_bfd,
   2033 				  struct bfd_link_info *info,
   2034 				  size_t *psymalloc)
   2035 {
   2036   asymbol **sym_ptr;
   2037   asymbol **sym_end;
   2038 
   2039   if (!bfd_generic_link_read_symbols (input_bfd))
   2040     return FALSE;
   2041 
   2042   /* Create a filename symbol if we are supposed to.  */
   2043   if (info->create_object_symbols_section != NULL)
   2044     {
   2045       asection *sec;
   2046 
   2047       for (sec = input_bfd->sections; sec != NULL; sec = sec->next)
   2048 	{
   2049 	  if (sec->output_section == info->create_object_symbols_section)
   2050 	    {
   2051 	      asymbol *newsym;
   2052 
   2053 	      newsym = bfd_make_empty_symbol (input_bfd);
   2054 	      if (!newsym)
   2055 		return FALSE;
   2056 	      newsym->name = input_bfd->filename;
   2057 	      newsym->value = 0;
   2058 	      newsym->flags = BSF_LOCAL | BSF_FILE;
   2059 	      newsym->section = sec;
   2060 
   2061 	      if (! generic_add_output_symbol (output_bfd, psymalloc,
   2062 					       newsym))
   2063 		return FALSE;
   2064 
   2065 	      break;
   2066 	    }
   2067 	}
   2068     }
   2069 
   2070   /* Adjust the values of the globally visible symbols, and write out
   2071      local symbols.  */
   2072   sym_ptr = _bfd_generic_link_get_symbols (input_bfd);
   2073   sym_end = sym_ptr + _bfd_generic_link_get_symcount (input_bfd);
   2074   for (; sym_ptr < sym_end; sym_ptr++)
   2075     {
   2076       asymbol *sym;
   2077       struct generic_link_hash_entry *h;
   2078       bfd_boolean output;
   2079 
   2080       h = NULL;
   2081       sym = *sym_ptr;
   2082       if ((sym->flags & (BSF_INDIRECT
   2083 			 | BSF_WARNING
   2084 			 | BSF_GLOBAL
   2085 			 | BSF_CONSTRUCTOR
   2086 			 | BSF_WEAK)) != 0
   2087 	  || bfd_is_und_section (bfd_get_section (sym))
   2088 	  || bfd_is_com_section (bfd_get_section (sym))
   2089 	  || bfd_is_ind_section (bfd_get_section (sym)))
   2090 	{
   2091 	  if (sym->udata.p != NULL)
   2092 	    h = (struct generic_link_hash_entry *) sym->udata.p;
   2093 	  else if ((sym->flags & BSF_CONSTRUCTOR) != 0)
   2094 	    {
   2095 	      /* This case normally means that the main linker code
   2096                  deliberately ignored this constructor symbol.  We
   2097                  should just pass it through.  This will screw up if
   2098                  the constructor symbol is from a different,
   2099                  non-generic, object file format, but the case will
   2100                  only arise when linking with -r, which will probably
   2101                  fail anyhow, since there will be no way to represent
   2102                  the relocs in the output format being used.  */
   2103 	      h = NULL;
   2104 	    }
   2105 	  else if (bfd_is_und_section (bfd_get_section (sym)))
   2106 	    h = ((struct generic_link_hash_entry *)
   2107 		 bfd_wrapped_link_hash_lookup (output_bfd, info,
   2108 					       bfd_asymbol_name (sym),
   2109 					       FALSE, FALSE, TRUE));
   2110 	  else
   2111 	    h = _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info),
   2112 					       bfd_asymbol_name (sym),
   2113 					       FALSE, FALSE, TRUE);
   2114 
   2115 	  if (h != NULL)
   2116 	    {
   2117 	      /* Force all references to this symbol to point to
   2118 		 the same area in memory.  It is possible that
   2119 		 this routine will be called with a hash table
   2120 		 other than a generic hash table, so we double
   2121 		 check that.  */
   2122 	      if (info->output_bfd->xvec == input_bfd->xvec)
   2123 		{
   2124 		  if (h->sym != NULL)
   2125 		    *sym_ptr = sym = h->sym;
   2126 		}
   2127 
   2128 	      switch (h->root.type)
   2129 		{
   2130 		default:
   2131 		case bfd_link_hash_new:
   2132 		  abort ();
   2133 		case bfd_link_hash_undefined:
   2134 		  break;
   2135 		case bfd_link_hash_undefweak:
   2136 		  sym->flags |= BSF_WEAK;
   2137 		  break;
   2138 		case bfd_link_hash_indirect:
   2139 		  h = (struct generic_link_hash_entry *) h->root.u.i.link;
   2140 		  /* fall through */
   2141 		case bfd_link_hash_defined:
   2142 		  sym->flags |= BSF_GLOBAL;
   2143 		  sym->flags &=~ BSF_CONSTRUCTOR;
   2144 		  sym->value = h->root.u.def.value;
   2145 		  sym->section = h->root.u.def.section;
   2146 		  break;
   2147 		case bfd_link_hash_defweak:
   2148 		  sym->flags |= BSF_WEAK;
   2149 		  sym->flags &=~ BSF_CONSTRUCTOR;
   2150 		  sym->value = h->root.u.def.value;
   2151 		  sym->section = h->root.u.def.section;
   2152 		  break;
   2153 		case bfd_link_hash_common:
   2154 		  sym->value = h->root.u.c.size;
   2155 		  sym->flags |= BSF_GLOBAL;
   2156 		  if (! bfd_is_com_section (sym->section))
   2157 		    {
   2158 		      BFD_ASSERT (bfd_is_und_section (sym->section));
   2159 		      sym->section = bfd_com_section_ptr;
   2160 		    }
   2161 		  /* We do not set the section of the symbol to
   2162 		     h->root.u.c.p->section.  That value was saved so
   2163 		     that we would know where to allocate the symbol
   2164 		     if it was defined.  In this case the type is
   2165 		     still bfd_link_hash_common, so we did not define
   2166 		     it, so we do not want to use that section.  */
   2167 		  break;
   2168 		}
   2169 	    }
   2170 	}
   2171 
   2172       /* This switch is straight from the old code in
   2173 	 write_file_locals in ldsym.c.  */
   2174       if (info->strip == strip_all
   2175 	  || (info->strip == strip_some
   2176 	      && bfd_hash_lookup (info->keep_hash, bfd_asymbol_name (sym),
   2177 				  FALSE, FALSE) == NULL))
   2178 	output = FALSE;
   2179       else if ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0)
   2180 	{
   2181 	  /* If this symbol is marked as occurring now, rather
   2182 	     than at the end, output it now.  This is used for
   2183 	     COFF C_EXT FCN symbols.  FIXME: There must be a
   2184 	     better way.  */
   2185 	  if (bfd_asymbol_bfd (sym) == input_bfd
   2186 	      && (sym->flags & BSF_NOT_AT_END) != 0)
   2187 	    output = TRUE;
   2188 	  else
   2189 	    output = FALSE;
   2190 	}
   2191       else if (bfd_is_ind_section (sym->section))
   2192 	output = FALSE;
   2193       else if ((sym->flags & BSF_DEBUGGING) != 0)
   2194 	{
   2195 	  if (info->strip == strip_none)
   2196 	    output = TRUE;
   2197 	  else
   2198 	    output = FALSE;
   2199 	}
   2200       else if (bfd_is_und_section (sym->section)
   2201 	       || bfd_is_com_section (sym->section))
   2202 	output = FALSE;
   2203       else if ((sym->flags & BSF_LOCAL) != 0)
   2204 	{
   2205 	  if ((sym->flags & BSF_WARNING) != 0)
   2206 	    output = FALSE;
   2207 	  else
   2208 	    {
   2209 	      switch (info->discard)
   2210 		{
   2211 		default:
   2212 		case discard_all:
   2213 		  output = FALSE;
   2214 		  break;
   2215 		case discard_sec_merge:
   2216 		  output = TRUE;
   2217 		  if (info->relocatable
   2218 		      || ! (sym->section->flags & SEC_MERGE))
   2219 		    break;
   2220 		  /* FALLTHROUGH */
   2221 		case discard_l:
   2222 		  if (bfd_is_local_label (input_bfd, sym))
   2223 		    output = FALSE;
   2224 		  else
   2225 		    output = TRUE;
   2226 		  break;
   2227 		case discard_none:
   2228 		  output = TRUE;
   2229 		  break;
   2230 		}
   2231 	    }
   2232 	}
   2233       else if ((sym->flags & BSF_CONSTRUCTOR))
   2234 	{
   2235 	  if (info->strip != strip_all)
   2236 	    output = TRUE;
   2237 	  else
   2238 	    output = FALSE;
   2239 	}
   2240       else if (sym->flags == 0
   2241 	       && (sym->section->owner->flags & BFD_PLUGIN) != 0)
   2242 	/* LTO doesn't set symbol information.  We get here with the
   2243 	   generic linker for a symbol that was "common" but no longer
   2244 	   needs to be global.  */
   2245 	output = FALSE;
   2246       else
   2247 	abort ();
   2248 
   2249       /* If this symbol is in a section which is not being included
   2250 	 in the output file, then we don't want to output the
   2251 	 symbol.  */
   2252       if (!bfd_is_abs_section (sym->section)
   2253 	  && bfd_section_removed_from_list (output_bfd,
   2254 					    sym->section->output_section))
   2255 	output = FALSE;
   2256 
   2257       if (output)
   2258 	{
   2259 	  if (! generic_add_output_symbol (output_bfd, psymalloc, sym))
   2260 	    return FALSE;
   2261 	  if (h != NULL)
   2262 	    h->written = TRUE;
   2263 	}
   2264     }
   2265 
   2266   return TRUE;
   2267 }
   2268 
   2269 /* Set the section and value of a generic BFD symbol based on a linker
   2270    hash table entry.  */
   2271 
   2272 static void
   2273 set_symbol_from_hash (asymbol *sym, struct bfd_link_hash_entry *h)
   2274 {
   2275   switch (h->type)
   2276     {
   2277     default:
   2278       abort ();
   2279       break;
   2280     case bfd_link_hash_new:
   2281       /* This can happen when a constructor symbol is seen but we are
   2282          not building constructors.  */
   2283       if (sym->section != NULL)
   2284 	{
   2285 	  BFD_ASSERT ((sym->flags & BSF_CONSTRUCTOR) != 0);
   2286 	}
   2287       else
   2288 	{
   2289 	  sym->flags |= BSF_CONSTRUCTOR;
   2290 	  sym->section = bfd_abs_section_ptr;
   2291 	  sym->value = 0;
   2292 	}
   2293       break;
   2294     case bfd_link_hash_undefined:
   2295       sym->section = bfd_und_section_ptr;
   2296       sym->value = 0;
   2297       break;
   2298     case bfd_link_hash_undefweak:
   2299       sym->section = bfd_und_section_ptr;
   2300       sym->value = 0;
   2301       sym->flags |= BSF_WEAK;
   2302       break;
   2303     case bfd_link_hash_defined:
   2304       sym->section = h->u.def.section;
   2305       sym->value = h->u.def.value;
   2306       break;
   2307     case bfd_link_hash_defweak:
   2308       sym->flags |= BSF_WEAK;
   2309       sym->section = h->u.def.section;
   2310       sym->value = h->u.def.value;
   2311       break;
   2312     case bfd_link_hash_common:
   2313       sym->value = h->u.c.size;
   2314       if (sym->section == NULL)
   2315 	sym->section = bfd_com_section_ptr;
   2316       else if (! bfd_is_com_section (sym->section))
   2317 	{
   2318 	  BFD_ASSERT (bfd_is_und_section (sym->section));
   2319 	  sym->section = bfd_com_section_ptr;
   2320 	}
   2321       /* Do not set the section; see _bfd_generic_link_output_symbols.  */
   2322       break;
   2323     case bfd_link_hash_indirect:
   2324     case bfd_link_hash_warning:
   2325       /* FIXME: What should we do here?  */
   2326       break;
   2327     }
   2328 }
   2329 
   2330 /* Write out a global symbol, if it hasn't already been written out.
   2331    This is called for each symbol in the hash table.  */
   2332 
   2333 bfd_boolean
   2334 _bfd_generic_link_write_global_symbol (struct generic_link_hash_entry *h,
   2335 				       void *data)
   2336 {
   2337   struct generic_write_global_symbol_info *wginfo =
   2338       (struct generic_write_global_symbol_info *) data;
   2339   asymbol *sym;
   2340 
   2341   if (h->written)
   2342     return TRUE;
   2343 
   2344   h->written = TRUE;
   2345 
   2346   if (wginfo->info->strip == strip_all
   2347       || (wginfo->info->strip == strip_some
   2348 	  && bfd_hash_lookup (wginfo->info->keep_hash, h->root.root.string,
   2349 			      FALSE, FALSE) == NULL))
   2350     return TRUE;
   2351 
   2352   if (h->sym != NULL)
   2353     sym = h->sym;
   2354   else
   2355     {
   2356       sym = bfd_make_empty_symbol (wginfo->output_bfd);
   2357       if (!sym)
   2358 	return FALSE;
   2359       sym->name = h->root.root.string;
   2360       sym->flags = 0;
   2361     }
   2362 
   2363   set_symbol_from_hash (sym, &h->root);
   2364 
   2365   sym->flags |= BSF_GLOBAL;
   2366 
   2367   if (! generic_add_output_symbol (wginfo->output_bfd, wginfo->psymalloc,
   2368 				   sym))
   2369     {
   2370       /* FIXME: No way to return failure.  */
   2371       abort ();
   2372     }
   2373 
   2374   return TRUE;
   2375 }
   2376 
   2377 /* Create a relocation.  */
   2378 
   2379 bfd_boolean
   2380 _bfd_generic_reloc_link_order (bfd *abfd,
   2381 			       struct bfd_link_info *info,
   2382 			       asection *sec,
   2383 			       struct bfd_link_order *link_order)
   2384 {
   2385   arelent *r;
   2386 
   2387   if (! info->relocatable)
   2388     abort ();
   2389   if (sec->orelocation == NULL)
   2390     abort ();
   2391 
   2392   r = (arelent *) bfd_alloc (abfd, sizeof (arelent));
   2393   if (r == NULL)
   2394     return FALSE;
   2395 
   2396   r->address = link_order->offset;
   2397   r->howto = bfd_reloc_type_lookup (abfd, link_order->u.reloc.p->reloc);
   2398   if (r->howto == 0)
   2399     {
   2400       bfd_set_error (bfd_error_bad_value);
   2401       return FALSE;
   2402     }
   2403 
   2404   /* Get the symbol to use for the relocation.  */
   2405   if (link_order->type == bfd_section_reloc_link_order)
   2406     r->sym_ptr_ptr = link_order->u.reloc.p->u.section->symbol_ptr_ptr;
   2407   else
   2408     {
   2409       struct generic_link_hash_entry *h;
   2410 
   2411       h = ((struct generic_link_hash_entry *)
   2412 	   bfd_wrapped_link_hash_lookup (abfd, info,
   2413 					 link_order->u.reloc.p->u.name,
   2414 					 FALSE, FALSE, TRUE));
   2415       if (h == NULL
   2416 	  || ! h->written)
   2417 	{
   2418 	  if (! ((*info->callbacks->unattached_reloc)
   2419 		 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
   2420 	    return FALSE;
   2421 	  bfd_set_error (bfd_error_bad_value);
   2422 	  return FALSE;
   2423 	}
   2424       r->sym_ptr_ptr = &h->sym;
   2425     }
   2426 
   2427   /* If this is an inplace reloc, write the addend to the object file.
   2428      Otherwise, store it in the reloc addend.  */
   2429   if (! r->howto->partial_inplace)
   2430     r->addend = link_order->u.reloc.p->addend;
   2431   else
   2432     {
   2433       bfd_size_type size;
   2434       bfd_reloc_status_type rstat;
   2435       bfd_byte *buf;
   2436       bfd_boolean ok;
   2437       file_ptr loc;
   2438 
   2439       size = bfd_get_reloc_size (r->howto);
   2440       buf = (bfd_byte *) bfd_zmalloc (size);
   2441       if (buf == NULL)
   2442 	return FALSE;
   2443       rstat = _bfd_relocate_contents (r->howto, abfd,
   2444 				      (bfd_vma) link_order->u.reloc.p->addend,
   2445 				      buf);
   2446       switch (rstat)
   2447 	{
   2448 	case bfd_reloc_ok:
   2449 	  break;
   2450 	default:
   2451 	case bfd_reloc_outofrange:
   2452 	  abort ();
   2453 	case bfd_reloc_overflow:
   2454 	  if (! ((*info->callbacks->reloc_overflow)
   2455 		 (info, NULL,
   2456 		  (link_order->type == bfd_section_reloc_link_order
   2457 		   ? bfd_section_name (abfd, link_order->u.reloc.p->u.section)
   2458 		   : link_order->u.reloc.p->u.name),
   2459 		  r->howto->name, link_order->u.reloc.p->addend,
   2460 		  NULL, NULL, 0)))
   2461 	    {
   2462 	      free (buf);
   2463 	      return FALSE;
   2464 	    }
   2465 	  break;
   2466 	}
   2467       loc = link_order->offset * bfd_octets_per_byte (abfd);
   2468       ok = bfd_set_section_contents (abfd, sec, buf, loc, size);
   2469       free (buf);
   2470       if (! ok)
   2471 	return FALSE;
   2472 
   2473       r->addend = 0;
   2474     }
   2475 
   2476   sec->orelocation[sec->reloc_count] = r;
   2477   ++sec->reloc_count;
   2478 
   2479   return TRUE;
   2480 }
   2481 
   2482 /* Allocate a new link_order for a section.  */
   2484 
   2485 struct bfd_link_order *
   2486 bfd_new_link_order (bfd *abfd, asection *section)
   2487 {
   2488   bfd_size_type amt = sizeof (struct bfd_link_order);
   2489   struct bfd_link_order *new_lo;
   2490 
   2491   new_lo = (struct bfd_link_order *) bfd_zalloc (abfd, amt);
   2492   if (!new_lo)
   2493     return NULL;
   2494 
   2495   new_lo->type = bfd_undefined_link_order;
   2496 
   2497   if (section->map_tail.link_order != NULL)
   2498     section->map_tail.link_order->next = new_lo;
   2499   else
   2500     section->map_head.link_order = new_lo;
   2501   section->map_tail.link_order = new_lo;
   2502 
   2503   return new_lo;
   2504 }
   2505 
   2506 /* Default link order processing routine.  Note that we can not handle
   2507    the reloc_link_order types here, since they depend upon the details
   2508    of how the particular backends generates relocs.  */
   2509 
   2510 bfd_boolean
   2511 _bfd_default_link_order (bfd *abfd,
   2512 			 struct bfd_link_info *info,
   2513 			 asection *sec,
   2514 			 struct bfd_link_order *link_order)
   2515 {
   2516   switch (link_order->type)
   2517     {
   2518     case bfd_undefined_link_order:
   2519     case bfd_section_reloc_link_order:
   2520     case bfd_symbol_reloc_link_order:
   2521     default:
   2522       abort ();
   2523     case bfd_indirect_link_order:
   2524       return default_indirect_link_order (abfd, info, sec, link_order,
   2525 					  FALSE);
   2526     case bfd_data_link_order:
   2527       return default_data_link_order (abfd, info, sec, link_order);
   2528     }
   2529 }
   2530 
   2531 /* Default routine to handle a bfd_data_link_order.  */
   2532 
   2533 static bfd_boolean
   2534 default_data_link_order (bfd *abfd,
   2535 			 struct bfd_link_info *info ATTRIBUTE_UNUSED,
   2536 			 asection *sec,
   2537 			 struct bfd_link_order *link_order)
   2538 {
   2539   bfd_size_type size;
   2540   size_t fill_size;
   2541   bfd_byte *fill;
   2542   file_ptr loc;
   2543   bfd_boolean result;
   2544 
   2545   BFD_ASSERT ((sec->flags & SEC_HAS_CONTENTS) != 0);
   2546 
   2547   size = link_order->size;
   2548   if (size == 0)
   2549     return TRUE;
   2550 
   2551   fill = link_order->u.data.contents;
   2552   fill_size = link_order->u.data.size;
   2553   if (fill_size == 0)
   2554     {
   2555       fill = abfd->arch_info->fill (size, bfd_big_endian (abfd),
   2556 				    (sec->flags & SEC_CODE) != 0);
   2557       if (fill == NULL)
   2558 	return FALSE;
   2559     }
   2560   else if (fill_size < size)
   2561     {
   2562       bfd_byte *p;
   2563       fill = (bfd_byte *) bfd_malloc (size);
   2564       if (fill == NULL)
   2565 	return FALSE;
   2566       p = fill;
   2567       if (fill_size == 1)
   2568 	memset (p, (int) link_order->u.data.contents[0], (size_t) size);
   2569       else
   2570 	{
   2571 	  do
   2572 	    {
   2573 	      memcpy (p, link_order->u.data.contents, fill_size);
   2574 	      p += fill_size;
   2575 	      size -= fill_size;
   2576 	    }
   2577 	  while (size >= fill_size);
   2578 	  if (size != 0)
   2579 	    memcpy (p, link_order->u.data.contents, (size_t) size);
   2580 	  size = link_order->size;
   2581 	}
   2582     }
   2583 
   2584   loc = link_order->offset * bfd_octets_per_byte (abfd);
   2585   result = bfd_set_section_contents (abfd, sec, fill, loc, size);
   2586 
   2587   if (fill != link_order->u.data.contents)
   2588     free (fill);
   2589   return result;
   2590 }
   2591 
   2592 /* Default routine to handle a bfd_indirect_link_order.  */
   2593 
   2594 static bfd_boolean
   2595 default_indirect_link_order (bfd *output_bfd,
   2596 			     struct bfd_link_info *info,
   2597 			     asection *output_section,
   2598 			     struct bfd_link_order *link_order,
   2599 			     bfd_boolean generic_linker)
   2600 {
   2601   asection *input_section;
   2602   bfd *input_bfd;
   2603   bfd_byte *contents = NULL;
   2604   bfd_byte *new_contents;
   2605   bfd_size_type sec_size;
   2606   file_ptr loc;
   2607 
   2608   BFD_ASSERT ((output_section->flags & SEC_HAS_CONTENTS) != 0);
   2609 
   2610   input_section = link_order->u.indirect.section;
   2611   input_bfd = input_section->owner;
   2612   if (input_section->size == 0)
   2613     return TRUE;
   2614 
   2615   BFD_ASSERT (input_section->output_section == output_section);
   2616   BFD_ASSERT (input_section->output_offset == link_order->offset);
   2617   BFD_ASSERT (input_section->size == link_order->size);
   2618 
   2619   if (info->relocatable
   2620       && input_section->reloc_count > 0
   2621       && output_section->orelocation == NULL)
   2622     {
   2623       /* Space has not been allocated for the output relocations.
   2624 	 This can happen when we are called by a specific backend
   2625 	 because somebody is attempting to link together different
   2626 	 types of object files.  Handling this case correctly is
   2627 	 difficult, and sometimes impossible.  */
   2628       (*_bfd_error_handler)
   2629 	(_("Attempt to do relocatable link with %s input and %s output"),
   2630 	 bfd_get_target (input_bfd), bfd_get_target (output_bfd));
   2631       bfd_set_error (bfd_error_wrong_format);
   2632       return FALSE;
   2633     }
   2634 
   2635   if (! generic_linker)
   2636     {
   2637       asymbol **sympp;
   2638       asymbol **symppend;
   2639 
   2640       /* Get the canonical symbols.  The generic linker will always
   2641 	 have retrieved them by this point, but we are being called by
   2642 	 a specific linker, presumably because we are linking
   2643 	 different types of object files together.  */
   2644       if (!bfd_generic_link_read_symbols (input_bfd))
   2645 	return FALSE;
   2646 
   2647       /* Since we have been called by a specific linker, rather than
   2648 	 the generic linker, the values of the symbols will not be
   2649 	 right.  They will be the values as seen in the input file,
   2650 	 not the values of the final link.  We need to fix them up
   2651 	 before we can relocate the section.  */
   2652       sympp = _bfd_generic_link_get_symbols (input_bfd);
   2653       symppend = sympp + _bfd_generic_link_get_symcount (input_bfd);
   2654       for (; sympp < symppend; sympp++)
   2655 	{
   2656 	  asymbol *sym;
   2657 	  struct bfd_link_hash_entry *h;
   2658 
   2659 	  sym = *sympp;
   2660 
   2661 	  if ((sym->flags & (BSF_INDIRECT
   2662 			     | BSF_WARNING
   2663 			     | BSF_GLOBAL
   2664 			     | BSF_CONSTRUCTOR
   2665 			     | BSF_WEAK)) != 0
   2666 	      || bfd_is_und_section (bfd_get_section (sym))
   2667 	      || bfd_is_com_section (bfd_get_section (sym))
   2668 	      || bfd_is_ind_section (bfd_get_section (sym)))
   2669 	    {
   2670 	      /* sym->udata may have been set by
   2671 		 generic_link_add_symbol_list.  */
   2672 	      if (sym->udata.p != NULL)
   2673 		h = (struct bfd_link_hash_entry *) sym->udata.p;
   2674 	      else if (bfd_is_und_section (bfd_get_section (sym)))
   2675 		h = bfd_wrapped_link_hash_lookup (output_bfd, info,
   2676 						  bfd_asymbol_name (sym),
   2677 						  FALSE, FALSE, TRUE);
   2678 	      else
   2679 		h = bfd_link_hash_lookup (info->hash,
   2680 					  bfd_asymbol_name (sym),
   2681 					  FALSE, FALSE, TRUE);
   2682 	      if (h != NULL)
   2683 		set_symbol_from_hash (sym, h);
   2684 	    }
   2685 	}
   2686     }
   2687 
   2688   if ((output_section->flags & (SEC_GROUP | SEC_LINKER_CREATED)) == SEC_GROUP
   2689       && input_section->size != 0)
   2690     {
   2691       /* Group section contents are set by bfd_elf_set_group_contents.  */
   2692       if (!output_bfd->output_has_begun)
   2693 	{
   2694 	  /* FIXME: This hack ensures bfd_elf_set_group_contents is called.  */
   2695 	  if (!bfd_set_section_contents (output_bfd, output_section, "", 0, 1))
   2696 	    goto error_return;
   2697 	}
   2698       new_contents = output_section->contents;
   2699       BFD_ASSERT (new_contents != NULL);
   2700       BFD_ASSERT (input_section->output_offset == 0);
   2701     }
   2702   else
   2703     {
   2704       /* Get and relocate the section contents.  */
   2705       sec_size = (input_section->rawsize > input_section->size
   2706 		  ? input_section->rawsize
   2707 		  : input_section->size);
   2708       contents = (bfd_byte *) bfd_malloc (sec_size);
   2709       if (contents == NULL && sec_size != 0)
   2710 	goto error_return;
   2711       new_contents = (bfd_get_relocated_section_contents
   2712 		      (output_bfd, info, link_order, contents,
   2713 		       info->relocatable,
   2714 		       _bfd_generic_link_get_symbols (input_bfd)));
   2715       if (!new_contents)
   2716 	goto error_return;
   2717     }
   2718 
   2719   /* Output the section contents.  */
   2720   loc = input_section->output_offset * bfd_octets_per_byte (output_bfd);
   2721   if (! bfd_set_section_contents (output_bfd, output_section,
   2722 				  new_contents, loc, input_section->size))
   2723     goto error_return;
   2724 
   2725   if (contents != NULL)
   2726     free (contents);
   2727   return TRUE;
   2728 
   2729  error_return:
   2730   if (contents != NULL)
   2731     free (contents);
   2732   return FALSE;
   2733 }
   2734 
   2735 /* A little routine to count the number of relocs in a link_order
   2736    list.  */
   2737 
   2738 unsigned int
   2739 _bfd_count_link_order_relocs (struct bfd_link_order *link_order)
   2740 {
   2741   register unsigned int c;
   2742   register struct bfd_link_order *l;
   2743 
   2744   c = 0;
   2745   for (l = link_order; l != NULL; l = l->next)
   2746     {
   2747       if (l->type == bfd_section_reloc_link_order
   2748 	  || l->type == bfd_symbol_reloc_link_order)
   2749 	++c;
   2750     }
   2751 
   2752   return c;
   2753 }
   2754 
   2755 /*
   2756 FUNCTION
   2757 	bfd_link_split_section
   2758 
   2759 SYNOPSIS
   2760         bfd_boolean bfd_link_split_section (bfd *abfd, asection *sec);
   2761 
   2762 DESCRIPTION
   2763 	Return nonzero if @var{sec} should be split during a
   2764 	reloceatable or final link.
   2765 
   2766 .#define bfd_link_split_section(abfd, sec) \
   2767 .       BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec))
   2768 .
   2769 
   2770 */
   2771 
   2772 bfd_boolean
   2773 _bfd_generic_link_split_section (bfd *abfd ATTRIBUTE_UNUSED,
   2774 				 asection *sec ATTRIBUTE_UNUSED)
   2775 {
   2776   return FALSE;
   2777 }
   2778 
   2779 /*
   2780 FUNCTION
   2781 	bfd_section_already_linked
   2782 
   2783 SYNOPSIS
   2784         bfd_boolean bfd_section_already_linked (bfd *abfd,
   2785 						asection *sec,
   2786 						struct bfd_link_info *info);
   2787 
   2788 DESCRIPTION
   2789 	Check if @var{data} has been already linked during a reloceatable
   2790 	or final link.  Return TRUE if it has.
   2791 
   2792 .#define bfd_section_already_linked(abfd, sec, info) \
   2793 .       BFD_SEND (abfd, _section_already_linked, (abfd, sec, info))
   2794 .
   2795 
   2796 */
   2797 
   2798 /* Sections marked with the SEC_LINK_ONCE flag should only be linked
   2799    once into the output.  This routine checks each section, and
   2800    arrange to discard it if a section of the same name has already
   2801    been linked.  This code assumes that all relevant sections have the
   2802    SEC_LINK_ONCE flag set; that is, it does not depend solely upon the
   2803    section name.  bfd_section_already_linked is called via
   2804    bfd_map_over_sections.  */
   2805 
   2806 /* The hash table.  */
   2807 
   2808 static struct bfd_hash_table _bfd_section_already_linked_table;
   2809 
   2810 /* Support routines for the hash table used by section_already_linked,
   2811    initialize the table, traverse, lookup, fill in an entry and remove
   2812    the table.  */
   2813 
   2814 void
   2815 bfd_section_already_linked_table_traverse
   2816   (bfd_boolean (*func) (struct bfd_section_already_linked_hash_entry *,
   2817 			void *), void *info)
   2818 {
   2819   bfd_hash_traverse (&_bfd_section_already_linked_table,
   2820 		     (bfd_boolean (*) (struct bfd_hash_entry *,
   2821 				       void *)) func,
   2822 		     info);
   2823 }
   2824 
   2825 struct bfd_section_already_linked_hash_entry *
   2826 bfd_section_already_linked_table_lookup (const char *name)
   2827 {
   2828   return ((struct bfd_section_already_linked_hash_entry *)
   2829 	  bfd_hash_lookup (&_bfd_section_already_linked_table, name,
   2830 			   TRUE, FALSE));
   2831 }
   2832 
   2833 bfd_boolean
   2834 bfd_section_already_linked_table_insert
   2835   (struct bfd_section_already_linked_hash_entry *already_linked_list,
   2836    asection *sec)
   2837 {
   2838   struct bfd_section_already_linked *l;
   2839 
   2840   /* Allocate the memory from the same obstack as the hash table is
   2841      kept in.  */
   2842   l = (struct bfd_section_already_linked *)
   2843       bfd_hash_allocate (&_bfd_section_already_linked_table, sizeof *l);
   2844   if (l == NULL)
   2845     return FALSE;
   2846   l->sec = sec;
   2847   l->next = already_linked_list->entry;
   2848   already_linked_list->entry = l;
   2849   return TRUE;
   2850 }
   2851 
   2852 static struct bfd_hash_entry *
   2853 already_linked_newfunc (struct bfd_hash_entry *entry ATTRIBUTE_UNUSED,
   2854 			struct bfd_hash_table *table,
   2855 			const char *string ATTRIBUTE_UNUSED)
   2856 {
   2857   struct bfd_section_already_linked_hash_entry *ret =
   2858     (struct bfd_section_already_linked_hash_entry *)
   2859       bfd_hash_allocate (table, sizeof *ret);
   2860 
   2861   if (ret == NULL)
   2862     return NULL;
   2863 
   2864   ret->entry = NULL;
   2865 
   2866   return &ret->root;
   2867 }
   2868 
   2869 bfd_boolean
   2870 bfd_section_already_linked_table_init (void)
   2871 {
   2872   return bfd_hash_table_init_n (&_bfd_section_already_linked_table,
   2873 				already_linked_newfunc,
   2874 				sizeof (struct bfd_section_already_linked_hash_entry),
   2875 				42);
   2876 }
   2877 
   2878 void
   2879 bfd_section_already_linked_table_free (void)
   2880 {
   2881   bfd_hash_table_free (&_bfd_section_already_linked_table);
   2882 }
   2883 
   2884 /* Report warnings as appropriate for duplicate section SEC.
   2885    Return FALSE if we decide to keep SEC after all.  */
   2886 
   2887 bfd_boolean
   2888 _bfd_handle_already_linked (asection *sec,
   2889 			    struct bfd_section_already_linked *l,
   2890 			    struct bfd_link_info *info)
   2891 {
   2892   switch (sec->flags & SEC_LINK_DUPLICATES)
   2893     {
   2894     default:
   2895       abort ();
   2896 
   2897     case SEC_LINK_DUPLICATES_DISCARD:
   2898       /* If we found an LTO IR match for this comdat group on
   2899 	 the first pass, replace it with the LTO output on the
   2900 	 second pass.  We can't simply choose real object
   2901 	 files over IR because the first pass may contain a
   2902 	 mix of LTO and normal objects and we must keep the
   2903 	 first match, be it IR or real.  */
   2904       if (info->loading_lto_outputs
   2905 	  && (l->sec->owner->flags & BFD_PLUGIN) != 0)
   2906 	{
   2907 	  l->sec = sec;
   2908 	  return FALSE;
   2909 	}
   2910       break;
   2911 
   2912     case SEC_LINK_DUPLICATES_ONE_ONLY:
   2913       info->callbacks->einfo
   2914 	(_("%B: ignoring duplicate section `%A'\n"),
   2915 	 sec->owner, sec);
   2916       break;
   2917 
   2918     case SEC_LINK_DUPLICATES_SAME_SIZE:
   2919       if ((l->sec->owner->flags & BFD_PLUGIN) != 0)
   2920 	;
   2921       else if (sec->size != l->sec->size)
   2922 	info->callbacks->einfo
   2923 	  (_("%B: duplicate section `%A' has different size\n"),
   2924 	   sec->owner, sec);
   2925       break;
   2926 
   2927     case SEC_LINK_DUPLICATES_SAME_CONTENTS:
   2928       if ((l->sec->owner->flags & BFD_PLUGIN) != 0)
   2929 	;
   2930       else if (sec->size != l->sec->size)
   2931 	info->callbacks->einfo
   2932 	  (_("%B: duplicate section `%A' has different size\n"),
   2933 	   sec->owner, sec);
   2934       else if (sec->size != 0)
   2935 	{
   2936 	  bfd_byte *sec_contents, *l_sec_contents = NULL;
   2937 
   2938 	  if (!bfd_malloc_and_get_section (sec->owner, sec, &sec_contents))
   2939 	    info->callbacks->einfo
   2940 	      (_("%B: could not read contents of section `%A'\n"),
   2941 	       sec->owner, sec);
   2942 	  else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
   2943 						&l_sec_contents))
   2944 	    info->callbacks->einfo
   2945 	      (_("%B: could not read contents of section `%A'\n"),
   2946 	       l->sec->owner, l->sec);
   2947 	  else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
   2948 	    info->callbacks->einfo
   2949 	      (_("%B: duplicate section `%A' has different contents\n"),
   2950 	       sec->owner, sec);
   2951 
   2952 	  if (sec_contents)
   2953 	    free (sec_contents);
   2954 	  if (l_sec_contents)
   2955 	    free (l_sec_contents);
   2956 	}
   2957       break;
   2958     }
   2959 
   2960   /* Set the output_section field so that lang_add_section
   2961      does not create a lang_input_section structure for this
   2962      section.  Since there might be a symbol in the section
   2963      being discarded, we must retain a pointer to the section
   2964      which we are really going to use.  */
   2965   sec->output_section = bfd_abs_section_ptr;
   2966   sec->kept_section = l->sec;
   2967   return TRUE;
   2968 }
   2969 
   2970 /* This is used on non-ELF inputs.  */
   2971 
   2972 bfd_boolean
   2973 _bfd_generic_section_already_linked (bfd *abfd ATTRIBUTE_UNUSED,
   2974 				     asection *sec,
   2975 				     struct bfd_link_info *info)
   2976 {
   2977   const char *name;
   2978   struct bfd_section_already_linked *l;
   2979   struct bfd_section_already_linked_hash_entry *already_linked_list;
   2980 
   2981   if ((sec->flags & SEC_LINK_ONCE) == 0)
   2982     return FALSE;
   2983 
   2984   /* The generic linker doesn't handle section groups.  */
   2985   if ((sec->flags & SEC_GROUP) != 0)
   2986     return FALSE;
   2987 
   2988   /* FIXME: When doing a relocatable link, we may have trouble
   2989      copying relocations in other sections that refer to local symbols
   2990      in the section being discarded.  Those relocations will have to
   2991      be converted somehow; as of this writing I'm not sure that any of
   2992      the backends handle that correctly.
   2993 
   2994      It is tempting to instead not discard link once sections when
   2995      doing a relocatable link (technically, they should be discarded
   2996      whenever we are building constructors).  However, that fails,
   2997      because the linker winds up combining all the link once sections
   2998      into a single large link once section, which defeats the purpose
   2999      of having link once sections in the first place.  */
   3000 
   3001   name = bfd_get_section_name (abfd, sec);
   3002 
   3003   already_linked_list = bfd_section_already_linked_table_lookup (name);
   3004 
   3005   l = already_linked_list->entry;
   3006   if (l != NULL)
   3007     {
   3008       /* The section has already been linked.  See if we should
   3009 	 issue a warning.  */
   3010       return _bfd_handle_already_linked (sec, l, info);
   3011     }
   3012 
   3013   /* This is the first section with this name.  Record it.  */
   3014   if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
   3015     info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
   3016   return FALSE;
   3017 }
   3018 
   3019 /* Choose a neighbouring section to S in OBFD that will be output, or
   3020    the absolute section if ADDR is out of bounds of the neighbours.  */
   3021 
   3022 asection *
   3023 _bfd_nearby_section (bfd *obfd, asection *s, bfd_vma addr)
   3024 {
   3025   asection *next, *prev, *best;
   3026 
   3027   /* Find preceding kept section.  */
   3028   for (prev = s->prev; prev != NULL; prev = prev->prev)
   3029     if ((prev->flags & SEC_EXCLUDE) == 0
   3030 	&& !bfd_section_removed_from_list (obfd, prev))
   3031       break;
   3032 
   3033   /* Find following kept section.  Start at prev->next because
   3034      other sections may have been added after S was removed.  */
   3035   if (s->prev != NULL)
   3036     next = s->prev->next;
   3037   else
   3038     next = s->owner->sections;
   3039   for (; next != NULL; next = next->next)
   3040     if ((next->flags & SEC_EXCLUDE) == 0
   3041 	&& !bfd_section_removed_from_list (obfd, next))
   3042       break;
   3043 
   3044   /* Choose better of two sections, based on flags.  The idea
   3045      is to choose a section that will be in the same segment
   3046      as S would have been if it was kept.  */
   3047   best = next;
   3048   if (prev == NULL)
   3049     {
   3050       if (next == NULL)
   3051 	best = bfd_abs_section_ptr;
   3052     }
   3053   else if (next == NULL)
   3054     best = prev;
   3055   else if (((prev->flags ^ next->flags)
   3056 	    & (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_LOAD)) != 0)
   3057     {
   3058       if (((next->flags ^ s->flags)
   3059 	   & (SEC_ALLOC | SEC_THREAD_LOCAL)) != 0
   3060 	  /* We prefer to choose a loaded section.  Section S
   3061 	     doesn't have SEC_LOAD set (it being excluded, that
   3062 	     part of the flag processing didn't happen) so we
   3063 	     can't compare that flag to those of NEXT and PREV.  */
   3064 	  || ((prev->flags & SEC_LOAD) != 0
   3065 	      && (next->flags & SEC_LOAD) == 0))
   3066 	best = prev;
   3067     }
   3068   else if (((prev->flags ^ next->flags) & SEC_READONLY) != 0)
   3069     {
   3070       if (((next->flags ^ s->flags) & SEC_READONLY) != 0)
   3071 	best = prev;
   3072     }
   3073   else if (((prev->flags ^ next->flags) & SEC_CODE) != 0)
   3074     {
   3075       if (((next->flags ^ s->flags) & SEC_CODE) != 0)
   3076 	best = prev;
   3077     }
   3078   else
   3079     {
   3080       /* Flags we care about are the same.  Prefer the following
   3081 	 section if that will result in a positive valued sym.  */
   3082       if (addr < next->vma)
   3083 	best = prev;
   3084     }
   3085 
   3086   return best;
   3087 }
   3088 
   3089 /* Convert symbols in excluded output sections to use a kept section.  */
   3090 
   3091 static bfd_boolean
   3092 fix_syms (struct bfd_link_hash_entry *h, void *data)
   3093 {
   3094   bfd *obfd = (bfd *) data;
   3095 
   3096   if (h->type == bfd_link_hash_defined
   3097       || h->type == bfd_link_hash_defweak)
   3098     {
   3099       asection *s = h->u.def.section;
   3100       if (s != NULL
   3101 	  && s->output_section != NULL
   3102 	  && (s->output_section->flags & SEC_EXCLUDE) != 0
   3103 	  && bfd_section_removed_from_list (obfd, s->output_section))
   3104 	{
   3105 	  asection *op;
   3106 
   3107 	  h->u.def.value += s->output_offset + s->output_section->vma;
   3108 	  op = _bfd_nearby_section (obfd, s->output_section, h->u.def.value);
   3109 	  h->u.def.value -= op->vma;
   3110 	  h->u.def.section = op;
   3111 	}
   3112     }
   3113 
   3114   return TRUE;
   3115 }
   3116 
   3117 void
   3118 _bfd_fix_excluded_sec_syms (bfd *obfd, struct bfd_link_info *info)
   3119 {
   3120   bfd_link_hash_traverse (info->hash, fix_syms, obfd);
   3121 }
   3122 
   3123 /*
   3124 FUNCTION
   3125 	bfd_generic_define_common_symbol
   3126 
   3127 SYNOPSIS
   3128 	bfd_boolean bfd_generic_define_common_symbol
   3129 	  (bfd *output_bfd, struct bfd_link_info *info,
   3130 	   struct bfd_link_hash_entry *h);
   3131 
   3132 DESCRIPTION
   3133 	Convert common symbol @var{h} into a defined symbol.
   3134 	Return TRUE on success and FALSE on failure.
   3135 
   3136 .#define bfd_define_common_symbol(output_bfd, info, h) \
   3137 .       BFD_SEND (output_bfd, _bfd_define_common_symbol, (output_bfd, info, h))
   3138 .
   3139 */
   3140 
   3141 bfd_boolean
   3142 bfd_generic_define_common_symbol (bfd *output_bfd,
   3143 				  struct bfd_link_info *info ATTRIBUTE_UNUSED,
   3144 				  struct bfd_link_hash_entry *h)
   3145 {
   3146   unsigned int power_of_two;
   3147   bfd_vma alignment, size;
   3148   asection *section;
   3149 
   3150   BFD_ASSERT (h != NULL && h->type == bfd_link_hash_common);
   3151 
   3152   size = h->u.c.size;
   3153   power_of_two = h->u.c.p->alignment_power;
   3154   section = h->u.c.p->section;
   3155 
   3156   /* Increase the size of the section to align the common symbol.
   3157      The alignment must be a power of two.  */
   3158   alignment = bfd_octets_per_byte (output_bfd) << power_of_two;
   3159   BFD_ASSERT (alignment != 0 && (alignment & -alignment) == alignment);
   3160   section->size += alignment - 1;
   3161   section->size &= -alignment;
   3162 
   3163   /* Adjust the section's overall alignment if necessary.  */
   3164   if (power_of_two > section->alignment_power)
   3165     section->alignment_power = power_of_two;
   3166 
   3167   /* Change the symbol from common to defined.  */
   3168   h->type = bfd_link_hash_defined;
   3169   h->u.def.section = section;
   3170   h->u.def.value = section->size;
   3171 
   3172   /* Increase the size of the section.  */
   3173   section->size += size;
   3174 
   3175   /* Make sure the section is allocated in memory, and make sure that
   3176      it is no longer a common section.  */
   3177   section->flags |= SEC_ALLOC;
   3178   section->flags &= ~SEC_IS_COMMON;
   3179   return TRUE;
   3180 }
   3181 
   3182 /*
   3183 FUNCTION
   3184 	bfd_find_version_for_sym
   3185 
   3186 SYNOPSIS
   3187 	struct bfd_elf_version_tree * bfd_find_version_for_sym
   3188 	  (struct bfd_elf_version_tree *verdefs,
   3189 	   const char *sym_name, bfd_boolean *hide);
   3190 
   3191 DESCRIPTION
   3192 	Search an elf version script tree for symbol versioning
   3193 	info and export / don't-export status for a given symbol.
   3194 	Return non-NULL on success and NULL on failure; also sets
   3195 	the output @samp{hide} boolean parameter.
   3196 
   3197 */
   3198 
   3199 struct bfd_elf_version_tree *
   3200 bfd_find_version_for_sym (struct bfd_elf_version_tree *verdefs,
   3201 			  const char *sym_name,
   3202 			  bfd_boolean *hide)
   3203 {
   3204   struct bfd_elf_version_tree *t;
   3205   struct bfd_elf_version_tree *local_ver, *global_ver, *exist_ver;
   3206   struct bfd_elf_version_tree *star_local_ver, *star_global_ver;
   3207 
   3208   local_ver = NULL;
   3209   global_ver = NULL;
   3210   star_local_ver = NULL;
   3211   star_global_ver = NULL;
   3212   exist_ver = NULL;
   3213   for (t = verdefs; t != NULL; t = t->next)
   3214     {
   3215       if (t->globals.list != NULL)
   3216 	{
   3217 	  struct bfd_elf_version_expr *d = NULL;
   3218 
   3219 	  while ((d = (*t->match) (&t->globals, d, sym_name)) != NULL)
   3220 	    {
   3221 	      if (d->literal || strcmp (d->pattern, "*") != 0)
   3222 		global_ver = t;
   3223 	      else
   3224 		star_global_ver = t;
   3225 	      if (d->symver)
   3226 		exist_ver = t;
   3227 	      d->script = 1;
   3228 	      /* If the match is a wildcard pattern, keep looking for
   3229 		 a more explicit, perhaps even local, match.  */
   3230 	      if (d->literal)
   3231 		break;
   3232 	    }
   3233 
   3234 	  if (d != NULL)
   3235 	    break;
   3236 	}
   3237 
   3238       if (t->locals.list != NULL)
   3239 	{
   3240 	  struct bfd_elf_version_expr *d = NULL;
   3241 
   3242 	  while ((d = (*t->match) (&t->locals, d, sym_name)) != NULL)
   3243 	    {
   3244 	      if (d->literal || strcmp (d->pattern, "*") != 0)
   3245 		local_ver = t;
   3246 	      else
   3247 		star_local_ver = t;
   3248 	      /* If the match is a wildcard pattern, keep looking for
   3249 		 a more explicit, perhaps even global, match.  */
   3250 	      if (d->literal)
   3251 		{
   3252 		  /* An exact match overrides a global wildcard.  */
   3253 		  global_ver = NULL;
   3254 		  star_global_ver = NULL;
   3255 		  break;
   3256 		}
   3257 	    }
   3258 
   3259 	  if (d != NULL)
   3260 	    break;
   3261 	}
   3262     }
   3263 
   3264   if (global_ver == NULL && local_ver == NULL)
   3265     global_ver = star_global_ver;
   3266 
   3267   if (global_ver != NULL)
   3268     {
   3269       /* If we already have a versioned symbol that matches the
   3270 	 node for this symbol, then we don't want to create a
   3271 	 duplicate from the unversioned symbol.  Instead hide the
   3272 	 unversioned symbol.  */
   3273       *hide = exist_ver == global_ver;
   3274       return global_ver;
   3275     }
   3276 
   3277   if (local_ver == NULL)
   3278     local_ver = star_local_ver;
   3279 
   3280   if (local_ver != NULL)
   3281     {
   3282       *hide = TRUE;
   3283       return local_ver;
   3284     }
   3285 
   3286   return NULL;
   3287 }
   3288 
   3289 /*
   3290 FUNCTION
   3291 	bfd_hide_sym_by_version
   3292 
   3293 SYNOPSIS
   3294 	bfd_boolean bfd_hide_sym_by_version
   3295 	  (struct bfd_elf_version_tree *verdefs, const char *sym_name);
   3296 
   3297 DESCRIPTION
   3298 	Search an elf version script tree for symbol versioning
   3299 	info for a given symbol.  Return TRUE if the symbol is hidden.
   3300 
   3301 */
   3302 
   3303 bfd_boolean
   3304 bfd_hide_sym_by_version (struct bfd_elf_version_tree *verdefs,
   3305 			 const char *sym_name)
   3306 {
   3307   bfd_boolean hidden = FALSE;
   3308   bfd_find_version_for_sym (verdefs, sym_name, &hidden);
   3309   return hidden;
   3310 }
   3311