Home | History | Annotate | Download | only in srce
      1 /******************************************************************************
      2  *
      3  *  Copyright (C) 2014 The Android Open Source Project
      4  *  Copyright 2003 - 2004 Open Interface North America, Inc. All rights
      5  *                        reserved.
      6  *
      7  *  Licensed under the Apache License, Version 2.0 (the "License");
      8  *  you may not use this file except in compliance with the License.
      9  *  You may obtain a copy of the License at:
     10  *
     11  *  http://www.apache.org/licenses/LICENSE-2.0
     12  *
     13  *  Unless required by applicable law or agreed to in writing, software
     14  *  distributed under the License is distributed on an "AS IS" BASIS,
     15  *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     16  *  See the License for the specific language governing permissions and
     17  *  limitations under the License.
     18  *
     19  ******************************************************************************/
     20 
     21 /*******************************************************************************
     22   $Revision: #1 $
     23  ******************************************************************************/
     24 
     25 /**
     26 @file
     27 
     28 The functions in this file relate to the allocation of available bits to
     29 subbands within the SBC/eSBC frame, along with support functions for computing
     30 frame length and bitrate.
     31 
     32 @ingroup codec_internal
     33 */
     34 
     35 /**
     36 @addtogroup codec_internal
     37 @{
     38 */
     39 
     40 #include <oi_codec_sbc_private.h>
     41 #include "oi_utils.h"
     42 
     43 uint32_t OI_SBC_MaxBitpool(OI_CODEC_SBC_FRAME_INFO* frame) {
     44   switch (frame->mode) {
     45     case SBC_MONO:
     46     case SBC_DUAL_CHANNEL:
     47       return 16 * frame->nrof_subbands;
     48     case SBC_STEREO:
     49     case SBC_JOINT_STEREO:
     50       return 32 * frame->nrof_subbands;
     51   }
     52 
     53   ERROR(("Invalid frame mode %d", frame->mode));
     54   OI_ASSERT(false);
     55   return 0; /* Should never be reached */
     56 }
     57 
     58 PRIVATE uint16_t internal_CalculateFramelen(OI_CODEC_SBC_FRAME_INFO* frame) {
     59   uint16_t nbits = frame->nrof_blocks * frame->bitpool;
     60   uint16_t nrof_subbands = frame->nrof_subbands;
     61   uint16_t result = nbits;
     62 
     63   if (frame->mode == SBC_JOINT_STEREO) {
     64     result += nrof_subbands + (8 * nrof_subbands);
     65   } else {
     66     if (frame->mode == SBC_DUAL_CHANNEL) {
     67       result += nbits;
     68     }
     69     if (frame->mode == SBC_MONO) {
     70       result += 4 * nrof_subbands;
     71     } else {
     72       result += 8 * nrof_subbands;
     73     }
     74   }
     75   return SBC_HEADER_LEN + (result + 7) / 8;
     76 }
     77 
     78 PRIVATE uint32_t internal_CalculateBitrate(OI_CODEC_SBC_FRAME_INFO* frame) {
     79   OI_UINT blocksbands;
     80   blocksbands = frame->nrof_subbands * frame->nrof_blocks;
     81 
     82   return DIVIDE(8 * internal_CalculateFramelen(frame) * frame->frequency,
     83                 blocksbands);
     84 }
     85 
     86 INLINE uint16_t OI_SBC_CalculateFrameAndHeaderlen(
     87     OI_CODEC_SBC_FRAME_INFO* frame, OI_UINT* headerLen_) {
     88   OI_UINT headerLen =
     89       SBC_HEADER_LEN + frame->nrof_subbands * frame->nrof_channels / 2;
     90 
     91   if (frame->mode == SBC_JOINT_STEREO) {
     92     headerLen++;
     93   }
     94 
     95   *headerLen_ = headerLen;
     96   return internal_CalculateFramelen(frame);
     97 }
     98 
     99 #define MIN(x, y) ((x) < (y) ? (x) : (y))
    100 
    101 /*
    102  * Computes the bit need for each sample and as also returns a counts of bit
    103  * needs that are greater than one. This count is used in the first phase of bit
    104  * allocation.
    105  *
    106  * We also compute a preferred bitpool value that this is the minimum bitpool
    107  * needed to guarantee lossless representation of the audio data. The preferred
    108  * bitpool may be larger than the bits actually required but the only input we
    109  * have are the scale factors. For example, it takes 2 bits to represent values
    110  * in the range -1 .. +1 but the scale factor is 0. To guarantee lossless
    111  * representation we add 2 to each scale factor and sum them to come up with the
    112  * preferred bitpool. This is not ideal because 0 requires 0 bits but we
    113  * currently have no way of knowing this.
    114  *
    115  * @param bitneed       Array to return bitneeds for each subband
    116  *
    117  * @param ch            Channel 0 or 1
    118  *
    119  * @param preferredBitpool  Returns the number of reserved bits
    120  *
    121  * @return              The SBC bit need
    122  *
    123  */
    124 OI_UINT computeBitneed(OI_CODEC_SBC_COMMON_CONTEXT* common, uint8_t* bitneeds,
    125                        OI_UINT ch, OI_UINT* preferredBitpool) {
    126   static const int8_t offset4[4][4] = {
    127       {-1, 0, 0, 0}, {-2, 0, 0, 1}, {-2, 0, 0, 1}, {-2, 0, 0, 1}};
    128 
    129   static const int8_t offset8[4][8] = {{-2, 0, 0, 0, 0, 0, 0, 1},
    130                                        {-3, 0, 0, 0, 0, 0, 1, 2},
    131                                        {-4, 0, 0, 0, 0, 0, 1, 2},
    132                                        {-4, 0, 0, 0, 0, 0, 1, 2}};
    133 
    134   const OI_UINT nrof_subbands = common->frameInfo.nrof_subbands;
    135   OI_UINT sb;
    136   int8_t* scale_factor = &common->scale_factor[ch ? nrof_subbands : 0];
    137   OI_UINT bitcount = 0;
    138   uint8_t maxBits = 0;
    139   uint8_t prefBits = 0;
    140 
    141   if (common->frameInfo.alloc == SBC_SNR) {
    142     for (sb = 0; sb < nrof_subbands; sb++) {
    143       OI_INT bits = scale_factor[sb];
    144       if (bits > maxBits) {
    145         maxBits = bits;
    146       }
    147       bitneeds[sb] = bits;
    148       if (bitneeds[sb] > 1) {
    149         bitcount += bits;
    150       }
    151       prefBits += 2 + bits;
    152     }
    153   } else {
    154     const int8_t* offset;
    155     if (nrof_subbands == 4) {
    156       offset = offset4[common->frameInfo.freqIndex];
    157     } else {
    158       offset = offset8[common->frameInfo.freqIndex];
    159     }
    160     for (sb = 0; sb < nrof_subbands; sb++) {
    161       OI_INT bits = scale_factor[sb];
    162       if (bits > maxBits) {
    163         maxBits = bits;
    164       }
    165       prefBits += 2 + bits;
    166       if (bits) {
    167         bits -= offset[sb];
    168         if (bits > 0) {
    169           bits /= 2;
    170         }
    171         bits += 5;
    172       }
    173       bitneeds[sb] = bits;
    174       if (bitneeds[sb] > 1) {
    175         bitcount += bits;
    176       }
    177     }
    178   }
    179   common->maxBitneed = OI_MAX(maxBits, common->maxBitneed);
    180   *preferredBitpool += prefBits;
    181   return bitcount;
    182 }
    183 
    184 /*
    185  * Explanation of the adjustToFitBitpool inner loop.
    186  *
    187  * The inner loop computes the effect of adjusting the bit allocation up or
    188  * down. Allocations must be 0 or in the range 2..16. This is accomplished by
    189  * the following code:
    190  *
    191  *           for (s = bands - 1; s >= 0; --s) {
    192  *              OI_INT bits = bitadjust + bitneeds[s];
    193  *              bits = bits < 2 ? 0 : bits;
    194  *              bits = bits > 16 ? 16 : bits;
    195  *              count += bits;
    196  *          }
    197  *
    198  * This loop can be optimized to perform 4 operations at a time as follows:
    199  *
    200  * Adjustment is computed as a 7 bit signed value and added to the bitneed.
    201  *
    202  * Negative allocations are zeroed by masking. (n & 0x40) >> 6 puts the
    203  * sign bit into bit 0, adding this to 0x7F give us a mask of 0x80
    204  * for -ve values and 0x7F for +ve values.
    205  *
    206  * n &= 0x7F + (n & 0x40) >> 6)
    207  *
    208  * Allocations greater than 16 are truncated to 16. Adjusted allocations are in
    209  * the range 0..31 so we know that bit 4 indicates values >= 16. We use this bit
    210  * to create a mask that zeroes bits 0 .. 3 if bit 4 is set.
    211  *
    212  * n &= (15 + (n >> 4))
    213  *
    214  * Allocations of 1 are disallowed. Add and shift creates a mask that
    215  * eliminates the illegal value
    216  *
    217  * n &= ((n + 14) >> 4) | 0x1E
    218  *
    219  * These operations can be performed in 8 bits without overflowing so we can
    220  * operate on 4 values at once.
    221  */
    222 
    223 /*
    224  * Encoder/Decoder
    225  *
    226  * Computes adjustment +/- of bitneeds to fill bitpool and returns overall
    227  * adjustment and excess bits.
    228  *
    229  * @param bitpool   The bitpool we have to work within
    230  *
    231  * @param bitneeds  An array of bit needs (more acturately allocation
    232  *                  prioritities) for each subband across all blocks in the SBC
    233  *                  frame
    234  *
    235  * @param subbands  The number of subbands over which the adkustment is
    236  *                  calculated. For mono and dual mode this is 4 or 8, for
    237  *                  stereo or joint stereo this is 8 or 16.
    238  *
    239  * @param bitcount  A starting point for the adjustment
    240  *
    241  * @param excess    Returns the excess bits after the adjustment
    242  *
    243  * @return   The adjustment.
    244  */
    245 OI_INT adjustToFitBitpool(const OI_UINT bitpool, uint32_t* bitneeds,
    246                           const OI_UINT subbands, OI_UINT bitcount,
    247                           OI_UINT* excess) {
    248   OI_INT maxBitadjust = 0;
    249   OI_INT bitadjust = (bitcount > bitpool) ? -8 : 8;
    250   OI_INT chop = 8;
    251 
    252   /*
    253    * This is essentially a binary search for the optimal adjustment value.
    254    */
    255   while ((bitcount != bitpool) && chop) {
    256     uint32_t total = 0;
    257     OI_UINT count;
    258     uint32_t adjust4;
    259     OI_INT i;
    260 
    261     adjust4 = bitadjust & 0x7F;
    262     adjust4 |= (adjust4 << 8);
    263     adjust4 |= (adjust4 << 16);
    264 
    265     for (i = (subbands / 4 - 1); i >= 0; --i) {
    266       uint32_t mask;
    267       uint32_t n = bitneeds[i] + adjust4;
    268       mask = 0x7F7F7F7F + ((n & 0x40404040) >> 6);
    269       n &= mask;
    270       mask = 0x0F0F0F0F + ((n & 0x10101010) >> 4);
    271       n &= mask;
    272       mask = (((n + 0x0E0E0E0E) >> 4) | 0x1E1E1E1E);
    273       n &= mask;
    274       total += n;
    275     }
    276 
    277     count = (total & 0xFFFF) + (total >> 16);
    278     count = (count & 0xFF) + (count >> 8);
    279 
    280     chop >>= 1;
    281     if (count > bitpool) {
    282       bitadjust -= chop;
    283     } else {
    284       maxBitadjust = bitadjust;
    285       bitcount = count;
    286       bitadjust += chop;
    287     }
    288   }
    289 
    290   *excess = bitpool - bitcount;
    291 
    292   return maxBitadjust;
    293 }
    294 
    295 /*
    296  * The bit allocator trys to avoid single bit allocations except as a last
    297  * resort. So in the case where a bitneed of 1 was passed over during the
    298  * adsjustment phase 2 bits are now allocated.
    299  */
    300 INLINE OI_INT allocAdjustedBits(uint8_t* dest, OI_INT bits, OI_INT excess) {
    301   if (bits < 16) {
    302     if (bits > 1) {
    303       if (excess) {
    304         ++bits;
    305         --excess;
    306       }
    307     } else if ((bits == 1) && (excess > 1)) {
    308       bits = 2;
    309       excess -= 2;
    310     } else {
    311       bits = 0;
    312     }
    313   } else {
    314     bits = 16;
    315   }
    316   *dest = (uint8_t)bits;
    317   return excess;
    318 }
    319 
    320 /*
    321  * Excess bits not allocated by allocaAdjustedBits are allocated round-robin.
    322  */
    323 INLINE OI_INT allocExcessBits(uint8_t* dest, OI_INT excess) {
    324   if (*dest < 16) {
    325     *dest += 1;
    326     return excess - 1;
    327   } else {
    328     return excess;
    329   }
    330 }
    331 
    332 void oneChannelBitAllocation(OI_CODEC_SBC_COMMON_CONTEXT* common,
    333                              BITNEED_UNION1* bitneeds, OI_UINT ch,
    334                              OI_UINT bitcount) {
    335   const uint8_t nrof_subbands = common->frameInfo.nrof_subbands;
    336   OI_UINT excess;
    337   OI_UINT sb;
    338   OI_INT bitadjust;
    339   uint8_t RESTRICT* allocBits;
    340 
    341   {
    342     OI_UINT ex;
    343     bitadjust = adjustToFitBitpool(common->frameInfo.bitpool, bitneeds->uint32,
    344                                    nrof_subbands, bitcount, &ex);
    345     /* We want the compiler to put excess into a register */
    346     excess = ex;
    347   }
    348 
    349   /*
    350    * Allocate adjusted bits
    351    */
    352   allocBits = &common->bits.uint8[ch ? nrof_subbands : 0];
    353 
    354   sb = 0;
    355   while (sb < nrof_subbands) {
    356     excess = allocAdjustedBits(&allocBits[sb], bitneeds->uint8[sb] + bitadjust,
    357                                excess);
    358     ++sb;
    359   }
    360   sb = 0;
    361   while (excess) {
    362     excess = allocExcessBits(&allocBits[sb], excess);
    363     ++sb;
    364   }
    365 }
    366 
    367 void monoBitAllocation(OI_CODEC_SBC_COMMON_CONTEXT* common) {
    368   BITNEED_UNION1 bitneeds;
    369   OI_UINT bitcount;
    370   OI_UINT bitpoolPreference = 0;
    371 
    372   bitcount = computeBitneed(common, bitneeds.uint8, 0, &bitpoolPreference);
    373 
    374   oneChannelBitAllocation(common, &bitneeds, 0, bitcount);
    375 }
    376 
    377 /**
    378 @}
    379 */
    380