1 //===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains some functions that are useful for math stuff. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_SUPPORT_MATHEXTRAS_H 15 #define LLVM_SUPPORT_MATHEXTRAS_H 16 17 #include "llvm/Support/Compiler.h" 18 #include "llvm/Support/SwapByteOrder.h" 19 #include <algorithm> 20 #include <cassert> 21 #include <cstring> 22 #include <type_traits> 23 #include <limits> 24 25 #ifdef _MSC_VER 26 #include <intrin.h> 27 #endif 28 29 #ifdef __ANDROID_NDK__ 30 #include <android/api-level.h> 31 #endif 32 33 namespace llvm { 34 /// \brief The behavior an operation has on an input of 0. 35 enum ZeroBehavior { 36 /// \brief The returned value is undefined. 37 ZB_Undefined, 38 /// \brief The returned value is numeric_limits<T>::max() 39 ZB_Max, 40 /// \brief The returned value is numeric_limits<T>::digits 41 ZB_Width 42 }; 43 44 namespace detail { 45 template <typename T, std::size_t SizeOfT> struct TrailingZerosCounter { 46 static std::size_t count(T Val, ZeroBehavior) { 47 if (!Val) 48 return std::numeric_limits<T>::digits; 49 if (Val & 0x1) 50 return 0; 51 52 // Bisection method. 53 std::size_t ZeroBits = 0; 54 T Shift = std::numeric_limits<T>::digits >> 1; 55 T Mask = std::numeric_limits<T>::max() >> Shift; 56 while (Shift) { 57 if ((Val & Mask) == 0) { 58 Val >>= Shift; 59 ZeroBits |= Shift; 60 } 61 Shift >>= 1; 62 Mask >>= Shift; 63 } 64 return ZeroBits; 65 } 66 }; 67 68 #if __GNUC__ >= 4 || defined(_MSC_VER) 69 template <typename T> struct TrailingZerosCounter<T, 4> { 70 static std::size_t count(T Val, ZeroBehavior ZB) { 71 if (ZB != ZB_Undefined && Val == 0) 72 return 32; 73 74 #if __has_builtin(__builtin_ctz) || LLVM_GNUC_PREREQ(4, 0, 0) 75 return __builtin_ctz(Val); 76 #elif defined(_MSC_VER) 77 unsigned long Index; 78 _BitScanForward(&Index, Val); 79 return Index; 80 #endif 81 } 82 }; 83 84 #if !defined(_MSC_VER) || defined(_M_X64) 85 template <typename T> struct TrailingZerosCounter<T, 8> { 86 static std::size_t count(T Val, ZeroBehavior ZB) { 87 if (ZB != ZB_Undefined && Val == 0) 88 return 64; 89 90 #if __has_builtin(__builtin_ctzll) || LLVM_GNUC_PREREQ(4, 0, 0) 91 return __builtin_ctzll(Val); 92 #elif defined(_MSC_VER) 93 unsigned long Index; 94 _BitScanForward64(&Index, Val); 95 return Index; 96 #endif 97 } 98 }; 99 #endif 100 #endif 101 } // namespace detail 102 103 /// \brief Count number of 0's from the least significant bit to the most 104 /// stopping at the first 1. 105 /// 106 /// Only unsigned integral types are allowed. 107 /// 108 /// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are 109 /// valid arguments. 110 template <typename T> 111 std::size_t countTrailingZeros(T Val, ZeroBehavior ZB = ZB_Width) { 112 static_assert(std::numeric_limits<T>::is_integer && 113 !std::numeric_limits<T>::is_signed, 114 "Only unsigned integral types are allowed."); 115 return detail::TrailingZerosCounter<T, sizeof(T)>::count(Val, ZB); 116 } 117 118 namespace detail { 119 template <typename T, std::size_t SizeOfT> struct LeadingZerosCounter { 120 static std::size_t count(T Val, ZeroBehavior) { 121 if (!Val) 122 return std::numeric_limits<T>::digits; 123 124 // Bisection method. 125 std::size_t ZeroBits = 0; 126 for (T Shift = std::numeric_limits<T>::digits >> 1; Shift; Shift >>= 1) { 127 T Tmp = Val >> Shift; 128 if (Tmp) 129 Val = Tmp; 130 else 131 ZeroBits |= Shift; 132 } 133 return ZeroBits; 134 } 135 }; 136 137 #if __GNUC__ >= 4 || defined(_MSC_VER) 138 template <typename T> struct LeadingZerosCounter<T, 4> { 139 static std::size_t count(T Val, ZeroBehavior ZB) { 140 if (ZB != ZB_Undefined && Val == 0) 141 return 32; 142 143 #if __has_builtin(__builtin_clz) || LLVM_GNUC_PREREQ(4, 0, 0) 144 return __builtin_clz(Val); 145 #elif defined(_MSC_VER) 146 unsigned long Index; 147 _BitScanReverse(&Index, Val); 148 return Index ^ 31; 149 #endif 150 } 151 }; 152 153 #if !defined(_MSC_VER) || defined(_M_X64) 154 template <typename T> struct LeadingZerosCounter<T, 8> { 155 static std::size_t count(T Val, ZeroBehavior ZB) { 156 if (ZB != ZB_Undefined && Val == 0) 157 return 64; 158 159 #if __has_builtin(__builtin_clzll) || LLVM_GNUC_PREREQ(4, 0, 0) 160 return __builtin_clzll(Val); 161 #elif defined(_MSC_VER) 162 unsigned long Index; 163 _BitScanReverse64(&Index, Val); 164 return Index ^ 63; 165 #endif 166 } 167 }; 168 #endif 169 #endif 170 } // namespace detail 171 172 /// \brief Count number of 0's from the most significant bit to the least 173 /// stopping at the first 1. 174 /// 175 /// Only unsigned integral types are allowed. 176 /// 177 /// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are 178 /// valid arguments. 179 template <typename T> 180 std::size_t countLeadingZeros(T Val, ZeroBehavior ZB = ZB_Width) { 181 static_assert(std::numeric_limits<T>::is_integer && 182 !std::numeric_limits<T>::is_signed, 183 "Only unsigned integral types are allowed."); 184 return detail::LeadingZerosCounter<T, sizeof(T)>::count(Val, ZB); 185 } 186 187 /// \brief Get the index of the first set bit starting from the least 188 /// significant bit. 189 /// 190 /// Only unsigned integral types are allowed. 191 /// 192 /// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are 193 /// valid arguments. 194 template <typename T> T findFirstSet(T Val, ZeroBehavior ZB = ZB_Max) { 195 if (ZB == ZB_Max && Val == 0) 196 return std::numeric_limits<T>::max(); 197 198 return countTrailingZeros(Val, ZB_Undefined); 199 } 200 201 /// \brief Get the index of the last set bit starting from the least 202 /// significant bit. 203 /// 204 /// Only unsigned integral types are allowed. 205 /// 206 /// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are 207 /// valid arguments. 208 template <typename T> T findLastSet(T Val, ZeroBehavior ZB = ZB_Max) { 209 if (ZB == ZB_Max && Val == 0) 210 return std::numeric_limits<T>::max(); 211 212 // Use ^ instead of - because both gcc and llvm can remove the associated ^ 213 // in the __builtin_clz intrinsic on x86. 214 return countLeadingZeros(Val, ZB_Undefined) ^ 215 (std::numeric_limits<T>::digits - 1); 216 } 217 218 /// \brief Macro compressed bit reversal table for 256 bits. 219 /// 220 /// http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable 221 static const unsigned char BitReverseTable256[256] = { 222 #define R2(n) n, n + 2 * 64, n + 1 * 64, n + 3 * 64 223 #define R4(n) R2(n), R2(n + 2 * 16), R2(n + 1 * 16), R2(n + 3 * 16) 224 #define R6(n) R4(n), R4(n + 2 * 4), R4(n + 1 * 4), R4(n + 3 * 4) 225 R6(0), R6(2), R6(1), R6(3) 226 #undef R2 227 #undef R4 228 #undef R6 229 }; 230 231 /// \brief Reverse the bits in \p Val. 232 template <typename T> 233 T reverseBits(T Val) { 234 unsigned char in[sizeof(Val)]; 235 unsigned char out[sizeof(Val)]; 236 std::memcpy(in, &Val, sizeof(Val)); 237 for (unsigned i = 0; i < sizeof(Val); ++i) 238 out[(sizeof(Val) - i) - 1] = BitReverseTable256[in[i]]; 239 std::memcpy(&Val, out, sizeof(Val)); 240 return Val; 241 } 242 243 // NOTE: The following support functions use the _32/_64 extensions instead of 244 // type overloading so that signed and unsigned integers can be used without 245 // ambiguity. 246 247 /// Hi_32 - This function returns the high 32 bits of a 64 bit value. 248 inline uint32_t Hi_32(uint64_t Value) { 249 return static_cast<uint32_t>(Value >> 32); 250 } 251 252 /// Lo_32 - This function returns the low 32 bits of a 64 bit value. 253 inline uint32_t Lo_32(uint64_t Value) { 254 return static_cast<uint32_t>(Value); 255 } 256 257 /// Make_64 - This functions makes a 64-bit integer from a high / low pair of 258 /// 32-bit integers. 259 inline uint64_t Make_64(uint32_t High, uint32_t Low) { 260 return ((uint64_t)High << 32) | (uint64_t)Low; 261 } 262 263 /// isInt - Checks if an integer fits into the given bit width. 264 template<unsigned N> 265 inline bool isInt(int64_t x) { 266 return N >= 64 || (-(INT64_C(1)<<(N-1)) <= x && x < (INT64_C(1)<<(N-1))); 267 } 268 // Template specializations to get better code for common cases. 269 template<> 270 inline bool isInt<8>(int64_t x) { 271 return static_cast<int8_t>(x) == x; 272 } 273 template<> 274 inline bool isInt<16>(int64_t x) { 275 return static_cast<int16_t>(x) == x; 276 } 277 template<> 278 inline bool isInt<32>(int64_t x) { 279 return static_cast<int32_t>(x) == x; 280 } 281 282 /// isShiftedInt<N,S> - Checks if a signed integer is an N bit number shifted 283 /// left by S. 284 template<unsigned N, unsigned S> 285 inline bool isShiftedInt(int64_t x) { 286 return isInt<N+S>(x) && (x % (1<<S) == 0); 287 } 288 289 /// isUInt - Checks if an unsigned integer fits into the given bit width. 290 template<unsigned N> 291 inline bool isUInt(uint64_t x) { 292 return N >= 64 || x < (UINT64_C(1)<<(N)); 293 } 294 // Template specializations to get better code for common cases. 295 template<> 296 inline bool isUInt<8>(uint64_t x) { 297 return static_cast<uint8_t>(x) == x; 298 } 299 template<> 300 inline bool isUInt<16>(uint64_t x) { 301 return static_cast<uint16_t>(x) == x; 302 } 303 template<> 304 inline bool isUInt<32>(uint64_t x) { 305 return static_cast<uint32_t>(x) == x; 306 } 307 308 /// isShiftedUInt<N,S> - Checks if a unsigned integer is an N bit number shifted 309 /// left by S. 310 template<unsigned N, unsigned S> 311 inline bool isShiftedUInt(uint64_t x) { 312 return isUInt<N+S>(x) && (x % (1<<S) == 0); 313 } 314 315 /// Gets the maximum value for a N-bit unsigned integer. 316 inline uint64_t maxUIntN(uint64_t N) { 317 assert(N > 0 && N <= 64 && "integer width out of range"); 318 319 return (UINT64_C(1) << N) - 1; 320 } 321 322 /// Gets the minimum value for a N-bit signed integer. 323 inline int64_t minIntN(int64_t N) { 324 assert(N > 0 && N <= 64 && "integer width out of range"); 325 326 return -(INT64_C(1)<<(N-1)); 327 } 328 329 /// Gets the maximum value for a N-bit signed integer. 330 inline int64_t maxIntN(int64_t N) { 331 assert(N > 0 && N <= 64 && "integer width out of range"); 332 333 return (INT64_C(1)<<(N-1)) - 1; 334 } 335 336 /// isUIntN - Checks if an unsigned integer fits into the given (dynamic) 337 /// bit width. 338 inline bool isUIntN(unsigned N, uint64_t x) { 339 return N >= 64 || x <= maxUIntN(N); 340 } 341 342 /// isIntN - Checks if an signed integer fits into the given (dynamic) 343 /// bit width. 344 inline bool isIntN(unsigned N, int64_t x) { 345 return N >= 64 || (minIntN(N) <= x && x <= maxIntN(N)); 346 } 347 348 /// isMask_32 - This function returns true if the argument is a non-empty 349 /// sequence of ones starting at the least significant bit with the remainder 350 /// zero (32 bit version). Ex. isMask_32(0x0000FFFFU) == true. 351 inline bool isMask_32(uint32_t Value) { 352 return Value && ((Value + 1) & Value) == 0; 353 } 354 355 /// isMask_64 - This function returns true if the argument is a non-empty 356 /// sequence of ones starting at the least significant bit with the remainder 357 /// zero (64 bit version). 358 inline bool isMask_64(uint64_t Value) { 359 return Value && ((Value + 1) & Value) == 0; 360 } 361 362 /// isShiftedMask_32 - This function returns true if the argument contains a 363 /// non-empty sequence of ones with the remainder zero (32 bit version.) 364 /// Ex. isShiftedMask_32(0x0000FF00U) == true. 365 inline bool isShiftedMask_32(uint32_t Value) { 366 return Value && isMask_32((Value - 1) | Value); 367 } 368 369 /// isShiftedMask_64 - This function returns true if the argument contains a 370 /// non-empty sequence of ones with the remainder zero (64 bit version.) 371 inline bool isShiftedMask_64(uint64_t Value) { 372 return Value && isMask_64((Value - 1) | Value); 373 } 374 375 /// isPowerOf2_32 - This function returns true if the argument is a power of 376 /// two > 0. Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.) 377 inline bool isPowerOf2_32(uint32_t Value) { 378 return Value && !(Value & (Value - 1)); 379 } 380 381 /// isPowerOf2_64 - This function returns true if the argument is a power of two 382 /// > 0 (64 bit edition.) 383 inline bool isPowerOf2_64(uint64_t Value) { 384 return Value && !(Value & (Value - int64_t(1L))); 385 } 386 387 /// ByteSwap_16 - This function returns a byte-swapped representation of the 388 /// 16-bit argument, Value. 389 inline uint16_t ByteSwap_16(uint16_t Value) { 390 return sys::SwapByteOrder_16(Value); 391 } 392 393 /// ByteSwap_32 - This function returns a byte-swapped representation of the 394 /// 32-bit argument, Value. 395 inline uint32_t ByteSwap_32(uint32_t Value) { 396 return sys::SwapByteOrder_32(Value); 397 } 398 399 /// ByteSwap_64 - This function returns a byte-swapped representation of the 400 /// 64-bit argument, Value. 401 inline uint64_t ByteSwap_64(uint64_t Value) { 402 return sys::SwapByteOrder_64(Value); 403 } 404 405 /// \brief Count the number of ones from the most significant bit to the first 406 /// zero bit. 407 /// 408 /// Ex. CountLeadingOnes(0xFF0FFF00) == 8. 409 /// Only unsigned integral types are allowed. 410 /// 411 /// \param ZB the behavior on an input of all ones. Only ZB_Width and 412 /// ZB_Undefined are valid arguments. 413 template <typename T> 414 std::size_t countLeadingOnes(T Value, ZeroBehavior ZB = ZB_Width) { 415 static_assert(std::numeric_limits<T>::is_integer && 416 !std::numeric_limits<T>::is_signed, 417 "Only unsigned integral types are allowed."); 418 return countLeadingZeros(~Value, ZB); 419 } 420 421 /// \brief Count the number of ones from the least significant bit to the first 422 /// zero bit. 423 /// 424 /// Ex. countTrailingOnes(0x00FF00FF) == 8. 425 /// Only unsigned integral types are allowed. 426 /// 427 /// \param ZB the behavior on an input of all ones. Only ZB_Width and 428 /// ZB_Undefined are valid arguments. 429 template <typename T> 430 std::size_t countTrailingOnes(T Value, ZeroBehavior ZB = ZB_Width) { 431 static_assert(std::numeric_limits<T>::is_integer && 432 !std::numeric_limits<T>::is_signed, 433 "Only unsigned integral types are allowed."); 434 return countTrailingZeros(~Value, ZB); 435 } 436 437 namespace detail { 438 template <typename T, std::size_t SizeOfT> struct PopulationCounter { 439 static unsigned count(T Value) { 440 // Generic version, forward to 32 bits. 441 static_assert(SizeOfT <= 4, "Not implemented!"); 442 #if __GNUC__ >= 4 443 return __builtin_popcount(Value); 444 #else 445 uint32_t v = Value; 446 v = v - ((v >> 1) & 0x55555555); 447 v = (v & 0x33333333) + ((v >> 2) & 0x33333333); 448 return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24; 449 #endif 450 } 451 }; 452 453 template <typename T> struct PopulationCounter<T, 8> { 454 static unsigned count(T Value) { 455 #if __GNUC__ >= 4 456 return __builtin_popcountll(Value); 457 #else 458 uint64_t v = Value; 459 v = v - ((v >> 1) & 0x5555555555555555ULL); 460 v = (v & 0x3333333333333333ULL) + ((v >> 2) & 0x3333333333333333ULL); 461 v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL; 462 return unsigned((uint64_t)(v * 0x0101010101010101ULL) >> 56); 463 #endif 464 } 465 }; 466 } // namespace detail 467 468 /// \brief Count the number of set bits in a value. 469 /// Ex. countPopulation(0xF000F000) = 8 470 /// Returns 0 if the word is zero. 471 template <typename T> 472 inline unsigned countPopulation(T Value) { 473 static_assert(std::numeric_limits<T>::is_integer && 474 !std::numeric_limits<T>::is_signed, 475 "Only unsigned integral types are allowed."); 476 return detail::PopulationCounter<T, sizeof(T)>::count(Value); 477 } 478 479 /// Log2 - This function returns the log base 2 of the specified value 480 inline double Log2(double Value) { 481 #if defined(__ANDROID_API__) && __ANDROID_API__ < 18 482 return __builtin_log(Value) / __builtin_log(2.0); 483 #else 484 return log2(Value); 485 #endif 486 } 487 488 /// Log2_32 - This function returns the floor log base 2 of the specified value, 489 /// -1 if the value is zero. (32 bit edition.) 490 /// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2 491 inline unsigned Log2_32(uint32_t Value) { 492 return 31 - countLeadingZeros(Value); 493 } 494 495 /// Log2_64 - This function returns the floor log base 2 of the specified value, 496 /// -1 if the value is zero. (64 bit edition.) 497 inline unsigned Log2_64(uint64_t Value) { 498 return 63 - countLeadingZeros(Value); 499 } 500 501 /// Log2_32_Ceil - This function returns the ceil log base 2 of the specified 502 /// value, 32 if the value is zero. (32 bit edition). 503 /// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3 504 inline unsigned Log2_32_Ceil(uint32_t Value) { 505 return 32 - countLeadingZeros(Value - 1); 506 } 507 508 /// Log2_64_Ceil - This function returns the ceil log base 2 of the specified 509 /// value, 64 if the value is zero. (64 bit edition.) 510 inline unsigned Log2_64_Ceil(uint64_t Value) { 511 return 64 - countLeadingZeros(Value - 1); 512 } 513 514 /// GreatestCommonDivisor64 - Return the greatest common divisor of the two 515 /// values using Euclid's algorithm. 516 inline uint64_t GreatestCommonDivisor64(uint64_t A, uint64_t B) { 517 while (B) { 518 uint64_t T = B; 519 B = A % B; 520 A = T; 521 } 522 return A; 523 } 524 525 /// BitsToDouble - This function takes a 64-bit integer and returns the bit 526 /// equivalent double. 527 inline double BitsToDouble(uint64_t Bits) { 528 union { 529 uint64_t L; 530 double D; 531 } T; 532 T.L = Bits; 533 return T.D; 534 } 535 536 /// BitsToFloat - This function takes a 32-bit integer and returns the bit 537 /// equivalent float. 538 inline float BitsToFloat(uint32_t Bits) { 539 union { 540 uint32_t I; 541 float F; 542 } T; 543 T.I = Bits; 544 return T.F; 545 } 546 547 /// DoubleToBits - This function takes a double and returns the bit 548 /// equivalent 64-bit integer. Note that copying doubles around 549 /// changes the bits of NaNs on some hosts, notably x86, so this 550 /// routine cannot be used if these bits are needed. 551 inline uint64_t DoubleToBits(double Double) { 552 union { 553 uint64_t L; 554 double D; 555 } T; 556 T.D = Double; 557 return T.L; 558 } 559 560 /// FloatToBits - This function takes a float and returns the bit 561 /// equivalent 32-bit integer. Note that copying floats around 562 /// changes the bits of NaNs on some hosts, notably x86, so this 563 /// routine cannot be used if these bits are needed. 564 inline uint32_t FloatToBits(float Float) { 565 union { 566 uint32_t I; 567 float F; 568 } T; 569 T.F = Float; 570 return T.I; 571 } 572 573 /// MinAlign - A and B are either alignments or offsets. Return the minimum 574 /// alignment that may be assumed after adding the two together. 575 inline uint64_t MinAlign(uint64_t A, uint64_t B) { 576 // The largest power of 2 that divides both A and B. 577 // 578 // Replace "-Value" by "1+~Value" in the following commented code to avoid 579 // MSVC warning C4146 580 // return (A | B) & -(A | B); 581 return (A | B) & (1 + ~(A | B)); 582 } 583 584 /// \brief Aligns \c Addr to \c Alignment bytes, rounding up. 585 /// 586 /// Alignment should be a power of two. This method rounds up, so 587 /// alignAddr(7, 4) == 8 and alignAddr(8, 4) == 8. 588 inline uintptr_t alignAddr(const void *Addr, size_t Alignment) { 589 assert(Alignment && isPowerOf2_64((uint64_t)Alignment) && 590 "Alignment is not a power of two!"); 591 592 assert((uintptr_t)Addr + Alignment - 1 >= (uintptr_t)Addr); 593 594 return (((uintptr_t)Addr + Alignment - 1) & ~(uintptr_t)(Alignment - 1)); 595 } 596 597 /// \brief Returns the necessary adjustment for aligning \c Ptr to \c Alignment 598 /// bytes, rounding up. 599 inline size_t alignmentAdjustment(const void *Ptr, size_t Alignment) { 600 return alignAddr(Ptr, Alignment) - (uintptr_t)Ptr; 601 } 602 603 /// NextPowerOf2 - Returns the next power of two (in 64-bits) 604 /// that is strictly greater than A. Returns zero on overflow. 605 inline uint64_t NextPowerOf2(uint64_t A) { 606 A |= (A >> 1); 607 A |= (A >> 2); 608 A |= (A >> 4); 609 A |= (A >> 8); 610 A |= (A >> 16); 611 A |= (A >> 32); 612 return A + 1; 613 } 614 615 /// Returns the power of two which is less than or equal to the given value. 616 /// Essentially, it is a floor operation across the domain of powers of two. 617 inline uint64_t PowerOf2Floor(uint64_t A) { 618 if (!A) return 0; 619 return 1ull << (63 - countLeadingZeros(A, ZB_Undefined)); 620 } 621 622 /// Returns the next integer (mod 2**64) that is greater than or equal to 623 /// \p Value and is a multiple of \p Align. \p Align must be non-zero. 624 /// 625 /// If non-zero \p Skew is specified, the return value will be a minimal 626 /// integer that is greater than or equal to \p Value and equal to 627 /// \p Align * N + \p Skew for some integer N. If \p Skew is larger than 628 /// \p Align, its value is adjusted to '\p Skew mod \p Align'. 629 /// 630 /// Examples: 631 /// \code 632 /// alignTo(5, 8) = 8 633 /// alignTo(17, 8) = 24 634 /// alignTo(~0LL, 8) = 0 635 /// alignTo(321, 255) = 510 636 /// 637 /// alignTo(5, 8, 7) = 7 638 /// alignTo(17, 8, 1) = 17 639 /// alignTo(~0LL, 8, 3) = 3 640 /// alignTo(321, 255, 42) = 552 641 /// \endcode 642 inline uint64_t alignTo(uint64_t Value, uint64_t Align, uint64_t Skew = 0) { 643 Skew %= Align; 644 return (Value + Align - 1 - Skew) / Align * Align + Skew; 645 } 646 647 /// Returns the largest uint64_t less than or equal to \p Value and is 648 /// \p Skew mod \p Align. \p Align must be non-zero 649 inline uint64_t alignDown(uint64_t Value, uint64_t Align, uint64_t Skew = 0) { 650 Skew %= Align; 651 return (Value - Skew) / Align * Align + Skew; 652 } 653 654 /// Returns the offset to the next integer (mod 2**64) that is greater than 655 /// or equal to \p Value and is a multiple of \p Align. \p Align must be 656 /// non-zero. 657 inline uint64_t OffsetToAlignment(uint64_t Value, uint64_t Align) { 658 return alignTo(Value, Align) - Value; 659 } 660 661 /// SignExtend32 - Sign extend B-bit number x to 32-bit int. 662 /// Usage int32_t r = SignExtend32<5>(x); 663 template <unsigned B> inline int32_t SignExtend32(uint32_t x) { 664 return int32_t(x << (32 - B)) >> (32 - B); 665 } 666 667 /// \brief Sign extend number in the bottom B bits of X to a 32-bit int. 668 /// Requires 0 < B <= 32. 669 inline int32_t SignExtend32(uint32_t X, unsigned B) { 670 return int32_t(X << (32 - B)) >> (32 - B); 671 } 672 673 /// SignExtend64 - Sign extend B-bit number x to 64-bit int. 674 /// Usage int64_t r = SignExtend64<5>(x); 675 template <unsigned B> inline int64_t SignExtend64(uint64_t x) { 676 return int64_t(x << (64 - B)) >> (64 - B); 677 } 678 679 /// \brief Sign extend number in the bottom B bits of X to a 64-bit int. 680 /// Requires 0 < B <= 64. 681 inline int64_t SignExtend64(uint64_t X, unsigned B) { 682 return int64_t(X << (64 - B)) >> (64 - B); 683 } 684 685 /// \brief Subtract two unsigned integers, X and Y, of type T and return their 686 /// absolute value. 687 template <typename T> 688 typename std::enable_if<std::is_unsigned<T>::value, T>::type 689 AbsoluteDifference(T X, T Y) { 690 return std::max(X, Y) - std::min(X, Y); 691 } 692 693 /// \brief Add two unsigned integers, X and Y, of type T. 694 /// Clamp the result to the maximum representable value of T on overflow. 695 /// ResultOverflowed indicates if the result is larger than the maximum 696 /// representable value of type T. 697 template <typename T> 698 typename std::enable_if<std::is_unsigned<T>::value, T>::type 699 SaturatingAdd(T X, T Y, bool *ResultOverflowed = nullptr) { 700 bool Dummy; 701 bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy; 702 // Hacker's Delight, p. 29 703 T Z = X + Y; 704 Overflowed = (Z < X || Z < Y); 705 if (Overflowed) 706 return std::numeric_limits<T>::max(); 707 else 708 return Z; 709 } 710 711 /// \brief Multiply two unsigned integers, X and Y, of type T. 712 /// Clamp the result to the maximum representable value of T on overflow. 713 /// ResultOverflowed indicates if the result is larger than the maximum 714 /// representable value of type T. 715 template <typename T> 716 typename std::enable_if<std::is_unsigned<T>::value, T>::type 717 SaturatingMultiply(T X, T Y, bool *ResultOverflowed = nullptr) { 718 bool Dummy; 719 bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy; 720 721 // Hacker's Delight, p. 30 has a different algorithm, but we don't use that 722 // because it fails for uint16_t (where multiplication can have undefined 723 // behavior due to promotion to int), and requires a division in addition 724 // to the multiplication. 725 726 Overflowed = false; 727 728 // Log2(Z) would be either Log2Z or Log2Z + 1. 729 // Special case: if X or Y is 0, Log2_64 gives -1, and Log2Z 730 // will necessarily be less than Log2Max as desired. 731 int Log2Z = Log2_64(X) + Log2_64(Y); 732 const T Max = std::numeric_limits<T>::max(); 733 int Log2Max = Log2_64(Max); 734 if (Log2Z < Log2Max) { 735 return X * Y; 736 } 737 if (Log2Z > Log2Max) { 738 Overflowed = true; 739 return Max; 740 } 741 742 // We're going to use the top bit, and maybe overflow one 743 // bit past it. Multiply all but the bottom bit then add 744 // that on at the end. 745 T Z = (X >> 1) * Y; 746 if (Z & ~(Max >> 1)) { 747 Overflowed = true; 748 return Max; 749 } 750 Z <<= 1; 751 if (X & 1) 752 return SaturatingAdd(Z, Y, ResultOverflowed); 753 754 return Z; 755 } 756 757 /// \brief Multiply two unsigned integers, X and Y, and add the unsigned 758 /// integer, A to the product. Clamp the result to the maximum representable 759 /// value of T on overflow. ResultOverflowed indicates if the result is larger 760 /// than the maximum representable value of type T. 761 /// Note that this is purely a convenience function as there is no distinction 762 /// where overflow occurred in a 'fused' multiply-add for unsigned numbers. 763 template <typename T> 764 typename std::enable_if<std::is_unsigned<T>::value, T>::type 765 SaturatingMultiplyAdd(T X, T Y, T A, bool *ResultOverflowed = nullptr) { 766 bool Dummy; 767 bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy; 768 769 T Product = SaturatingMultiply(X, Y, &Overflowed); 770 if (Overflowed) 771 return Product; 772 773 return SaturatingAdd(A, Product, &Overflowed); 774 } 775 776 extern const float huge_valf; 777 } // End llvm namespace 778 779 #endif 780