Home | History | Annotate | Download | only in src
      1 /******************************************************************************
      2  *
      3  *  Copyright (C) 2014 Google, Inc.
      4  *
      5  *  Licensed under the Apache License, Version 2.0 (the "License");
      6  *  you may not use this file except in compliance with the License.
      7  *  You may obtain a copy of the License at:
      8  *
      9  *  http://www.apache.org/licenses/LICENSE-2.0
     10  *
     11  *  Unless required by applicable law or agreed to in writing, software
     12  *  distributed under the License is distributed on an "AS IS" BASIS,
     13  *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     14  *  See the License for the specific language governing permissions and
     15  *  limitations under the License.
     16  *
     17  ******************************************************************************/
     18 
     19 #include "include/bt_target.h"
     20 
     21 #define LOG_TAG "bt_osi_alarm"
     22 
     23 #include "osi/include/alarm.h"
     24 
     25 #include <base/logging.h>
     26 #include <errno.h>
     27 #include <fcntl.h>
     28 #include <inttypes.h>
     29 #include <malloc.h>
     30 #include <pthread.h>
     31 #include <signal.h>
     32 #include <string.h>
     33 #include <time.h>
     34 
     35 #include <hardware/bluetooth.h>
     36 
     37 #include <mutex>
     38 
     39 #include "osi/include/allocator.h"
     40 #include "osi/include/fixed_queue.h"
     41 #include "osi/include/list.h"
     42 #include "osi/include/log.h"
     43 #include "osi/include/osi.h"
     44 #include "osi/include/semaphore.h"
     45 #include "osi/include/thread.h"
     46 #include "osi/include/wakelock.h"
     47 
     48 // Callback and timer threads should run at RT priority in order to ensure they
     49 // meet audio deadlines.  Use this priority for all audio/timer related thread.
     50 static const int THREAD_RT_PRIORITY = 1;
     51 
     52 typedef struct {
     53   size_t count;
     54   period_ms_t total_ms;
     55   period_ms_t max_ms;
     56 } stat_t;
     57 
     58 // Alarm-related information and statistics
     59 typedef struct {
     60   const char* name;
     61   size_t scheduled_count;
     62   size_t canceled_count;
     63   size_t rescheduled_count;
     64   size_t total_updates;
     65   period_ms_t last_update_ms;
     66   stat_t callback_execution;
     67   stat_t overdue_scheduling;
     68   stat_t premature_scheduling;
     69 } alarm_stats_t;
     70 
     71 struct alarm_t {
     72   // The mutex is held while the callback for this alarm is being executed.
     73   // It allows us to release the coarse-grained monitor lock while a
     74   // potentially long-running callback is executing. |alarm_cancel| uses this
     75   // mutex to provide a guarantee to its caller that the callback will not be
     76   // in progress when it returns.
     77   std::recursive_mutex* callback_mutex;
     78   period_ms_t creation_time;
     79   period_ms_t period;
     80   period_ms_t deadline;
     81   period_ms_t prev_deadline;  // Previous deadline - used for accounting of
     82                               // periodic timers
     83   bool is_periodic;
     84   fixed_queue_t* queue;  // The processing queue to add this alarm to
     85   alarm_callback_t callback;
     86   void* data;
     87   alarm_stats_t stats;
     88 };
     89 
     90 // If the next wakeup time is less than this threshold, we should acquire
     91 // a wakelock instead of setting a wake alarm so we're not bouncing in
     92 // and out of suspend frequently. This value is externally visible to allow
     93 // unit tests to run faster. It should not be modified by production code.
     94 int64_t TIMER_INTERVAL_FOR_WAKELOCK_IN_MS = 3000;
     95 static const clockid_t CLOCK_ID = CLOCK_BOOTTIME;
     96 
     97 #if (KERNEL_MISSING_CLOCK_BOOTTIME_ALARM == TRUE)
     98 static const clockid_t CLOCK_ID_ALARM = CLOCK_BOOTTIME;
     99 #else
    100 static const clockid_t CLOCK_ID_ALARM = CLOCK_BOOTTIME_ALARM;
    101 #endif
    102 
    103 // This mutex ensures that the |alarm_set|, |alarm_cancel|, and alarm callback
    104 // functions execute serially and not concurrently. As a result, this mutex
    105 // also protects the |alarms| list.
    106 static std::mutex alarms_mutex;
    107 static list_t* alarms;
    108 static timer_t timer;
    109 static timer_t wakeup_timer;
    110 static bool timer_set;
    111 
    112 // All alarm callbacks are dispatched from |dispatcher_thread|
    113 static thread_t* dispatcher_thread;
    114 static bool dispatcher_thread_active;
    115 static semaphore_t* alarm_expired;
    116 
    117 // Default alarm callback thread and queue
    118 static thread_t* default_callback_thread;
    119 static fixed_queue_t* default_callback_queue;
    120 
    121 static alarm_t* alarm_new_internal(const char* name, bool is_periodic);
    122 static bool lazy_initialize(void);
    123 static period_ms_t now(void);
    124 static void alarm_set_internal(alarm_t* alarm, period_ms_t period,
    125                                alarm_callback_t cb, void* data,
    126                                fixed_queue_t* queue);
    127 static void alarm_cancel_internal(alarm_t* alarm);
    128 static void remove_pending_alarm(alarm_t* alarm);
    129 static void schedule_next_instance(alarm_t* alarm);
    130 static void reschedule_root_alarm(void);
    131 static void alarm_queue_ready(fixed_queue_t* queue, void* context);
    132 static void timer_callback(void* data);
    133 static void callback_dispatch(void* context);
    134 static bool timer_create_internal(const clockid_t clock_id, timer_t* timer);
    135 static void update_scheduling_stats(alarm_stats_t* stats, period_ms_t now_ms,
    136                                     period_ms_t deadline_ms,
    137                                     period_ms_t execution_delta_ms);
    138 
    139 static void update_stat(stat_t* stat, period_ms_t delta) {
    140   if (stat->max_ms < delta) stat->max_ms = delta;
    141   stat->total_ms += delta;
    142   stat->count++;
    143 }
    144 
    145 alarm_t* alarm_new(const char* name) { return alarm_new_internal(name, false); }
    146 
    147 alarm_t* alarm_new_periodic(const char* name) {
    148   return alarm_new_internal(name, true);
    149 }
    150 
    151 static alarm_t* alarm_new_internal(const char* name, bool is_periodic) {
    152   // Make sure we have a list we can insert alarms into.
    153   if (!alarms && !lazy_initialize()) {
    154     CHECK(false);  // if initialization failed, we should not continue
    155     return NULL;
    156   }
    157 
    158   alarm_t* ret = static_cast<alarm_t*>(osi_calloc(sizeof(alarm_t)));
    159 
    160   ret->callback_mutex = new std::recursive_mutex;
    161   ret->is_periodic = is_periodic;
    162   ret->stats.name = osi_strdup(name);
    163   // NOTE: The stats were reset by osi_calloc() above
    164 
    165   return ret;
    166 }
    167 
    168 void alarm_free(alarm_t* alarm) {
    169   if (!alarm) return;
    170 
    171   alarm_cancel(alarm);
    172   delete alarm->callback_mutex;
    173   osi_free((void*)alarm->stats.name);
    174   osi_free(alarm);
    175 }
    176 
    177 period_ms_t alarm_get_remaining_ms(const alarm_t* alarm) {
    178   CHECK(alarm != NULL);
    179   period_ms_t remaining_ms = 0;
    180   period_ms_t just_now = now();
    181 
    182   std::lock_guard<std::mutex> lock(alarms_mutex);
    183   if (alarm->deadline > just_now) remaining_ms = alarm->deadline - just_now;
    184 
    185   return remaining_ms;
    186 }
    187 
    188 void alarm_set(alarm_t* alarm, period_ms_t interval_ms, alarm_callback_t cb,
    189                void* data) {
    190   alarm_set_on_queue(alarm, interval_ms, cb, data, default_callback_queue);
    191 }
    192 
    193 void alarm_set_on_queue(alarm_t* alarm, period_ms_t interval_ms,
    194                         alarm_callback_t cb, void* data, fixed_queue_t* queue) {
    195   CHECK(queue != NULL);
    196   alarm_set_internal(alarm, interval_ms, cb, data, queue);
    197 }
    198 
    199 // Runs in exclusion with alarm_cancel and timer_callback.
    200 static void alarm_set_internal(alarm_t* alarm, period_ms_t period,
    201                                alarm_callback_t cb, void* data,
    202                                fixed_queue_t* queue) {
    203   CHECK(alarms != NULL);
    204   CHECK(alarm != NULL);
    205   CHECK(cb != NULL);
    206 
    207   std::lock_guard<std::mutex> lock(alarms_mutex);
    208 
    209   alarm->creation_time = now();
    210   alarm->period = period;
    211   alarm->queue = queue;
    212   alarm->callback = cb;
    213   alarm->data = data;
    214 
    215   schedule_next_instance(alarm);
    216   alarm->stats.scheduled_count++;
    217 }
    218 
    219 void alarm_cancel(alarm_t* alarm) {
    220   CHECK(alarms != NULL);
    221   if (!alarm) return;
    222 
    223   {
    224     std::lock_guard<std::mutex> lock(alarms_mutex);
    225     alarm_cancel_internal(alarm);
    226   }
    227 
    228   // If the callback for |alarm| is in progress, wait here until it completes.
    229   std::lock_guard<std::recursive_mutex> lock(*alarm->callback_mutex);
    230 }
    231 
    232 // Internal implementation of canceling an alarm.
    233 // The caller must hold the |alarms_mutex|
    234 static void alarm_cancel_internal(alarm_t* alarm) {
    235   bool needs_reschedule =
    236       (!list_is_empty(alarms) && list_front(alarms) == alarm);
    237 
    238   remove_pending_alarm(alarm);
    239 
    240   alarm->deadline = 0;
    241   alarm->prev_deadline = 0;
    242   alarm->callback = NULL;
    243   alarm->data = NULL;
    244   alarm->stats.canceled_count++;
    245   alarm->queue = NULL;
    246 
    247   if (needs_reschedule) reschedule_root_alarm();
    248 }
    249 
    250 bool alarm_is_scheduled(const alarm_t* alarm) {
    251   if ((alarms == NULL) || (alarm == NULL)) return false;
    252   return (alarm->callback != NULL);
    253 }
    254 
    255 void alarm_cleanup(void) {
    256   // If lazy_initialize never ran there is nothing else to do
    257   if (!alarms) return;
    258 
    259   dispatcher_thread_active = false;
    260   semaphore_post(alarm_expired);
    261   thread_free(dispatcher_thread);
    262   dispatcher_thread = NULL;
    263 
    264   std::lock_guard<std::mutex> lock(alarms_mutex);
    265 
    266   fixed_queue_free(default_callback_queue, NULL);
    267   default_callback_queue = NULL;
    268   thread_free(default_callback_thread);
    269   default_callback_thread = NULL;
    270 
    271   timer_delete(wakeup_timer);
    272   timer_delete(timer);
    273   semaphore_free(alarm_expired);
    274   alarm_expired = NULL;
    275 
    276   list_free(alarms);
    277   alarms = NULL;
    278 }
    279 
    280 static bool lazy_initialize(void) {
    281   CHECK(alarms == NULL);
    282 
    283   // timer_t doesn't have an invalid value so we must track whether
    284   // the |timer| variable is valid ourselves.
    285   bool timer_initialized = false;
    286   bool wakeup_timer_initialized = false;
    287 
    288   std::lock_guard<std::mutex> lock(alarms_mutex);
    289 
    290   alarms = list_new(NULL);
    291   if (!alarms) {
    292     LOG_ERROR(LOG_TAG, "%s unable to allocate alarm list.", __func__);
    293     goto error;
    294   }
    295 
    296   if (!timer_create_internal(CLOCK_ID, &timer)) goto error;
    297   timer_initialized = true;
    298 
    299   if (!timer_create_internal(CLOCK_ID_ALARM, &wakeup_timer)) goto error;
    300   wakeup_timer_initialized = true;
    301 
    302   alarm_expired = semaphore_new(0);
    303   if (!alarm_expired) {
    304     LOG_ERROR(LOG_TAG, "%s unable to create alarm expired semaphore", __func__);
    305     goto error;
    306   }
    307 
    308   default_callback_thread =
    309       thread_new_sized("alarm_default_callbacks", SIZE_MAX);
    310   if (default_callback_thread == NULL) {
    311     LOG_ERROR(LOG_TAG, "%s unable to create default alarm callbacks thread.",
    312               __func__);
    313     goto error;
    314   }
    315   thread_set_rt_priority(default_callback_thread, THREAD_RT_PRIORITY);
    316   default_callback_queue = fixed_queue_new(SIZE_MAX);
    317   if (default_callback_queue == NULL) {
    318     LOG_ERROR(LOG_TAG, "%s unable to create default alarm callbacks queue.",
    319               __func__);
    320     goto error;
    321   }
    322   alarm_register_processing_queue(default_callback_queue,
    323                                   default_callback_thread);
    324 
    325   dispatcher_thread_active = true;
    326   dispatcher_thread = thread_new("alarm_dispatcher");
    327   if (!dispatcher_thread) {
    328     LOG_ERROR(LOG_TAG, "%s unable to create alarm callback thread.", __func__);
    329     goto error;
    330   }
    331   thread_set_rt_priority(dispatcher_thread, THREAD_RT_PRIORITY);
    332   thread_post(dispatcher_thread, callback_dispatch, NULL);
    333   return true;
    334 
    335 error:
    336   fixed_queue_free(default_callback_queue, NULL);
    337   default_callback_queue = NULL;
    338   thread_free(default_callback_thread);
    339   default_callback_thread = NULL;
    340 
    341   thread_free(dispatcher_thread);
    342   dispatcher_thread = NULL;
    343 
    344   dispatcher_thread_active = false;
    345 
    346   semaphore_free(alarm_expired);
    347   alarm_expired = NULL;
    348 
    349   if (wakeup_timer_initialized) timer_delete(wakeup_timer);
    350 
    351   if (timer_initialized) timer_delete(timer);
    352 
    353   list_free(alarms);
    354   alarms = NULL;
    355 
    356   return false;
    357 }
    358 
    359 static period_ms_t now(void) {
    360   CHECK(alarms != NULL);
    361 
    362   struct timespec ts;
    363   if (clock_gettime(CLOCK_ID, &ts) == -1) {
    364     LOG_ERROR(LOG_TAG, "%s unable to get current time: %s", __func__,
    365               strerror(errno));
    366     return 0;
    367   }
    368 
    369   return (ts.tv_sec * 1000LL) + (ts.tv_nsec / 1000000LL);
    370 }
    371 
    372 // Remove alarm from internal alarm list and the processing queue
    373 // The caller must hold the |alarms_mutex|
    374 static void remove_pending_alarm(alarm_t* alarm) {
    375   list_remove(alarms, alarm);
    376   while (fixed_queue_try_remove_from_queue(alarm->queue, alarm) != NULL) {
    377     // Remove all repeated alarm instances from the queue.
    378     // NOTE: We are defensive here - we shouldn't have repeated alarm instances
    379   }
    380 }
    381 
    382 // Must be called with |alarms_mutex| held
    383 static void schedule_next_instance(alarm_t* alarm) {
    384   // If the alarm is currently set and it's at the start of the list,
    385   // we'll need to re-schedule since we've adjusted the earliest deadline.
    386   bool needs_reschedule =
    387       (!list_is_empty(alarms) && list_front(alarms) == alarm);
    388   if (alarm->callback) remove_pending_alarm(alarm);
    389 
    390   // Calculate the next deadline for this alarm
    391   period_ms_t just_now = now();
    392   period_ms_t ms_into_period = 0;
    393   if ((alarm->is_periodic) && (alarm->period != 0))
    394     ms_into_period = ((just_now - alarm->creation_time) % alarm->period);
    395   alarm->deadline = just_now + (alarm->period - ms_into_period);
    396 
    397   // Add it into the timer list sorted by deadline (earliest deadline first).
    398   if (list_is_empty(alarms) ||
    399       ((alarm_t*)list_front(alarms))->deadline > alarm->deadline) {
    400     list_prepend(alarms, alarm);
    401   } else {
    402     for (list_node_t* node = list_begin(alarms); node != list_end(alarms);
    403          node = list_next(node)) {
    404       list_node_t* next = list_next(node);
    405       if (next == list_end(alarms) ||
    406           ((alarm_t*)list_node(next))->deadline > alarm->deadline) {
    407         list_insert_after(alarms, node, alarm);
    408         break;
    409       }
    410     }
    411   }
    412 
    413   // If the new alarm has the earliest deadline, we need to re-evaluate our
    414   // schedule.
    415   if (needs_reschedule ||
    416       (!list_is_empty(alarms) && list_front(alarms) == alarm)) {
    417     reschedule_root_alarm();
    418   }
    419 }
    420 
    421 // NOTE: must be called with |alarms_mutex| held
    422 static void reschedule_root_alarm(void) {
    423   CHECK(alarms != NULL);
    424 
    425   const bool timer_was_set = timer_set;
    426   alarm_t* next;
    427   int64_t next_expiration;
    428 
    429   // If used in a zeroed state, disarms the timer.
    430   struct itimerspec timer_time;
    431   memset(&timer_time, 0, sizeof(timer_time));
    432 
    433   if (list_is_empty(alarms)) goto done;
    434 
    435   next = static_cast<alarm_t*>(list_front(alarms));
    436   next_expiration = next->deadline - now();
    437   if (next_expiration < TIMER_INTERVAL_FOR_WAKELOCK_IN_MS) {
    438     if (!timer_set) {
    439       if (!wakelock_acquire()) {
    440         LOG_ERROR(LOG_TAG, "%s unable to acquire wake lock", __func__);
    441         goto done;
    442       }
    443     }
    444 
    445     timer_time.it_value.tv_sec = (next->deadline / 1000);
    446     timer_time.it_value.tv_nsec = (next->deadline % 1000) * 1000000LL;
    447 
    448     // It is entirely unsafe to call timer_settime(2) with a zeroed timerspec
    449     // for timers with *_ALARM clock IDs. Although the man page states that the
    450     // timer would be canceled, the current behavior (as of Linux kernel 3.17)
    451     // is that the callback is issued immediately. The only way to cancel an
    452     // *_ALARM timer is to delete the timer. But unfortunately, deleting and
    453     // re-creating a timer is rather expensive; every timer_create(2) spawns a
    454     // new thread. So we simply set the timer to fire at the largest possible
    455     // time.
    456     //
    457     // If we've reached this code path, we're going to grab a wake lock and
    458     // wait for the next timer to fire. In that case, there's no reason to
    459     // have a pending wakeup timer so we simply cancel it.
    460     struct itimerspec end_of_time;
    461     memset(&end_of_time, 0, sizeof(end_of_time));
    462     end_of_time.it_value.tv_sec = (time_t)(1LL << (sizeof(time_t) * 8 - 2));
    463     timer_settime(wakeup_timer, TIMER_ABSTIME, &end_of_time, NULL);
    464   } else {
    465     // WARNING: do not attempt to use relative timers with *_ALARM clock IDs
    466     // in kernels before 3.17 unless you have the following patch:
    467     // https://lkml.org/lkml/2014/7/7/576
    468     struct itimerspec wakeup_time;
    469     memset(&wakeup_time, 0, sizeof(wakeup_time));
    470 
    471     wakeup_time.it_value.tv_sec = (next->deadline / 1000);
    472     wakeup_time.it_value.tv_nsec = (next->deadline % 1000) * 1000000LL;
    473     if (timer_settime(wakeup_timer, TIMER_ABSTIME, &wakeup_time, NULL) == -1)
    474       LOG_ERROR(LOG_TAG, "%s unable to set wakeup timer: %s", __func__,
    475                 strerror(errno));
    476   }
    477 
    478 done:
    479   timer_set =
    480       timer_time.it_value.tv_sec != 0 || timer_time.it_value.tv_nsec != 0;
    481   if (timer_was_set && !timer_set) {
    482     wakelock_release();
    483   }
    484 
    485   if (timer_settime(timer, TIMER_ABSTIME, &timer_time, NULL) == -1)
    486     LOG_ERROR(LOG_TAG, "%s unable to set timer: %s", __func__, strerror(errno));
    487 
    488   // If next expiration was in the past (e.g. short timer that got context
    489   // switched) then the timer might have diarmed itself. Detect this case and
    490   // work around it by manually signalling the |alarm_expired| semaphore.
    491   //
    492   // It is possible that the timer was actually super short (a few
    493   // milliseconds) and the timer expired normally before we called
    494   // |timer_gettime|. Worst case, |alarm_expired| is signaled twice for that
    495   // alarm. Nothing bad should happen in that case though since the callback
    496   // dispatch function checks to make sure the timer at the head of the list
    497   // actually expired.
    498   if (timer_set) {
    499     struct itimerspec time_to_expire;
    500     timer_gettime(timer, &time_to_expire);
    501     if (time_to_expire.it_value.tv_sec == 0 &&
    502         time_to_expire.it_value.tv_nsec == 0) {
    503       LOG_DEBUG(
    504           LOG_TAG,
    505           "%s alarm expiration too close for posix timers, switching to guns",
    506           __func__);
    507       semaphore_post(alarm_expired);
    508     }
    509   }
    510 }
    511 
    512 void alarm_register_processing_queue(fixed_queue_t* queue, thread_t* thread) {
    513   CHECK(queue != NULL);
    514   CHECK(thread != NULL);
    515 
    516   fixed_queue_register_dequeue(queue, thread_get_reactor(thread),
    517                                alarm_queue_ready, NULL);
    518 }
    519 
    520 void alarm_unregister_processing_queue(fixed_queue_t* queue) {
    521   CHECK(alarms != NULL);
    522   CHECK(queue != NULL);
    523 
    524   fixed_queue_unregister_dequeue(queue);
    525 
    526   // Cancel all alarms that are using this queue
    527   std::lock_guard<std::mutex> lock(alarms_mutex);
    528   for (list_node_t* node = list_begin(alarms); node != list_end(alarms);) {
    529     alarm_t* alarm = (alarm_t*)list_node(node);
    530     node = list_next(node);
    531     // TODO: Each module is responsible for tearing down its alarms; currently,
    532     // this is not the case. In the future, this check should be replaced by
    533     // an assert.
    534     if (alarm->queue == queue) alarm_cancel_internal(alarm);
    535   }
    536 }
    537 
    538 static void alarm_queue_ready(fixed_queue_t* queue, UNUSED_ATTR void* context) {
    539   CHECK(queue != NULL);
    540 
    541   std::unique_lock<std::mutex> lock(alarms_mutex);
    542   alarm_t* alarm = (alarm_t*)fixed_queue_try_dequeue(queue);
    543   if (alarm == NULL) {
    544     return;  // The alarm was probably canceled
    545   }
    546 
    547   //
    548   // If the alarm is not periodic, we've fully serviced it now, and can reset
    549   // some of its internal state. This is useful to distinguish between expired
    550   // alarms and active ones.
    551   //
    552   alarm_callback_t callback = alarm->callback;
    553   void* data = alarm->data;
    554   period_ms_t deadline = alarm->deadline;
    555   if (alarm->is_periodic) {
    556     // The periodic alarm has been rescheduled and alarm->deadline has been
    557     // updated, hence we need to use the previous deadline.
    558     deadline = alarm->prev_deadline;
    559   } else {
    560     alarm->deadline = 0;
    561     alarm->callback = NULL;
    562     alarm->data = NULL;
    563     alarm->queue = NULL;
    564   }
    565 
    566   std::lock_guard<std::recursive_mutex> cb_lock(*alarm->callback_mutex);
    567   lock.unlock();
    568 
    569   period_ms_t t0 = now();
    570   callback(data);
    571   period_ms_t t1 = now();
    572 
    573   // Update the statistics
    574   CHECK(t1 >= t0);
    575   period_ms_t delta = t1 - t0;
    576   update_scheduling_stats(&alarm->stats, t0, deadline, delta);
    577 }
    578 
    579 // Callback function for wake alarms and our posix timer
    580 static void timer_callback(UNUSED_ATTR void* ptr) {
    581   semaphore_post(alarm_expired);
    582 }
    583 
    584 // Function running on |dispatcher_thread| that performs the following:
    585 //   (1) Receives a signal using |alarm_exired| that the alarm has expired
    586 //   (2) Dispatches the alarm callback for processing by the corresponding
    587 // thread for that alarm.
    588 static void callback_dispatch(UNUSED_ATTR void* context) {
    589   while (true) {
    590     semaphore_wait(alarm_expired);
    591     if (!dispatcher_thread_active) break;
    592 
    593     std::lock_guard<std::mutex> lock(alarms_mutex);
    594     alarm_t* alarm;
    595 
    596     // Take into account that the alarm may get cancelled before we get to it.
    597     // We're done here if there are no alarms or the alarm at the front is in
    598     // the future. Exit right away since there's nothing left to do.
    599     if (list_is_empty(alarms) ||
    600         (alarm = static_cast<alarm_t*>(list_front(alarms)))->deadline > now()) {
    601       reschedule_root_alarm();
    602       continue;
    603     }
    604 
    605     list_remove(alarms, alarm);
    606 
    607     if (alarm->is_periodic) {
    608       alarm->prev_deadline = alarm->deadline;
    609       schedule_next_instance(alarm);
    610       alarm->stats.rescheduled_count++;
    611     }
    612     reschedule_root_alarm();
    613 
    614     // Enqueue the alarm for processing
    615     fixed_queue_enqueue(alarm->queue, alarm);
    616   }
    617 
    618   LOG_DEBUG(LOG_TAG, "%s Callback thread exited", __func__);
    619 }
    620 
    621 static bool timer_create_internal(const clockid_t clock_id, timer_t* timer) {
    622   CHECK(timer != NULL);
    623 
    624   struct sigevent sigevent;
    625   // create timer with RT priority thread
    626   pthread_attr_t thread_attr;
    627   pthread_attr_init(&thread_attr);
    628   pthread_attr_setschedpolicy(&thread_attr, SCHED_FIFO);
    629   struct sched_param param;
    630   param.sched_priority = THREAD_RT_PRIORITY;
    631   pthread_attr_setschedparam(&thread_attr, &param);
    632 
    633   memset(&sigevent, 0, sizeof(sigevent));
    634   sigevent.sigev_notify = SIGEV_THREAD;
    635   sigevent.sigev_notify_function = (void (*)(union sigval))timer_callback;
    636   sigevent.sigev_notify_attributes = &thread_attr;
    637   if (timer_create(clock_id, &sigevent, timer) == -1) {
    638     LOG_ERROR(LOG_TAG, "%s unable to create timer with clock %d: %s", __func__,
    639               clock_id, strerror(errno));
    640     if (clock_id == CLOCK_BOOTTIME_ALARM) {
    641       LOG_ERROR(LOG_TAG,
    642                 "The kernel might not have support for "
    643                 "timer_create(CLOCK_BOOTTIME_ALARM): "
    644                 "https://lwn.net/Articles/429925/");
    645       LOG_ERROR(LOG_TAG,
    646                 "See following patches: "
    647                 "https://git.kernel.org/cgit/linux/kernel/git/torvalds/"
    648                 "linux.git/log/?qt=grep&q=CLOCK_BOOTTIME_ALARM");
    649     }
    650     return false;
    651   }
    652 
    653   return true;
    654 }
    655 
    656 static void update_scheduling_stats(alarm_stats_t* stats, period_ms_t now_ms,
    657                                     period_ms_t deadline_ms,
    658                                     period_ms_t execution_delta_ms) {
    659   stats->total_updates++;
    660   stats->last_update_ms = now_ms;
    661 
    662   update_stat(&stats->callback_execution, execution_delta_ms);
    663 
    664   if (deadline_ms < now_ms) {
    665     // Overdue scheduling
    666     period_ms_t delta_ms = now_ms - deadline_ms;
    667     update_stat(&stats->overdue_scheduling, delta_ms);
    668   } else if (deadline_ms > now_ms) {
    669     // Premature scheduling
    670     period_ms_t delta_ms = deadline_ms - now_ms;
    671     update_stat(&stats->premature_scheduling, delta_ms);
    672   }
    673 }
    674 
    675 static void dump_stat(int fd, stat_t* stat, const char* description) {
    676   period_ms_t average_time_ms = 0;
    677   if (stat->count != 0) average_time_ms = stat->total_ms / stat->count;
    678 
    679   dprintf(fd, "%-51s: %llu / %llu / %llu\n", description,
    680           (unsigned long long)stat->total_ms, (unsigned long long)stat->max_ms,
    681           (unsigned long long)average_time_ms);
    682 }
    683 
    684 void alarm_debug_dump(int fd) {
    685   dprintf(fd, "\nBluetooth Alarms Statistics:\n");
    686 
    687   std::lock_guard<std::mutex> lock(alarms_mutex);
    688 
    689   if (alarms == NULL) {
    690     dprintf(fd, "  None\n");
    691     return;
    692   }
    693 
    694   period_ms_t just_now = now();
    695 
    696   dprintf(fd, "  Total Alarms: %zu\n\n", list_length(alarms));
    697 
    698   // Dump info for each alarm
    699   for (list_node_t* node = list_begin(alarms); node != list_end(alarms);
    700        node = list_next(node)) {
    701     alarm_t* alarm = (alarm_t*)list_node(node);
    702     alarm_stats_t* stats = &alarm->stats;
    703 
    704     dprintf(fd, "  Alarm : %s (%s)\n", stats->name,
    705             (alarm->is_periodic) ? "PERIODIC" : "SINGLE");
    706 
    707     dprintf(fd, "%-51s: %zu / %zu / %zu / %zu\n",
    708             "    Action counts (sched/resched/exec/cancel)",
    709             stats->scheduled_count, stats->rescheduled_count,
    710             stats->callback_execution.count, stats->canceled_count);
    711 
    712     dprintf(fd, "%-51s: %zu / %zu\n",
    713             "    Deviation counts (overdue/premature)",
    714             stats->overdue_scheduling.count, stats->premature_scheduling.count);
    715 
    716     dprintf(fd, "%-51s: %llu / %llu / %lld\n",
    717             "    Time in ms (since creation/interval/remaining)",
    718             (unsigned long long)(just_now - alarm->creation_time),
    719             (unsigned long long)alarm->period,
    720             (long long)(alarm->deadline - just_now));
    721 
    722     dump_stat(fd, &stats->callback_execution,
    723               "    Callback execution time in ms (total/max/avg)");
    724 
    725     dump_stat(fd, &stats->overdue_scheduling,
    726               "    Overdue scheduling time in ms (total/max/avg)");
    727 
    728     dump_stat(fd, &stats->premature_scheduling,
    729               "    Premature scheduling time in ms (total/max/avg)");
    730 
    731     dprintf(fd, "\n");
    732   }
    733 }
    734