Home | History | Annotate | Download | only in protobuf
      1 // Amalgamated source file
      2 /*
      3 ** Defs are upb's internal representation of the constructs that can appear
      4 ** in a .proto file:
      5 **
      6 ** - upb::MessageDef (upb_msgdef): describes a "message" construct.
      7 ** - upb::FieldDef (upb_fielddef): describes a message field.
      8 ** - upb::EnumDef (upb_enumdef): describes an enum.
      9 ** - upb::OneofDef (upb_oneofdef): describes a oneof.
     10 ** - upb::Def (upb_def): base class of all the others.
     11 **
     12 ** TODO: definitions of services.
     13 **
     14 ** Like upb_refcounted objects, defs are mutable only until frozen, and are
     15 ** only thread-safe once frozen.
     16 **
     17 ** This is a mixed C/C++ interface that offers a full API to both languages.
     18 ** See the top-level README for more information.
     19 */
     20 
     21 #ifndef UPB_DEF_H_
     22 #define UPB_DEF_H_
     23 
     24 /*
     25 ** upb::RefCounted (upb_refcounted)
     26 **
     27 ** A refcounting scheme that supports circular refs.  It accomplishes this by
     28 ** partitioning the set of objects into groups such that no cycle spans groups;
     29 ** we can then reference-count the group as a whole and ignore refs within the
     30 ** group.  When objects are mutable, these groups are computed very
     31 ** conservatively; we group any objects that have ever had a link between them.
     32 ** When objects are frozen, we compute strongly-connected components which
     33 ** allows us to be precise and only group objects that are actually cyclic.
     34 **
     35 ** This is a mixed C/C++ interface that offers a full API to both languages.
     36 ** See the top-level README for more information.
     37 */
     38 
     39 #ifndef UPB_REFCOUNTED_H_
     40 #define UPB_REFCOUNTED_H_
     41 
     42 /*
     43 ** upb_table
     44 **
     45 ** This header is INTERNAL-ONLY!  Its interfaces are not public or stable!
     46 ** This file defines very fast int->upb_value (inttable) and string->upb_value
     47 ** (strtable) hash tables.
     48 **
     49 ** The table uses chained scatter with Brent's variation (inspired by the Lua
     50 ** implementation of hash tables).  The hash function for strings is Austin
     51 ** Appleby's "MurmurHash."
     52 **
     53 ** The inttable uses uintptr_t as its key, which guarantees it can be used to
     54 ** store pointers or integers of at least 32 bits (upb isn't really useful on
     55 ** systems where sizeof(void*) < 4).
     56 **
     57 ** The table must be homogenous (all values of the same type).  In debug
     58 ** mode, we check this on insert and lookup.
     59 */
     60 
     61 #ifndef UPB_TABLE_H_
     62 #define UPB_TABLE_H_
     63 
     64 #include <assert.h>
     65 #include <stdint.h>
     66 #include <string.h>
     67 /*
     68 ** This file contains shared definitions that are widely used across upb.
     69 **
     70 ** This is a mixed C/C++ interface that offers a full API to both languages.
     71 ** See the top-level README for more information.
     72 */
     73 
     74 #ifndef UPB_H_
     75 #define UPB_H_
     76 
     77 #include <assert.h>
     78 #include <stdarg.h>
     79 #include <stdbool.h>
     80 #include <stddef.h>
     81 
     82 /* UPB_INLINE: inline if possible, emit standalone code if required. */
     83 #ifdef __cplusplus
     84 #define UPB_INLINE inline
     85 #elif defined (__GNUC__)
     86 #define UPB_INLINE static __inline__
     87 #else
     88 #define UPB_INLINE static
     89 #endif
     90 
     91 /* Define UPB_BIG_ENDIAN manually if you're on big endian and your compiler
     92  * doesn't provide these preprocessor symbols. */
     93 #if defined(__BYTE_ORDER__) && (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
     94 #define UPB_BIG_ENDIAN
     95 #endif
     96 
     97 /* Macros for function attributes on compilers that support them. */
     98 #ifdef __GNUC__
     99 #define UPB_FORCEINLINE __inline__ __attribute__((always_inline))
    100 #define UPB_NOINLINE __attribute__((noinline))
    101 #define UPB_NORETURN __attribute__((__noreturn__))
    102 #else  /* !defined(__GNUC__) */
    103 #define UPB_FORCEINLINE
    104 #define UPB_NOINLINE
    105 #define UPB_NORETURN
    106 #endif
    107 
    108 /* A few hacky workarounds for functions not in C89.
    109  * For internal use only!
    110  * TODO(haberman): fix these by including our own implementations, or finding
    111  * another workaround.
    112  */
    113 #ifdef __GNUC__
    114 #define _upb_snprintf __builtin_snprintf
    115 #define _upb_vsnprintf __builtin_vsnprintf
    116 #define _upb_va_copy(a, b) __va_copy(a, b)
    117 #elif __STDC_VERSION__ >= 199901L
    118 /* C99 versions. */
    119 #define _upb_snprintf snprintf
    120 #define _upb_vsnprintf vsnprintf
    121 #define _upb_va_copy(a, b) va_copy(a, b)
    122 #else
    123 #error Need implementations of [v]snprintf and va_copy
    124 #endif
    125 
    126 
    127 #if ((defined(__cplusplus) && __cplusplus >= 201103L) || \
    128       defined(__GXX_EXPERIMENTAL_CXX0X__)) && !defined(UPB_NO_CXX11)
    129 #define UPB_CXX11
    130 #endif
    131 
    132 /* UPB_DISALLOW_COPY_AND_ASSIGN()
    133  * UPB_DISALLOW_POD_OPS()
    134  *
    135  * Declare these in the "private" section of a C++ class to forbid copy/assign
    136  * or all POD ops (construct, destruct, copy, assign) on that class. */
    137 #ifdef UPB_CXX11
    138 #include <type_traits>
    139 #define UPB_DISALLOW_COPY_AND_ASSIGN(class_name) \
    140   class_name(const class_name&) = delete; \
    141   void operator=(const class_name&) = delete;
    142 #define UPB_DISALLOW_POD_OPS(class_name, full_class_name) \
    143   class_name() = delete; \
    144   ~class_name() = delete; \
    145   UPB_DISALLOW_COPY_AND_ASSIGN(class_name)
    146 #define UPB_ASSERT_STDLAYOUT(type) \
    147   static_assert(std::is_standard_layout<type>::value, \
    148                 #type " must be standard layout");
    149 #else  /* !defined(UPB_CXX11) */
    150 #define UPB_DISALLOW_COPY_AND_ASSIGN(class_name) \
    151   class_name(const class_name&); \
    152   void operator=(const class_name&);
    153 #define UPB_DISALLOW_POD_OPS(class_name, full_class_name) \
    154   class_name(); \
    155   ~class_name(); \
    156   UPB_DISALLOW_COPY_AND_ASSIGN(class_name)
    157 #define UPB_ASSERT_STDLAYOUT(type)
    158 #endif
    159 
    160 /* UPB_DECLARE_TYPE()
    161  * UPB_DECLARE_DERIVED_TYPE()
    162  * UPB_DECLARE_DERIVED_TYPE2()
    163  *
    164  * Macros for declaring C and C++ types both, including inheritance.
    165  * The inheritance doesn't use real C++ inheritance, to stay compatible with C.
    166  *
    167  * These macros also provide upcasts:
    168  *  - in C: types-specific functions (ie. upb_foo_upcast(foo))
    169  *  - in C++: upb::upcast(foo) along with implicit conversions
    170  *
    171  * Downcasts are not provided, but upb/def.h defines downcasts for upb::Def. */
    172 
    173 #define UPB_C_UPCASTS(ty, base)                                      \
    174   UPB_INLINE base *ty ## _upcast_mutable(ty *p) { return (base*)p; } \
    175   UPB_INLINE const base *ty ## _upcast(const ty *p) { return (const base*)p; }
    176 
    177 #define UPB_C_UPCASTS2(ty, base, base2)                                 \
    178   UPB_C_UPCASTS(ty, base)                                               \
    179   UPB_INLINE base2 *ty ## _upcast2_mutable(ty *p) { return (base2*)p; } \
    180   UPB_INLINE const base2 *ty ## _upcast2(const ty *p) { return (const base2*)p; }
    181 
    182 #ifdef __cplusplus
    183 
    184 #define UPB_BEGIN_EXTERN_C extern "C" {
    185 #define UPB_END_EXTERN_C }
    186 #define UPB_PRIVATE_FOR_CPP private:
    187 #define UPB_DECLARE_TYPE(cppname, cname) typedef cppname cname;
    188 
    189 #define UPB_DECLARE_DERIVED_TYPE(cppname, cppbase, cname, cbase)  \
    190   UPB_DECLARE_TYPE(cppname, cname)                                \
    191   UPB_C_UPCASTS(cname, cbase)                                     \
    192   namespace upb {                                                 \
    193   template <>                                                     \
    194   class Pointer<cppname> : public PointerBase<cppname, cppbase> { \
    195    public:                                                        \
    196     explicit Pointer(cppname* ptr) : PointerBase(ptr) {}          \
    197   };                                                              \
    198   template <>                                                     \
    199   class Pointer<const cppname>                                    \
    200       : public PointerBase<const cppname, const cppbase> {        \
    201    public:                                                        \
    202     explicit Pointer(const cppname* ptr) : PointerBase(ptr) {}    \
    203   };                                                              \
    204   }
    205 
    206 #define UPB_DECLARE_DERIVED_TYPE2(cppname, cppbase, cppbase2, cname, cbase,  \
    207                                   cbase2)                                    \
    208   UPB_DECLARE_TYPE(cppname, cname)                                           \
    209   UPB_C_UPCASTS2(cname, cbase, cbase2)                                       \
    210   namespace upb {                                                            \
    211   template <>                                                                \
    212   class Pointer<cppname> : public PointerBase2<cppname, cppbase, cppbase2> { \
    213    public:                                                                   \
    214     explicit Pointer(cppname* ptr) : PointerBase2(ptr) {}                    \
    215   };                                                                         \
    216   template <>                                                                \
    217   class Pointer<const cppname>                                               \
    218       : public PointerBase2<const cppname, const cppbase, const cppbase2> {  \
    219    public:                                                                   \
    220     explicit Pointer(const cppname* ptr) : PointerBase2(ptr) {}              \
    221   };                                                                         \
    222   }
    223 
    224 #else  /* !defined(__cplusplus) */
    225 
    226 #define UPB_BEGIN_EXTERN_C
    227 #define UPB_END_EXTERN_C
    228 #define UPB_PRIVATE_FOR_CPP
    229 #define UPB_DECLARE_TYPE(cppname, cname) \
    230   struct cname;                          \
    231   typedef struct cname cname;
    232 #define UPB_DECLARE_DERIVED_TYPE(cppname, cppbase, cname, cbase) \
    233   UPB_DECLARE_TYPE(cppname, cname)                               \
    234   UPB_C_UPCASTS(cname, cbase)
    235 #define UPB_DECLARE_DERIVED_TYPE2(cppname, cppbase, cppbase2,    \
    236                                   cname, cbase, cbase2)          \
    237   UPB_DECLARE_TYPE(cppname, cname)                               \
    238   UPB_C_UPCASTS2(cname, cbase, cbase2)
    239 
    240 #endif  /* defined(__cplusplus) */
    241 
    242 #define UPB_MAX(x, y) ((x) > (y) ? (x) : (y))
    243 #define UPB_MIN(x, y) ((x) < (y) ? (x) : (y))
    244 
    245 #define UPB_UNUSED(var) (void)var
    246 
    247 /* For asserting something about a variable when the variable is not used for
    248  * anything else.  This prevents "unused variable" warnings when compiling in
    249  * debug mode. */
    250 #define UPB_ASSERT_VAR(var, predicate) UPB_UNUSED(var); assert(predicate)
    251 
    252 /* Generic function type. */
    253 typedef void upb_func();
    254 
    255 /* C++ Casts ******************************************************************/
    256 
    257 #ifdef __cplusplus
    258 
    259 namespace upb {
    260 
    261 template <class T> class Pointer;
    262 
    263 /* Casts to a subclass.  The caller must know that cast is correct; an
    264  * incorrect cast will throw an assertion failure in debug mode.
    265  *
    266  * Example:
    267  *   upb::Def* def = GetDef();
    268  *   // Assert-fails if this was not actually a MessageDef.
    269  *   upb::MessgeDef* md = upb::down_cast<upb::MessageDef>(def);
    270  *
    271  * Note that downcasts are only defined for some types (at the moment you can
    272  * only downcast from a upb::Def to a specific Def type). */
    273 template<class To, class From> To down_cast(From* f);
    274 
    275 /* Casts to a subclass.  If the class does not actually match the given To type,
    276  * returns NULL.
    277  *
    278  * Example:
    279  *   upb::Def* def = GetDef();
    280  *   // md will be NULL if this was not actually a MessageDef.
    281  *   upb::MessgeDef* md = upb::down_cast<upb::MessageDef>(def);
    282  *
    283  * Note that dynamic casts are only defined for some types (at the moment you
    284  * can only downcast from a upb::Def to a specific Def type).. */
    285 template<class To, class From> To dyn_cast(From* f);
    286 
    287 /* Casts to any base class, or the type itself (ie. can be a no-op).
    288  *
    289  * Example:
    290  *   upb::MessageDef* md = GetDef();
    291  *   // This will fail to compile if this wasn't actually a base class.
    292  *   upb::Def* def = upb::upcast(md);
    293  */
    294 template <class T> inline Pointer<T> upcast(T *f) { return Pointer<T>(f); }
    295 
    296 /* Attempt upcast to specific base class.
    297  *
    298  * Example:
    299  *   upb::MessageDef* md = GetDef();
    300  *   upb::upcast_to<upb::Def>(md)->MethodOnDef();
    301  */
    302 template <class T, class F> inline T* upcast_to(F *f) {
    303   return static_cast<T*>(upcast(f));
    304 }
    305 
    306 /* PointerBase<T>: implementation detail of upb::upcast().
    307  * It is implicitly convertable to pointers to the Base class(es).
    308  */
    309 template <class T, class Base>
    310 class PointerBase {
    311  public:
    312   explicit PointerBase(T* ptr) : ptr_(ptr) {}
    313   operator T*() { return ptr_; }
    314   operator Base*() { return (Base*)ptr_; }
    315 
    316  private:
    317   T* ptr_;
    318 };
    319 
    320 template <class T, class Base, class Base2>
    321 class PointerBase2 : public PointerBase<T, Base> {
    322  public:
    323   explicit PointerBase2(T* ptr) : PointerBase<T, Base>(ptr) {}
    324   operator Base2*() { return Pointer<Base>(*this); }
    325 };
    326 
    327 }
    328 
    329 #endif
    330 
    331 
    332 /* upb::reffed_ptr ************************************************************/
    333 
    334 #ifdef __cplusplus
    335 
    336 #include <algorithm>  /* For std::swap(). */
    337 
    338 namespace upb {
    339 
    340 /* Provides RAII semantics for upb refcounted objects.  Each reffed_ptr owns a
    341  * ref on whatever object it points to (if any). */
    342 template <class T> class reffed_ptr {
    343  public:
    344   reffed_ptr() : ptr_(NULL) {}
    345 
    346   /* If ref_donor is NULL, takes a new ref, otherwise adopts from ref_donor. */
    347   template <class U>
    348   reffed_ptr(U* val, const void* ref_donor = NULL)
    349       : ptr_(upb::upcast(val)) {
    350     if (ref_donor) {
    351       assert(ptr_);
    352       ptr_->DonateRef(ref_donor, this);
    353     } else if (ptr_) {
    354       ptr_->Ref(this);
    355     }
    356   }
    357 
    358   template <class U>
    359   reffed_ptr(const reffed_ptr<U>& other)
    360       : ptr_(upb::upcast(other.get())) {
    361     if (ptr_) ptr_->Ref(this);
    362   }
    363 
    364   ~reffed_ptr() { if (ptr_) ptr_->Unref(this); }
    365 
    366   template <class U>
    367   reffed_ptr& operator=(const reffed_ptr<U>& other) {
    368     reset(other.get());
    369     return *this;
    370   }
    371 
    372   reffed_ptr& operator=(const reffed_ptr& other) {
    373     reset(other.get());
    374     return *this;
    375   }
    376 
    377   /* TODO(haberman): add C++11 move construction/assignment for greater
    378    * efficiency. */
    379 
    380   void swap(reffed_ptr& other) {
    381     if (ptr_ == other.ptr_) {
    382       return;
    383     }
    384 
    385     if (ptr_) ptr_->DonateRef(this, &other);
    386     if (other.ptr_) other.ptr_->DonateRef(&other, this);
    387     std::swap(ptr_, other.ptr_);
    388   }
    389 
    390   T& operator*() const {
    391     assert(ptr_);
    392     return *ptr_;
    393   }
    394 
    395   T* operator->() const {
    396     assert(ptr_);
    397     return ptr_;
    398   }
    399 
    400   T* get() const { return ptr_; }
    401 
    402   /* If ref_donor is NULL, takes a new ref, otherwise adopts from ref_donor. */
    403   template <class U>
    404   void reset(U* ptr = NULL, const void* ref_donor = NULL) {
    405     reffed_ptr(ptr, ref_donor).swap(*this);
    406   }
    407 
    408   template <class U>
    409   reffed_ptr<U> down_cast() {
    410     return reffed_ptr<U>(upb::down_cast<U*>(get()));
    411   }
    412 
    413   template <class U>
    414   reffed_ptr<U> dyn_cast() {
    415     return reffed_ptr<U>(upb::dyn_cast<U*>(get()));
    416   }
    417 
    418   /* Plain release() is unsafe; if we were the only owner, it would leak the
    419    * object.  Instead we provide this: */
    420   T* ReleaseTo(const void* new_owner) {
    421     T* ret = NULL;
    422     ptr_->DonateRef(this, new_owner);
    423     std::swap(ret, ptr_);
    424     return ret;
    425   }
    426 
    427  private:
    428   T* ptr_;
    429 };
    430 
    431 }  /* namespace upb */
    432 
    433 #endif  /* __cplusplus */
    434 
    435 
    436 /* upb::Status ****************************************************************/
    437 
    438 #ifdef __cplusplus
    439 namespace upb {
    440 class ErrorSpace;
    441 class Status;
    442 }
    443 #endif
    444 
    445 UPB_DECLARE_TYPE(upb::ErrorSpace, upb_errorspace)
    446 UPB_DECLARE_TYPE(upb::Status, upb_status)
    447 
    448 /* The maximum length of an error message before it will get truncated. */
    449 #define UPB_STATUS_MAX_MESSAGE 128
    450 
    451 /* An error callback function is used to report errors from some component.
    452  * The function can return "true" to indicate that the component should try
    453  * to recover and proceed, but this is not always possible. */
    454 typedef bool upb_errcb_t(void *closure, const upb_status* status);
    455 
    456 #ifdef __cplusplus
    457 class upb::ErrorSpace {
    458 #else
    459 struct upb_errorspace {
    460 #endif
    461   const char *name;
    462   /* Should the error message in the status object according to this code. */
    463   void (*set_message)(upb_status* status, int code);
    464 };
    465 
    466 #ifdef __cplusplus
    467 
    468 /* Object representing a success or failure status.
    469  * It owns no resources and allocates no memory, so it should work
    470  * even in OOM situations. */
    471 
    472 class upb::Status {
    473  public:
    474   Status();
    475 
    476   /* Returns true if there is no error. */
    477   bool ok() const;
    478 
    479   /* Optional error space and code, useful if the caller wants to
    480    * programmatically check the specific kind of error. */
    481   ErrorSpace* error_space();
    482   int code() const;
    483 
    484   const char *error_message() const;
    485 
    486   /* The error message will be truncated if it is longer than
    487    * UPB_STATUS_MAX_MESSAGE-4. */
    488   void SetErrorMessage(const char* msg);
    489   void SetFormattedErrorMessage(const char* fmt, ...);
    490 
    491   /* If there is no error message already, this will use the ErrorSpace to
    492    * populate the error message for this code.  The caller can still call
    493    * SetErrorMessage() to give a more specific message. */
    494   void SetErrorCode(ErrorSpace* space, int code);
    495 
    496   /* Resets the status to a successful state with no message. */
    497   void Clear();
    498 
    499   void CopyFrom(const Status& other);
    500 
    501  private:
    502   UPB_DISALLOW_COPY_AND_ASSIGN(Status)
    503 #else
    504 struct upb_status {
    505 #endif
    506   bool ok_;
    507 
    508   /* Specific status code defined by some error space (optional). */
    509   int code_;
    510   upb_errorspace *error_space_;
    511 
    512   /* Error message; NULL-terminated. */
    513   char msg[UPB_STATUS_MAX_MESSAGE];
    514 };
    515 
    516 #define UPB_STATUS_INIT {true, 0, NULL, {0}}
    517 
    518 #ifdef __cplusplus
    519 extern "C" {
    520 #endif
    521 
    522 /* The returned string is invalidated by any other call into the status. */
    523 const char *upb_status_errmsg(const upb_status *status);
    524 bool upb_ok(const upb_status *status);
    525 upb_errorspace *upb_status_errspace(const upb_status *status);
    526 int upb_status_errcode(const upb_status *status);
    527 
    528 /* Any of the functions that write to a status object allow status to be NULL,
    529  * to support use cases where the function's caller does not care about the
    530  * status message. */
    531 void upb_status_clear(upb_status *status);
    532 void upb_status_seterrmsg(upb_status *status, const char *msg);
    533 void upb_status_seterrf(upb_status *status, const char *fmt, ...);
    534 void upb_status_vseterrf(upb_status *status, const char *fmt, va_list args);
    535 void upb_status_seterrcode(upb_status *status, upb_errorspace *space, int code);
    536 void upb_status_copy(upb_status *to, const upb_status *from);
    537 
    538 #ifdef __cplusplus
    539 }  /* extern "C" */
    540 
    541 namespace upb {
    542 
    543 /* C++ Wrappers */
    544 inline Status::Status() { Clear(); }
    545 inline bool Status::ok() const { return upb_ok(this); }
    546 inline const char* Status::error_message() const {
    547   return upb_status_errmsg(this);
    548 }
    549 inline void Status::SetErrorMessage(const char* msg) {
    550   upb_status_seterrmsg(this, msg);
    551 }
    552 inline void Status::SetFormattedErrorMessage(const char* fmt, ...) {
    553   va_list args;
    554   va_start(args, fmt);
    555   upb_status_vseterrf(this, fmt, args);
    556   va_end(args);
    557 }
    558 inline void Status::SetErrorCode(ErrorSpace* space, int code) {
    559   upb_status_seterrcode(this, space, code);
    560 }
    561 inline void Status::Clear() { upb_status_clear(this); }
    562 inline void Status::CopyFrom(const Status& other) {
    563   upb_status_copy(this, &other);
    564 }
    565 
    566 }  /* namespace upb */
    567 
    568 #endif
    569 
    570 #endif  /* UPB_H_ */
    571 
    572 #ifdef __cplusplus
    573 extern "C" {
    574 #endif
    575 
    576 
    577 /* upb_value ******************************************************************/
    578 
    579 /* A tagged union (stored untagged inside the table) so that we can check that
    580  * clients calling table accessors are correctly typed without having to have
    581  * an explosion of accessors. */
    582 typedef enum {
    583   UPB_CTYPE_INT32    = 1,
    584   UPB_CTYPE_INT64    = 2,
    585   UPB_CTYPE_UINT32   = 3,
    586   UPB_CTYPE_UINT64   = 4,
    587   UPB_CTYPE_BOOL     = 5,
    588   UPB_CTYPE_CSTR     = 6,
    589   UPB_CTYPE_PTR      = 7,
    590   UPB_CTYPE_CONSTPTR = 8,
    591   UPB_CTYPE_FPTR     = 9
    592 } upb_ctype_t;
    593 
    594 typedef struct {
    595   uint64_t val;
    596 #ifndef NDEBUG
    597   /* In debug mode we carry the value type around also so we can check accesses
    598    * to be sure the right member is being read. */
    599   upb_ctype_t ctype;
    600 #endif
    601 } upb_value;
    602 
    603 #ifdef NDEBUG
    604 #define SET_TYPE(dest, val)      UPB_UNUSED(val)
    605 #else
    606 #define SET_TYPE(dest, val) dest = val
    607 #endif
    608 
    609 /* Like strdup(), which isn't always available since it's not ANSI C. */
    610 char *upb_strdup(const char *s);
    611 /* Variant that works with a length-delimited rather than NULL-delimited string,
    612  * as supported by strtable. */
    613 char *upb_strdup2(const char *s, size_t len);
    614 
    615 UPB_INLINE void _upb_value_setval(upb_value *v, uint64_t val,
    616                                   upb_ctype_t ctype) {
    617   v->val = val;
    618   SET_TYPE(v->ctype, ctype);
    619 }
    620 
    621 UPB_INLINE upb_value _upb_value_val(uint64_t val, upb_ctype_t ctype) {
    622   upb_value ret;
    623   _upb_value_setval(&ret, val, ctype);
    624   return ret;
    625 }
    626 
    627 /* For each value ctype, define the following set of functions:
    628  *
    629  * // Get/set an int32 from a upb_value.
    630  * int32_t upb_value_getint32(upb_value val);
    631  * void upb_value_setint32(upb_value *val, int32_t cval);
    632  *
    633  * // Construct a new upb_value from an int32.
    634  * upb_value upb_value_int32(int32_t val); */
    635 #define FUNCS(name, membername, type_t, converter, proto_type) \
    636   UPB_INLINE void upb_value_set ## name(upb_value *val, type_t cval) { \
    637     val->val = (converter)cval; \
    638     SET_TYPE(val->ctype, proto_type); \
    639   } \
    640   UPB_INLINE upb_value upb_value_ ## name(type_t val) { \
    641     upb_value ret; \
    642     upb_value_set ## name(&ret, val); \
    643     return ret; \
    644   } \
    645   UPB_INLINE type_t upb_value_get ## name(upb_value val) { \
    646     assert(val.ctype == proto_type); \
    647     return (type_t)(converter)val.val; \
    648   }
    649 
    650 FUNCS(int32,    int32,        int32_t,      int32_t,    UPB_CTYPE_INT32)
    651 FUNCS(int64,    int64,        int64_t,      int64_t,    UPB_CTYPE_INT64)
    652 FUNCS(uint32,   uint32,       uint32_t,     uint32_t,   UPB_CTYPE_UINT32)
    653 FUNCS(uint64,   uint64,       uint64_t,     uint64_t,   UPB_CTYPE_UINT64)
    654 FUNCS(bool,     _bool,        bool,         bool,       UPB_CTYPE_BOOL)
    655 FUNCS(cstr,     cstr,         char*,        uintptr_t,  UPB_CTYPE_CSTR)
    656 FUNCS(ptr,      ptr,          void*,        uintptr_t,  UPB_CTYPE_PTR)
    657 FUNCS(constptr, constptr,     const void*,  uintptr_t,  UPB_CTYPE_CONSTPTR)
    658 FUNCS(fptr,     fptr,         upb_func*,    uintptr_t,  UPB_CTYPE_FPTR)
    659 
    660 #undef FUNCS
    661 #undef SET_TYPE
    662 
    663 
    664 /* upb_tabkey *****************************************************************/
    665 
    666 /* Either:
    667  *   1. an actual integer key, or
    668  *   2. a pointer to a string prefixed by its uint32_t length, owned by us.
    669  *
    670  * ...depending on whether this is a string table or an int table.  We would
    671  * make this a union of those two types, but C89 doesn't support statically
    672  * initializing a non-first union member. */
    673 typedef uintptr_t upb_tabkey;
    674 
    675 #define UPB_TABKEY_NUM(n) n
    676 #define UPB_TABKEY_NONE 0
    677 /* The preprocessor isn't quite powerful enough to turn the compile-time string
    678  * length into a byte-wise string representation, so code generation needs to
    679  * help it along.
    680  *
    681  * "len1" is the low byte and len4 is the high byte. */
    682 #ifdef UPB_BIG_ENDIAN
    683 #define UPB_TABKEY_STR(len1, len2, len3, len4, strval) \
    684     (uintptr_t)(len4 len3 len2 len1 strval)
    685 #else
    686 #define UPB_TABKEY_STR(len1, len2, len3, len4, strval) \
    687     (uintptr_t)(len1 len2 len3 len4 strval)
    688 #endif
    689 
    690 UPB_INLINE char *upb_tabstr(upb_tabkey key, uint32_t *len) {
    691   char* mem = (char*)key;
    692   if (len) memcpy(len, mem, sizeof(*len));
    693   return mem + sizeof(*len);
    694 }
    695 
    696 
    697 /* upb_tabval *****************************************************************/
    698 
    699 #ifdef __cplusplus
    700 
    701 /* Status initialization not supported.
    702  *
    703  * This separate definition is necessary because in C++, UINTPTR_MAX isn't
    704  * reliably available. */
    705 typedef struct {
    706   uint64_t val;
    707 } upb_tabval;
    708 
    709 #else
    710 
    711 /* C -- supports static initialization, but to support static initialization of
    712  * both integers and points for both 32 and 64 bit targets, it takes a little
    713  * bit of doing. */
    714 
    715 #if UINTPTR_MAX == 0xffffffffffffffffULL
    716 #define UPB_PTR_IS_64BITS
    717 #elif UINTPTR_MAX != 0xffffffff
    718 #error Could not determine how many bits pointers are.
    719 #endif
    720 
    721 typedef union {
    722   /* For static initialization.
    723    *
    724    * Unfortunately this ugliness is necessary -- it is the only way that we can,
    725    * with -std=c89 -pedantic, statically initialize this to either a pointer or
    726    * an integer on 32-bit platforms. */
    727   struct {
    728 #ifdef UPB_PTR_IS_64BITS
    729     uintptr_t val;
    730 #else
    731     uintptr_t val1;
    732     uintptr_t val2;
    733 #endif
    734   } staticinit;
    735 
    736   /* The normal accessor that we use for everything at runtime. */
    737   uint64_t val;
    738 } upb_tabval;
    739 
    740 #ifdef UPB_PTR_IS_64BITS
    741 #define UPB_TABVALUE_INT_INIT(v) {{v}}
    742 #define UPB_TABVALUE_EMPTY_INIT  {{-1}}
    743 #else
    744 
    745 /* 32-bit pointers */
    746 
    747 #ifdef UPB_BIG_ENDIAN
    748 #define UPB_TABVALUE_INT_INIT(v) {{0, v}}
    749 #define UPB_TABVALUE_EMPTY_INIT  {{-1, -1}}
    750 #else
    751 #define UPB_TABVALUE_INT_INIT(v) {{v, 0}}
    752 #define UPB_TABVALUE_EMPTY_INIT  {{-1, -1}}
    753 #endif
    754 
    755 #endif
    756 
    757 #define UPB_TABVALUE_PTR_INIT(v) UPB_TABVALUE_INT_INIT((uintptr_t)v)
    758 
    759 #undef UPB_PTR_IS_64BITS
    760 
    761 #endif  /* __cplusplus */
    762 
    763 
    764 /* upb_table ******************************************************************/
    765 
    766 typedef struct _upb_tabent {
    767   upb_tabkey key;
    768   upb_tabval val;
    769 
    770   /* Internal chaining.  This is const so we can create static initializers for
    771    * tables.  We cast away const sometimes, but *only* when the containing
    772    * upb_table is known to be non-const.  This requires a bit of care, but
    773    * the subtlety is confined to table.c. */
    774   const struct _upb_tabent *next;
    775 } upb_tabent;
    776 
    777 typedef struct {
    778   size_t count;          /* Number of entries in the hash part. */
    779   size_t mask;           /* Mask to turn hash value -> bucket. */
    780   upb_ctype_t ctype;     /* Type of all values. */
    781   uint8_t size_lg2;      /* Size of the hashtable part is 2^size_lg2 entries. */
    782 
    783   /* Hash table entries.
    784    * Making this const isn't entirely accurate; what we really want is for it to
    785    * have the same const-ness as the table it's inside.  But there's no way to
    786    * declare that in C.  So we have to make it const so that we can statically
    787    * initialize const hash tables.  Then we cast away const when we have to.
    788    */
    789   const upb_tabent *entries;
    790 } upb_table;
    791 
    792 typedef struct {
    793   upb_table t;
    794 } upb_strtable;
    795 
    796 #define UPB_STRTABLE_INIT(count, mask, ctype, size_lg2, entries) \
    797   {{count, mask, ctype, size_lg2, entries}}
    798 
    799 #define UPB_EMPTY_STRTABLE_INIT(ctype)                           \
    800   UPB_STRTABLE_INIT(0, 0, ctype, 0, NULL)
    801 
    802 typedef struct {
    803   upb_table t;              /* For entries that don't fit in the array part. */
    804   const upb_tabval *array;  /* Array part of the table. See const note above. */
    805   size_t array_size;        /* Array part size. */
    806   size_t array_count;       /* Array part number of elements. */
    807 } upb_inttable;
    808 
    809 #define UPB_INTTABLE_INIT(count, mask, ctype, size_lg2, ent, a, asize, acount) \
    810   {{count, mask, ctype, size_lg2, ent}, a, asize, acount}
    811 
    812 #define UPB_EMPTY_INTTABLE_INIT(ctype) \
    813   UPB_INTTABLE_INIT(0, 0, ctype, 0, NULL, NULL, 0, 0)
    814 
    815 #define UPB_ARRAY_EMPTYENT -1
    816 
    817 UPB_INLINE size_t upb_table_size(const upb_table *t) {
    818   if (t->size_lg2 == 0)
    819     return 0;
    820   else
    821     return 1 << t->size_lg2;
    822 }
    823 
    824 /* Internal-only functions, in .h file only out of necessity. */
    825 UPB_INLINE bool upb_tabent_isempty(const upb_tabent *e) {
    826   return e->key == 0;
    827 }
    828 
    829 /* Used by some of the unit tests for generic hashing functionality. */
    830 uint32_t MurmurHash2(const void * key, size_t len, uint32_t seed);
    831 
    832 UPB_INLINE uintptr_t upb_intkey(uintptr_t key) {
    833   return key;
    834 }
    835 
    836 UPB_INLINE uint32_t upb_inthash(uintptr_t key) {
    837   return (uint32_t)key;
    838 }
    839 
    840 static const upb_tabent *upb_getentry(const upb_table *t, uint32_t hash) {
    841   return t->entries + (hash & t->mask);
    842 }
    843 
    844 UPB_INLINE bool upb_arrhas(upb_tabval key) {
    845   return key.val != (uint64_t)-1;
    846 }
    847 
    848 /* Initialize and uninitialize a table, respectively.  If memory allocation
    849  * failed, false is returned that the table is uninitialized. */
    850 bool upb_inttable_init(upb_inttable *table, upb_ctype_t ctype);
    851 bool upb_strtable_init(upb_strtable *table, upb_ctype_t ctype);
    852 void upb_inttable_uninit(upb_inttable *table);
    853 void upb_strtable_uninit(upb_strtable *table);
    854 
    855 /* Returns the number of values in the table. */
    856 size_t upb_inttable_count(const upb_inttable *t);
    857 UPB_INLINE size_t upb_strtable_count(const upb_strtable *t) {
    858   return t->t.count;
    859 }
    860 
    861 /* Inserts the given key into the hashtable with the given value.  The key must
    862  * not already exist in the hash table.  For string tables, the key must be
    863  * NULL-terminated, and the table will make an internal copy of the key.
    864  * Inttables must not insert a value of UINTPTR_MAX.
    865  *
    866  * If a table resize was required but memory allocation failed, false is
    867  * returned and the table is unchanged. */
    868 bool upb_inttable_insert(upb_inttable *t, uintptr_t key, upb_value val);
    869 bool upb_strtable_insert2(upb_strtable *t, const char *key, size_t len,
    870                           upb_value val);
    871 
    872 /* For NULL-terminated strings. */
    873 UPB_INLINE bool upb_strtable_insert(upb_strtable *t, const char *key,
    874                                     upb_value val) {
    875   return upb_strtable_insert2(t, key, strlen(key), val);
    876 }
    877 
    878 /* Looks up key in this table, returning "true" if the key was found.
    879  * If v is non-NULL, copies the value for this key into *v. */
    880 bool upb_inttable_lookup(const upb_inttable *t, uintptr_t key, upb_value *v);
    881 bool upb_strtable_lookup2(const upb_strtable *t, const char *key, size_t len,
    882                           upb_value *v);
    883 
    884 /* For NULL-terminated strings. */
    885 UPB_INLINE bool upb_strtable_lookup(const upb_strtable *t, const char *key,
    886                                     upb_value *v) {
    887   return upb_strtable_lookup2(t, key, strlen(key), v);
    888 }
    889 
    890 /* Removes an item from the table.  Returns true if the remove was successful,
    891  * and stores the removed item in *val if non-NULL. */
    892 bool upb_inttable_remove(upb_inttable *t, uintptr_t key, upb_value *val);
    893 bool upb_strtable_remove2(upb_strtable *t, const char *key, size_t len,
    894                           upb_value *val);
    895 
    896 /* For NULL-terminated strings. */
    897 UPB_INLINE bool upb_strtable_remove(upb_strtable *t, const char *key,
    898                                     upb_value *v) {
    899   return upb_strtable_remove2(t, key, strlen(key), v);
    900 }
    901 
    902 /* Updates an existing entry in an inttable.  If the entry does not exist,
    903  * returns false and does nothing.  Unlike insert/remove, this does not
    904  * invalidate iterators. */
    905 bool upb_inttable_replace(upb_inttable *t, uintptr_t key, upb_value val);
    906 
    907 /* Handy routines for treating an inttable like a stack.  May not be mixed with
    908  * other insert/remove calls. */
    909 bool upb_inttable_push(upb_inttable *t, upb_value val);
    910 upb_value upb_inttable_pop(upb_inttable *t);
    911 
    912 /* Convenience routines for inttables with pointer keys. */
    913 bool upb_inttable_insertptr(upb_inttable *t, const void *key, upb_value val);
    914 bool upb_inttable_removeptr(upb_inttable *t, const void *key, upb_value *val);
    915 bool upb_inttable_lookupptr(
    916     const upb_inttable *t, const void *key, upb_value *val);
    917 
    918 /* Optimizes the table for the current set of entries, for both memory use and
    919  * lookup time.  Client should call this after all entries have been inserted;
    920  * inserting more entries is legal, but will likely require a table resize. */
    921 void upb_inttable_compact(upb_inttable *t);
    922 
    923 /* A special-case inlinable version of the lookup routine for 32-bit
    924  * integers. */
    925 UPB_INLINE bool upb_inttable_lookup32(const upb_inttable *t, uint32_t key,
    926                                       upb_value *v) {
    927   *v = upb_value_int32(0);  /* Silence compiler warnings. */
    928   if (key < t->array_size) {
    929     upb_tabval arrval = t->array[key];
    930     if (upb_arrhas(arrval)) {
    931       _upb_value_setval(v, arrval.val, t->t.ctype);
    932       return true;
    933     } else {
    934       return false;
    935     }
    936   } else {
    937     const upb_tabent *e;
    938     if (t->t.entries == NULL) return false;
    939     for (e = upb_getentry(&t->t, upb_inthash(key)); true; e = e->next) {
    940       if ((uint32_t)e->key == key) {
    941         _upb_value_setval(v, e->val.val, t->t.ctype);
    942         return true;
    943       }
    944       if (e->next == NULL) return false;
    945     }
    946   }
    947 }
    948 
    949 /* Exposed for testing only. */
    950 bool upb_strtable_resize(upb_strtable *t, size_t size_lg2);
    951 
    952 /* Iterators ******************************************************************/
    953 
    954 /* Iterators for int and string tables.  We are subject to some kind of unusual
    955  * design constraints:
    956  *
    957  * For high-level languages:
    958  *  - we must be able to guarantee that we don't crash or corrupt memory even if
    959  *    the program accesses an invalidated iterator.
    960  *
    961  * For C++11 range-based for:
    962  *  - iterators must be copyable
    963  *  - iterators must be comparable
    964  *  - it must be possible to construct an "end" value.
    965  *
    966  * Iteration order is undefined.
    967  *
    968  * Modifying the table invalidates iterators.  upb_{str,int}table_done() is
    969  * guaranteed to work even on an invalidated iterator, as long as the table it
    970  * is iterating over has not been freed.  Calling next() or accessing data from
    971  * an invalidated iterator yields unspecified elements from the table, but it is
    972  * guaranteed not to crash and to return real table elements (except when done()
    973  * is true). */
    974 
    975 
    976 /* upb_strtable_iter **********************************************************/
    977 
    978 /*   upb_strtable_iter i;
    979  *   upb_strtable_begin(&i, t);
    980  *   for(; !upb_strtable_done(&i); upb_strtable_next(&i)) {
    981  *     const char *key = upb_strtable_iter_key(&i);
    982  *     const upb_value val = upb_strtable_iter_value(&i);
    983  *     // ...
    984  *   }
    985  */
    986 
    987 typedef struct {
    988   const upb_strtable *t;
    989   size_t index;
    990 } upb_strtable_iter;
    991 
    992 void upb_strtable_begin(upb_strtable_iter *i, const upb_strtable *t);
    993 void upb_strtable_next(upb_strtable_iter *i);
    994 bool upb_strtable_done(const upb_strtable_iter *i);
    995 const char *upb_strtable_iter_key(upb_strtable_iter *i);
    996 size_t upb_strtable_iter_keylength(upb_strtable_iter *i);
    997 upb_value upb_strtable_iter_value(const upb_strtable_iter *i);
    998 void upb_strtable_iter_setdone(upb_strtable_iter *i);
    999 bool upb_strtable_iter_isequal(const upb_strtable_iter *i1,
   1000                                const upb_strtable_iter *i2);
   1001 
   1002 
   1003 /* upb_inttable_iter **********************************************************/
   1004 
   1005 /*   upb_inttable_iter i;
   1006  *   upb_inttable_begin(&i, t);
   1007  *   for(; !upb_inttable_done(&i); upb_inttable_next(&i)) {
   1008  *     uintptr_t key = upb_inttable_iter_key(&i);
   1009  *     upb_value val = upb_inttable_iter_value(&i);
   1010  *     // ...
   1011  *   }
   1012  */
   1013 
   1014 typedef struct {
   1015   const upb_inttable *t;
   1016   size_t index;
   1017   bool array_part;
   1018 } upb_inttable_iter;
   1019 
   1020 void upb_inttable_begin(upb_inttable_iter *i, const upb_inttable *t);
   1021 void upb_inttable_next(upb_inttable_iter *i);
   1022 bool upb_inttable_done(const upb_inttable_iter *i);
   1023 uintptr_t upb_inttable_iter_key(const upb_inttable_iter *i);
   1024 upb_value upb_inttable_iter_value(const upb_inttable_iter *i);
   1025 void upb_inttable_iter_setdone(upb_inttable_iter *i);
   1026 bool upb_inttable_iter_isequal(const upb_inttable_iter *i1,
   1027                                const upb_inttable_iter *i2);
   1028 
   1029 
   1030 #ifdef __cplusplus
   1031 }  /* extern "C" */
   1032 #endif
   1033 
   1034 #endif  /* UPB_TABLE_H_ */
   1035 
   1036 /* Reference tracking will check ref()/unref() operations to make sure the
   1037  * ref ownership is correct.  Where possible it will also make tools like
   1038  * Valgrind attribute ref leaks to the code that took the leaked ref, not
   1039  * the code that originally created the object.
   1040  *
   1041  * Enabling this requires the application to define upb_lock()/upb_unlock()
   1042  * functions that acquire/release a global mutex (or #define UPB_THREAD_UNSAFE).
   1043  * For this reason we don't enable it by default, even in debug builds.
   1044  */
   1045 
   1046 /* #define UPB_DEBUG_REFS */
   1047 
   1048 #ifdef __cplusplus
   1049 namespace upb { class RefCounted; }
   1050 #endif
   1051 
   1052 UPB_DECLARE_TYPE(upb::RefCounted, upb_refcounted)
   1053 
   1054 struct upb_refcounted_vtbl;
   1055 
   1056 #ifdef __cplusplus
   1057 
   1058 class upb::RefCounted {
   1059  public:
   1060   /* Returns true if the given object is frozen. */
   1061   bool IsFrozen() const;
   1062 
   1063   /* Increases the ref count, the new ref is owned by "owner" which must not
   1064    * already own a ref (and should not itself be a refcounted object if the ref
   1065    * could possibly be circular; see below).
   1066    * Thread-safe iff "this" is frozen. */
   1067   void Ref(const void *owner) const;
   1068 
   1069   /* Release a ref that was acquired from upb_refcounted_ref() and collects any
   1070    * objects it can. */
   1071   void Unref(const void *owner) const;
   1072 
   1073   /* Moves an existing ref from "from" to "to", without changing the overall
   1074    * ref count.  DonateRef(foo, NULL, owner) is the same as Ref(foo, owner),
   1075    * but "to" may not be NULL. */
   1076   void DonateRef(const void *from, const void *to) const;
   1077 
   1078   /* Verifies that a ref to the given object is currently held by the given
   1079    * owner.  Only effective in UPB_DEBUG_REFS builds. */
   1080   void CheckRef(const void *owner) const;
   1081 
   1082  private:
   1083   UPB_DISALLOW_POD_OPS(RefCounted, upb::RefCounted)
   1084 #else
   1085 struct upb_refcounted {
   1086 #endif
   1087   /* TODO(haberman): move the actual structure definition to structdefs.int.h.
   1088    * The only reason they are here is because inline functions need to see the
   1089    * definition of upb_handlers, which needs to see this definition.  But we
   1090    * can change the upb_handlers inline functions to deal in raw offsets
   1091    * instead.
   1092    */
   1093 
   1094   /* A single reference count shared by all objects in the group. */
   1095   uint32_t *group;
   1096 
   1097   /* A singly-linked list of all objects in the group. */
   1098   upb_refcounted *next;
   1099 
   1100   /* Table of function pointers for this type. */
   1101   const struct upb_refcounted_vtbl *vtbl;
   1102 
   1103   /* Maintained only when mutable, this tracks the number of refs (but not
   1104    * ref2's) to this object.  *group should be the sum of all individual_count
   1105    * in the group. */
   1106   uint32_t individual_count;
   1107 
   1108   bool is_frozen;
   1109 
   1110 #ifdef UPB_DEBUG_REFS
   1111   upb_inttable *refs;  /* Maps owner -> trackedref for incoming refs. */
   1112   upb_inttable *ref2s; /* Set of targets for outgoing ref2s. */
   1113 #endif
   1114 };
   1115 
   1116 #ifdef UPB_DEBUG_REFS
   1117 #define UPB_REFCOUNT_INIT(refs, ref2s) \
   1118     {&static_refcount, NULL, NULL, 0, true, refs, ref2s}
   1119 #else
   1120 #define UPB_REFCOUNT_INIT(refs, ref2s) {&static_refcount, NULL, NULL, 0, true}
   1121 #endif
   1122 
   1123 UPB_BEGIN_EXTERN_C
   1124 
   1125 /* It is better to use tracked refs when possible, for the extra debugging
   1126  * capability.  But if this is not possible (because you don't have easy access
   1127  * to a stable pointer value that is associated with the ref), you can pass
   1128  * UPB_UNTRACKED_REF instead.  */
   1129 extern const void *UPB_UNTRACKED_REF;
   1130 
   1131 /* Native C API. */
   1132 bool upb_refcounted_isfrozen(const upb_refcounted *r);
   1133 void upb_refcounted_ref(const upb_refcounted *r, const void *owner);
   1134 void upb_refcounted_unref(const upb_refcounted *r, const void *owner);
   1135 void upb_refcounted_donateref(
   1136     const upb_refcounted *r, const void *from, const void *to);
   1137 void upb_refcounted_checkref(const upb_refcounted *r, const void *owner);
   1138 
   1139 #define UPB_REFCOUNTED_CMETHODS(type, upcastfunc) \
   1140   UPB_INLINE bool type ## _isfrozen(const type *v) { \
   1141     return upb_refcounted_isfrozen(upcastfunc(v)); \
   1142   } \
   1143   UPB_INLINE void type ## _ref(const type *v, const void *owner) { \
   1144     upb_refcounted_ref(upcastfunc(v), owner); \
   1145   } \
   1146   UPB_INLINE void type ## _unref(const type *v, const void *owner) { \
   1147     upb_refcounted_unref(upcastfunc(v), owner); \
   1148   } \
   1149   UPB_INLINE void type ## _donateref(const type *v, const void *from, const void *to) { \
   1150     upb_refcounted_donateref(upcastfunc(v), from, to); \
   1151   } \
   1152   UPB_INLINE void type ## _checkref(const type *v, const void *owner) { \
   1153     upb_refcounted_checkref(upcastfunc(v), owner); \
   1154   }
   1155 
   1156 #define UPB_REFCOUNTED_CPPMETHODS \
   1157   bool IsFrozen() const { \
   1158     return upb::upcast_to<const upb::RefCounted>(this)->IsFrozen(); \
   1159   } \
   1160   void Ref(const void *owner) const { \
   1161     return upb::upcast_to<const upb::RefCounted>(this)->Ref(owner); \
   1162   } \
   1163   void Unref(const void *owner) const { \
   1164     return upb::upcast_to<const upb::RefCounted>(this)->Unref(owner); \
   1165   } \
   1166   void DonateRef(const void *from, const void *to) const { \
   1167     return upb::upcast_to<const upb::RefCounted>(this)->DonateRef(from, to); \
   1168   } \
   1169   void CheckRef(const void *owner) const { \
   1170     return upb::upcast_to<const upb::RefCounted>(this)->CheckRef(owner); \
   1171   }
   1172 
   1173 /* Internal-to-upb Interface **************************************************/
   1174 
   1175 typedef void upb_refcounted_visit(const upb_refcounted *r,
   1176                                   const upb_refcounted *subobj,
   1177                                   void *closure);
   1178 
   1179 struct upb_refcounted_vtbl {
   1180   /* Must visit all subobjects that are currently ref'd via upb_refcounted_ref2.
   1181    * Must be longjmp()-safe. */
   1182   void (*visit)(const upb_refcounted *r, upb_refcounted_visit *visit, void *c);
   1183 
   1184   /* Must free the object and release all references to other objects. */
   1185   void (*free)(upb_refcounted *r);
   1186 };
   1187 
   1188 /* Initializes the refcounted with a single ref for the given owner.  Returns
   1189  * false if memory could not be allocated. */
   1190 bool upb_refcounted_init(upb_refcounted *r,
   1191                          const struct upb_refcounted_vtbl *vtbl,
   1192                          const void *owner);
   1193 
   1194 /* Adds a ref from one refcounted object to another ("from" must not already
   1195  * own a ref).  These refs may be circular; cycles will be collected correctly
   1196  * (if conservatively).  These refs do not need to be freed in from's free()
   1197  * function. */
   1198 void upb_refcounted_ref2(const upb_refcounted *r, upb_refcounted *from);
   1199 
   1200 /* Removes a ref that was acquired from upb_refcounted_ref2(), and collects any
   1201  * object it can.  This is only necessary when "from" no longer points to "r",
   1202  * and not from from's "free" function. */
   1203 void upb_refcounted_unref2(const upb_refcounted *r, upb_refcounted *from);
   1204 
   1205 #define upb_ref2(r, from) \
   1206     upb_refcounted_ref2((const upb_refcounted*)r, (upb_refcounted*)from)
   1207 #define upb_unref2(r, from) \
   1208     upb_refcounted_unref2((const upb_refcounted*)r, (upb_refcounted*)from)
   1209 
   1210 /* Freezes all mutable object reachable by ref2() refs from the given roots.
   1211  * This will split refcounting groups into precise SCC groups, so that
   1212  * refcounting of frozen objects can be more aggressive.  If memory allocation
   1213  * fails, or if more than 2**31 mutable objects are reachable from "roots", or
   1214  * if the maximum depth of the graph exceeds "maxdepth", false is returned and
   1215  * the objects are unchanged.
   1216  *
   1217  * After this operation succeeds, the objects are frozen/const, and may not be
   1218  * used through non-const pointers.  In particular, they may not be passed as
   1219  * the second parameter of upb_refcounted_{ref,unref}2().  On the upside, all
   1220  * operations on frozen refcounteds are threadsafe, and objects will be freed
   1221  * at the precise moment that they become unreachable.
   1222  *
   1223  * Caller must own refs on each object in the "roots" list. */
   1224 bool upb_refcounted_freeze(upb_refcounted *const*roots, int n, upb_status *s,
   1225                            int maxdepth);
   1226 
   1227 /* Shared by all compiled-in refcounted objects. */
   1228 extern uint32_t static_refcount;
   1229 
   1230 UPB_END_EXTERN_C
   1231 
   1232 #ifdef __cplusplus
   1233 /* C++ Wrappers. */
   1234 namespace upb {
   1235 inline bool RefCounted::IsFrozen() const {
   1236   return upb_refcounted_isfrozen(this);
   1237 }
   1238 inline void RefCounted::Ref(const void *owner) const {
   1239   upb_refcounted_ref(this, owner);
   1240 }
   1241 inline void RefCounted::Unref(const void *owner) const {
   1242   upb_refcounted_unref(this, owner);
   1243 }
   1244 inline void RefCounted::DonateRef(const void *from, const void *to) const {
   1245   upb_refcounted_donateref(this, from, to);
   1246 }
   1247 inline void RefCounted::CheckRef(const void *owner) const {
   1248   upb_refcounted_checkref(this, owner);
   1249 }
   1250 }  /* namespace upb */
   1251 #endif
   1252 
   1253 #endif  /* UPB_REFCOUNT_H_ */
   1254 
   1255 #ifdef __cplusplus
   1256 #include <cstring>
   1257 #include <string>
   1258 #include <vector>
   1259 
   1260 namespace upb {
   1261 class Def;
   1262 class EnumDef;
   1263 class FieldDef;
   1264 class MessageDef;
   1265 class OneofDef;
   1266 }
   1267 #endif
   1268 
   1269 UPB_DECLARE_DERIVED_TYPE(upb::Def, upb::RefCounted, upb_def, upb_refcounted)
   1270 
   1271 /* The maximum message depth that the type graph can have.  This is a resource
   1272  * limit for the C stack since we sometimes need to recursively traverse the
   1273  * graph.  Cycles are ok; the traversal will stop when it detects a cycle, but
   1274  * we must hit the cycle before the maximum depth is reached.
   1275  *
   1276  * If having a single static limit is too inflexible, we can add another variant
   1277  * of Def::Freeze that allows specifying this as a parameter. */
   1278 #define UPB_MAX_MESSAGE_DEPTH 64
   1279 
   1280 
   1281 /* upb::Def: base class for defs  *********************************************/
   1282 
   1283 /* All the different kind of defs we support.  These correspond 1:1 with
   1284  * declarations in a .proto file. */
   1285 typedef enum {
   1286   UPB_DEF_MSG,
   1287   UPB_DEF_FIELD,
   1288   UPB_DEF_ENUM,
   1289   UPB_DEF_ONEOF,
   1290   UPB_DEF_SERVICE,   /* Not yet implemented. */
   1291   UPB_DEF_ANY = -1   /* Wildcard for upb_symtab_get*() */
   1292 } upb_deftype_t;
   1293 
   1294 #ifdef __cplusplus
   1295 
   1296 /* The base class of all defs.  Its base is upb::RefCounted (use upb::upcast()
   1297  * to convert). */
   1298 class upb::Def {
   1299  public:
   1300   typedef upb_deftype_t Type;
   1301 
   1302   Def* Dup(const void *owner) const;
   1303 
   1304   /* upb::RefCounted methods like Ref()/Unref(). */
   1305   UPB_REFCOUNTED_CPPMETHODS
   1306 
   1307   Type def_type() const;
   1308 
   1309   /* "fullname" is the def's fully-qualified name (eg. foo.bar.Message). */
   1310   const char *full_name() const;
   1311 
   1312   /* The def must be mutable.  Caller retains ownership of fullname.  Defs are
   1313    * not required to have a name; if a def has no name when it is frozen, it
   1314    * will remain an anonymous def.  On failure, returns false and details in "s"
   1315    * if non-NULL. */
   1316   bool set_full_name(const char* fullname, upb::Status* s);
   1317   bool set_full_name(const std::string &fullname, upb::Status* s);
   1318 
   1319   /* Freezes the given defs; this validates all constraints and marks the defs
   1320    * as frozen (read-only).  "defs" may not contain any fielddefs, but fields
   1321    * of any msgdefs will be frozen.
   1322    *
   1323    * Symbolic references to sub-types and enum defaults must have already been
   1324    * resolved.  Any mutable defs reachable from any of "defs" must also be in
   1325    * the list; more formally, "defs" must be a transitive closure of mutable
   1326    * defs.
   1327    *
   1328    * After this operation succeeds, the finalized defs must only be accessed
   1329    * through a const pointer! */
   1330   static bool Freeze(Def* const* defs, int n, Status* status);
   1331   static bool Freeze(const std::vector<Def*>& defs, Status* status);
   1332 
   1333  private:
   1334   UPB_DISALLOW_POD_OPS(Def, upb::Def)
   1335 };
   1336 
   1337 #endif  /* __cplusplus */
   1338 
   1339 UPB_BEGIN_EXTERN_C
   1340 
   1341 /* Native C API. */
   1342 upb_def *upb_def_dup(const upb_def *def, const void *owner);
   1343 
   1344 /* Include upb_refcounted methods like upb_def_ref()/upb_def_unref(). */
   1345 UPB_REFCOUNTED_CMETHODS(upb_def, upb_def_upcast)
   1346 
   1347 upb_deftype_t upb_def_type(const upb_def *d);
   1348 const char *upb_def_fullname(const upb_def *d);
   1349 bool upb_def_setfullname(upb_def *def, const char *fullname, upb_status *s);
   1350 bool upb_def_freeze(upb_def *const *defs, int n, upb_status *s);
   1351 
   1352 UPB_END_EXTERN_C
   1353 
   1354 
   1355 /* upb::Def casts *************************************************************/
   1356 
   1357 #ifdef __cplusplus
   1358 #define UPB_CPP_CASTS(cname, cpptype)                                          \
   1359   namespace upb {                                                              \
   1360   template <>                                                                  \
   1361   inline cpptype *down_cast<cpptype *, Def>(Def * def) {                       \
   1362     return upb_downcast_##cname##_mutable(def);                                \
   1363   }                                                                            \
   1364   template <>                                                                  \
   1365   inline cpptype *dyn_cast<cpptype *, Def>(Def * def) {                        \
   1366     return upb_dyncast_##cname##_mutable(def);                                 \
   1367   }                                                                            \
   1368   template <>                                                                  \
   1369   inline const cpptype *down_cast<const cpptype *, const Def>(                 \
   1370       const Def *def) {                                                        \
   1371     return upb_downcast_##cname(def);                                          \
   1372   }                                                                            \
   1373   template <>                                                                  \
   1374   inline const cpptype *dyn_cast<const cpptype *, const Def>(const Def *def) { \
   1375     return upb_dyncast_##cname(def);                                           \
   1376   }                                                                            \
   1377   template <>                                                                  \
   1378   inline const cpptype *down_cast<const cpptype *, Def>(Def * def) {           \
   1379     return upb_downcast_##cname(def);                                          \
   1380   }                                                                            \
   1381   template <>                                                                  \
   1382   inline const cpptype *dyn_cast<const cpptype *, Def>(Def * def) {            \
   1383     return upb_dyncast_##cname(def);                                           \
   1384   }                                                                            \
   1385   }  /* namespace upb */
   1386 #else
   1387 #define UPB_CPP_CASTS(cname, cpptype)
   1388 #endif  /* __cplusplus */
   1389 
   1390 /* Dynamic casts, for determining if a def is of a particular type at runtime.
   1391  * Downcasts, for when some wants to assert that a def is of a particular type.
   1392  * These are only checked if we are building debug. */
   1393 #define UPB_DEF_CASTS(lower, upper, cpptype)                               \
   1394   UPB_INLINE const upb_##lower *upb_dyncast_##lower(const upb_def *def) {  \
   1395     if (upb_def_type(def) != UPB_DEF_##upper) return NULL;                 \
   1396     return (upb_##lower *)def;                                             \
   1397   }                                                                        \
   1398   UPB_INLINE const upb_##lower *upb_downcast_##lower(const upb_def *def) { \
   1399     assert(upb_def_type(def) == UPB_DEF_##upper);                          \
   1400     return (const upb_##lower *)def;                                       \
   1401   }                                                                        \
   1402   UPB_INLINE upb_##lower *upb_dyncast_##lower##_mutable(upb_def *def) {    \
   1403     return (upb_##lower *)upb_dyncast_##lower(def);                        \
   1404   }                                                                        \
   1405   UPB_INLINE upb_##lower *upb_downcast_##lower##_mutable(upb_def *def) {   \
   1406     return (upb_##lower *)upb_downcast_##lower(def);                       \
   1407   }                                                                        \
   1408   UPB_CPP_CASTS(lower, cpptype)
   1409 
   1410 #define UPB_DEFINE_DEF(cppname, lower, upper, cppmethods, members)             \
   1411   UPB_DEFINE_CLASS2(cppname, upb::Def, upb::RefCounted, cppmethods,            \
   1412                    members)                                                    \
   1413   UPB_DEF_CASTS(lower, upper, cppname)
   1414 
   1415 #define UPB_DECLARE_DEF_TYPE(cppname, lower, upper) \
   1416   UPB_DECLARE_DERIVED_TYPE2(cppname, upb::Def, upb::RefCounted, \
   1417                             upb_ ## lower, upb_def, upb_refcounted) \
   1418   UPB_DEF_CASTS(lower, upper, cppname)
   1419 
   1420 UPB_DECLARE_DEF_TYPE(upb::FieldDef, fielddef, FIELD)
   1421 UPB_DECLARE_DEF_TYPE(upb::MessageDef, msgdef, MSG)
   1422 UPB_DECLARE_DEF_TYPE(upb::EnumDef, enumdef, ENUM)
   1423 UPB_DECLARE_DEF_TYPE(upb::OneofDef, oneofdef, ONEOF)
   1424 
   1425 #undef UPB_DECLARE_DEF_TYPE
   1426 #undef UPB_DEF_CASTS
   1427 #undef UPB_CPP_CASTS
   1428 
   1429 
   1430 /* upb::FieldDef **************************************************************/
   1431 
   1432 /* The types a field can have.  Note that this list is not identical to the
   1433  * types defined in descriptor.proto, which gives INT32 and SINT32 separate
   1434  * types (we distinguish the two with the "integer encoding" enum below). */
   1435 typedef enum {
   1436   UPB_TYPE_FLOAT    = 1,
   1437   UPB_TYPE_DOUBLE   = 2,
   1438   UPB_TYPE_BOOL     = 3,
   1439   UPB_TYPE_STRING   = 4,
   1440   UPB_TYPE_BYTES    = 5,
   1441   UPB_TYPE_MESSAGE  = 6,
   1442   UPB_TYPE_ENUM     = 7,  /* Enum values are int32. */
   1443   UPB_TYPE_INT32    = 8,
   1444   UPB_TYPE_UINT32   = 9,
   1445   UPB_TYPE_INT64    = 10,
   1446   UPB_TYPE_UINT64   = 11
   1447 } upb_fieldtype_t;
   1448 
   1449 /* The repeated-ness of each field; this matches descriptor.proto. */
   1450 typedef enum {
   1451   UPB_LABEL_OPTIONAL = 1,
   1452   UPB_LABEL_REQUIRED = 2,
   1453   UPB_LABEL_REPEATED = 3
   1454 } upb_label_t;
   1455 
   1456 /* How integers should be encoded in serializations that offer multiple
   1457  * integer encoding methods. */
   1458 typedef enum {
   1459   UPB_INTFMT_VARIABLE = 1,
   1460   UPB_INTFMT_FIXED = 2,
   1461   UPB_INTFMT_ZIGZAG = 3   /* Only for signed types (INT32/INT64). */
   1462 } upb_intfmt_t;
   1463 
   1464 /* Descriptor types, as defined in descriptor.proto. */
   1465 typedef enum {
   1466   UPB_DESCRIPTOR_TYPE_DOUBLE   = 1,
   1467   UPB_DESCRIPTOR_TYPE_FLOAT    = 2,
   1468   UPB_DESCRIPTOR_TYPE_INT64    = 3,
   1469   UPB_DESCRIPTOR_TYPE_UINT64   = 4,
   1470   UPB_DESCRIPTOR_TYPE_INT32    = 5,
   1471   UPB_DESCRIPTOR_TYPE_FIXED64  = 6,
   1472   UPB_DESCRIPTOR_TYPE_FIXED32  = 7,
   1473   UPB_DESCRIPTOR_TYPE_BOOL     = 8,
   1474   UPB_DESCRIPTOR_TYPE_STRING   = 9,
   1475   UPB_DESCRIPTOR_TYPE_GROUP    = 10,
   1476   UPB_DESCRIPTOR_TYPE_MESSAGE  = 11,
   1477   UPB_DESCRIPTOR_TYPE_BYTES    = 12,
   1478   UPB_DESCRIPTOR_TYPE_UINT32   = 13,
   1479   UPB_DESCRIPTOR_TYPE_ENUM     = 14,
   1480   UPB_DESCRIPTOR_TYPE_SFIXED32 = 15,
   1481   UPB_DESCRIPTOR_TYPE_SFIXED64 = 16,
   1482   UPB_DESCRIPTOR_TYPE_SINT32   = 17,
   1483   UPB_DESCRIPTOR_TYPE_SINT64   = 18
   1484 } upb_descriptortype_t;
   1485 
   1486 /* Maximum field number allowed for FieldDefs.  This is an inherent limit of the
   1487  * protobuf wire format. */
   1488 #define UPB_MAX_FIELDNUMBER ((1 << 29) - 1)
   1489 
   1490 #ifdef __cplusplus
   1491 
   1492 /* A upb_fielddef describes a single field in a message.  It is most often
   1493  * found as a part of a upb_msgdef, but can also stand alone to represent
   1494  * an extension.
   1495  *
   1496  * Its base class is upb::Def (use upb::upcast() to convert). */
   1497 class upb::FieldDef {
   1498  public:
   1499   typedef upb_fieldtype_t Type;
   1500   typedef upb_label_t Label;
   1501   typedef upb_intfmt_t IntegerFormat;
   1502   typedef upb_descriptortype_t DescriptorType;
   1503 
   1504   /* These return true if the given value is a valid member of the enumeration. */
   1505   static bool CheckType(int32_t val);
   1506   static bool CheckLabel(int32_t val);
   1507   static bool CheckDescriptorType(int32_t val);
   1508   static bool CheckIntegerFormat(int32_t val);
   1509 
   1510   /* These convert to the given enumeration; they require that the value is
   1511    * valid. */
   1512   static Type ConvertType(int32_t val);
   1513   static Label ConvertLabel(int32_t val);
   1514   static DescriptorType ConvertDescriptorType(int32_t val);
   1515   static IntegerFormat ConvertIntegerFormat(int32_t val);
   1516 
   1517   /* Returns NULL if memory allocation failed. */
   1518   static reffed_ptr<FieldDef> New();
   1519 
   1520   /* Duplicates the given field, returning NULL if memory allocation failed.
   1521    * When a fielddef is duplicated, the subdef (if any) is made symbolic if it
   1522    * wasn't already.  If the subdef is set but has no name (which is possible
   1523    * since msgdefs are not required to have a name) the new fielddef's subdef
   1524    * will be unset. */
   1525   FieldDef* Dup(const void* owner) const;
   1526 
   1527   /* upb::RefCounted methods like Ref()/Unref(). */
   1528   UPB_REFCOUNTED_CPPMETHODS
   1529 
   1530   /* Functionality from upb::Def. */
   1531   const char* full_name() const;
   1532 
   1533   bool type_is_set() const;  /* set_[descriptor_]type() has been called? */
   1534   Type type() const;         /* Requires that type_is_set() == true. */
   1535   Label label() const;       /* Defaults to UPB_LABEL_OPTIONAL. */
   1536   const char* name() const;  /* NULL if uninitialized. */
   1537   uint32_t number() const;   /* Returns 0 if uninitialized. */
   1538   bool is_extension() const;
   1539 
   1540   /* For UPB_TYPE_MESSAGE fields only where is_tag_delimited() == false,
   1541    * indicates whether this field should have lazy parsing handlers that yield
   1542    * the unparsed string for the submessage.
   1543    *
   1544    * TODO(haberman): I think we want to move this into a FieldOptions container
   1545    * when we add support for custom options (the FieldOptions struct will
   1546    * contain both regular FieldOptions like "lazy" *and* custom options). */
   1547   bool lazy() const;
   1548 
   1549   /* For non-string, non-submessage fields, this indicates whether binary
   1550    * protobufs are encoded in packed or non-packed format.
   1551    *
   1552    * TODO(haberman): see note above about putting options like this into a
   1553    * FieldOptions container. */
   1554   bool packed() const;
   1555 
   1556   /* An integer that can be used as an index into an array of fields for
   1557    * whatever message this field belongs to.  Guaranteed to be less than
   1558    * f->containing_type()->field_count().  May only be accessed once the def has
   1559    * been finalized. */
   1560   int index() const;
   1561 
   1562   /* The MessageDef to which this field belongs.
   1563    *
   1564    * If this field has been added to a MessageDef, that message can be retrieved
   1565    * directly (this is always the case for frozen FieldDefs).
   1566    *
   1567    * If the field has not yet been added to a MessageDef, you can set the name
   1568    * of the containing type symbolically instead.  This is mostly useful for
   1569    * extensions, where the extension is declared separately from the message. */
   1570   const MessageDef* containing_type() const;
   1571   const char* containing_type_name();
   1572 
   1573   /* The OneofDef to which this field belongs, or NULL if this field is not part
   1574    * of a oneof. */
   1575   const OneofDef* containing_oneof() const;
   1576 
   1577   /* The field's type according to the enum in descriptor.proto.  This is not
   1578    * the same as UPB_TYPE_*, because it distinguishes between (for example)
   1579    * INT32 and SINT32, whereas our "type" enum does not.  This return of
   1580    * descriptor_type() is a function of type(), integer_format(), and
   1581    * is_tag_delimited().  Likewise set_descriptor_type() sets all three
   1582    * appropriately. */
   1583   DescriptorType descriptor_type() const;
   1584 
   1585   /* Convenient field type tests. */
   1586   bool IsSubMessage() const;
   1587   bool IsString() const;
   1588   bool IsSequence() const;
   1589   bool IsPrimitive() const;
   1590   bool IsMap() const;
   1591 
   1592   /* How integers are encoded.  Only meaningful for integer types.
   1593    * Defaults to UPB_INTFMT_VARIABLE, and is reset when "type" changes. */
   1594   IntegerFormat integer_format() const;
   1595 
   1596   /* Whether a submessage field is tag-delimited or not (if false, then
   1597    * length-delimited).  May only be set when type() == UPB_TYPE_MESSAGE. */
   1598   bool is_tag_delimited() const;
   1599 
   1600   /* Returns the non-string default value for this fielddef, which may either
   1601    * be something the client set explicitly or the "default default" (0 for
   1602    * numbers, empty for strings).  The field's type indicates the type of the
   1603    * returned value, except for enum fields that are still mutable.
   1604    *
   1605    * Requires that the given function matches the field's current type. */
   1606   int64_t default_int64() const;
   1607   int32_t default_int32() const;
   1608   uint64_t default_uint64() const;
   1609   uint32_t default_uint32() const;
   1610   bool default_bool() const;
   1611   float default_float() const;
   1612   double default_double() const;
   1613 
   1614   /* The resulting string is always NULL-terminated.  If non-NULL, the length
   1615    * will be stored in *len. */
   1616   const char *default_string(size_t* len) const;
   1617 
   1618   /* For frozen UPB_TYPE_ENUM fields, enum defaults can always be read as either
   1619    * string or int32, and both of these methods will always return true.
   1620    *
   1621    * For mutable UPB_TYPE_ENUM fields, the story is a bit more complicated.
   1622    * Enum defaults are unusual. They can be specified either as string or int32,
   1623    * but to be valid the enum must have that value as a member.  And if no
   1624    * default is specified, the "default default" comes from the EnumDef.
   1625    *
   1626    * We allow reading the default as either an int32 or a string, but only if
   1627    * we have a meaningful value to report.  We have a meaningful value if it was
   1628    * set explicitly, or if we could get the "default default" from the EnumDef.
   1629    * Also if you explicitly set the name and we find the number in the EnumDef */
   1630   bool EnumHasStringDefault() const;
   1631   bool EnumHasInt32Default() const;
   1632 
   1633   /* Submessage and enum fields must reference a "subdef", which is the
   1634    * upb::MessageDef or upb::EnumDef that defines their type.  Note that when
   1635    * the FieldDef is mutable it may not have a subdef *yet*, but this function
   1636    * still returns true to indicate that the field's type requires a subdef. */
   1637   bool HasSubDef() const;
   1638 
   1639   /* Returns the enum or submessage def for this field, if any.  The field's
   1640    * type must match (ie. you may only call enum_subdef() for fields where
   1641    * type() == UPB_TYPE_ENUM).  Returns NULL if the subdef has not been set or
   1642    * is currently set symbolically. */
   1643   const EnumDef* enum_subdef() const;
   1644   const MessageDef* message_subdef() const;
   1645 
   1646   /* Returns the generic subdef for this field.  Requires that HasSubDef() (ie.
   1647    * only works for UPB_TYPE_ENUM and UPB_TYPE_MESSAGE fields). */
   1648   const Def* subdef() const;
   1649 
   1650   /* Returns the symbolic name of the subdef.  If the subdef is currently set
   1651    * unresolved (ie. set symbolically) returns the symbolic name.  If it has
   1652    * been resolved to a specific subdef, returns the name from that subdef. */
   1653   const char* subdef_name() const;
   1654 
   1655   /* Setters (non-const methods), only valid for mutable FieldDefs! ***********/
   1656 
   1657   bool set_full_name(const char* fullname, upb::Status* s);
   1658   bool set_full_name(const std::string& fullname, upb::Status* s);
   1659 
   1660   /* This may only be called if containing_type() == NULL (ie. the field has not
   1661    * been added to a message yet). */
   1662   bool set_containing_type_name(const char *name, Status* status);
   1663   bool set_containing_type_name(const std::string& name, Status* status);
   1664 
   1665   /* Defaults to false.  When we freeze, we ensure that this can only be true
   1666    * for length-delimited message fields.  Prior to freezing this can be true or
   1667    * false with no restrictions. */
   1668   void set_lazy(bool lazy);
   1669 
   1670   /* Defaults to true.  Sets whether this field is encoded in packed format. */
   1671   void set_packed(bool packed);
   1672 
   1673   /* "type" or "descriptor_type" MUST be set explicitly before the fielddef is
   1674    * finalized.  These setters require that the enum value is valid; if the
   1675    * value did not come directly from an enum constant, the caller should
   1676    * validate it first with the functions above (CheckFieldType(), etc). */
   1677   void set_type(Type type);
   1678   void set_label(Label label);
   1679   void set_descriptor_type(DescriptorType type);
   1680   void set_is_extension(bool is_extension);
   1681 
   1682   /* "number" and "name" must be set before the FieldDef is added to a
   1683    * MessageDef, and may not be set after that.
   1684    *
   1685    * "name" is the same as full_name()/set_full_name(), but since fielddefs
   1686    * most often use simple, non-qualified names, we provide this accessor
   1687    * also.  Generally only extensions will want to think of this name as
   1688    * fully-qualified. */
   1689   bool set_number(uint32_t number, upb::Status* s);
   1690   bool set_name(const char* name, upb::Status* s);
   1691   bool set_name(const std::string& name, upb::Status* s);
   1692 
   1693   void set_integer_format(IntegerFormat format);
   1694   bool set_tag_delimited(bool tag_delimited, upb::Status* s);
   1695 
   1696   /* Sets default value for the field.  The call must exactly match the type
   1697    * of the field.  Enum fields may use either setint32 or setstring to set
   1698    * the default numerically or symbolically, respectively, but symbolic
   1699    * defaults must be resolved before finalizing (see ResolveEnumDefault()).
   1700    *
   1701    * Changing the type of a field will reset its default. */
   1702   void set_default_int64(int64_t val);
   1703   void set_default_int32(int32_t val);
   1704   void set_default_uint64(uint64_t val);
   1705   void set_default_uint32(uint32_t val);
   1706   void set_default_bool(bool val);
   1707   void set_default_float(float val);
   1708   void set_default_double(double val);
   1709   bool set_default_string(const void *str, size_t len, Status *s);
   1710   bool set_default_string(const std::string &str, Status *s);
   1711   void set_default_cstr(const char *str, Status *s);
   1712 
   1713   /* Before a fielddef is frozen, its subdef may be set either directly (with a
   1714    * upb::Def*) or symbolically.  Symbolic refs must be resolved before the
   1715    * containing msgdef can be frozen (see upb_resolve() above).  upb always
   1716    * guarantees that any def reachable from a live def will also be kept alive.
   1717    *
   1718    * Both methods require that upb_hassubdef(f) (so the type must be set prior
   1719    * to calling these methods).  Returns false if this is not the case, or if
   1720    * the given subdef is not of the correct type.  The subdef is reset if the
   1721    * field's type is changed.  The subdef can be set to NULL to clear it. */
   1722   bool set_subdef(const Def* subdef, Status* s);
   1723   bool set_enum_subdef(const EnumDef* subdef, Status* s);
   1724   bool set_message_subdef(const MessageDef* subdef, Status* s);
   1725   bool set_subdef_name(const char* name, Status* s);
   1726   bool set_subdef_name(const std::string &name, Status* s);
   1727 
   1728  private:
   1729   UPB_DISALLOW_POD_OPS(FieldDef, upb::FieldDef)
   1730 };
   1731 
   1732 # endif  /* defined(__cplusplus) */
   1733 
   1734 UPB_BEGIN_EXTERN_C
   1735 
   1736 /* Native C API. */
   1737 upb_fielddef *upb_fielddef_new(const void *owner);
   1738 upb_fielddef *upb_fielddef_dup(const upb_fielddef *f, const void *owner);
   1739 
   1740 /* Include upb_refcounted methods like upb_fielddef_ref(). */
   1741 UPB_REFCOUNTED_CMETHODS(upb_fielddef, upb_fielddef_upcast2)
   1742 
   1743 /* Methods from upb_def. */
   1744 const char *upb_fielddef_fullname(const upb_fielddef *f);
   1745 bool upb_fielddef_setfullname(upb_fielddef *f, const char *fullname,
   1746                               upb_status *s);
   1747 
   1748 bool upb_fielddef_typeisset(const upb_fielddef *f);
   1749 upb_fieldtype_t upb_fielddef_type(const upb_fielddef *f);
   1750 upb_descriptortype_t upb_fielddef_descriptortype(const upb_fielddef *f);
   1751 upb_label_t upb_fielddef_label(const upb_fielddef *f);
   1752 uint32_t upb_fielddef_number(const upb_fielddef *f);
   1753 const char *upb_fielddef_name(const upb_fielddef *f);
   1754 bool upb_fielddef_isextension(const upb_fielddef *f);
   1755 bool upb_fielddef_lazy(const upb_fielddef *f);
   1756 bool upb_fielddef_packed(const upb_fielddef *f);
   1757 const upb_msgdef *upb_fielddef_containingtype(const upb_fielddef *f);
   1758 const upb_oneofdef *upb_fielddef_containingoneof(const upb_fielddef *f);
   1759 upb_msgdef *upb_fielddef_containingtype_mutable(upb_fielddef *f);
   1760 const char *upb_fielddef_containingtypename(upb_fielddef *f);
   1761 upb_intfmt_t upb_fielddef_intfmt(const upb_fielddef *f);
   1762 uint32_t upb_fielddef_index(const upb_fielddef *f);
   1763 bool upb_fielddef_istagdelim(const upb_fielddef *f);
   1764 bool upb_fielddef_issubmsg(const upb_fielddef *f);
   1765 bool upb_fielddef_isstring(const upb_fielddef *f);
   1766 bool upb_fielddef_isseq(const upb_fielddef *f);
   1767 bool upb_fielddef_isprimitive(const upb_fielddef *f);
   1768 bool upb_fielddef_ismap(const upb_fielddef *f);
   1769 int64_t upb_fielddef_defaultint64(const upb_fielddef *f);
   1770 int32_t upb_fielddef_defaultint32(const upb_fielddef *f);
   1771 uint64_t upb_fielddef_defaultuint64(const upb_fielddef *f);
   1772 uint32_t upb_fielddef_defaultuint32(const upb_fielddef *f);
   1773 bool upb_fielddef_defaultbool(const upb_fielddef *f);
   1774 float upb_fielddef_defaultfloat(const upb_fielddef *f);
   1775 double upb_fielddef_defaultdouble(const upb_fielddef *f);
   1776 const char *upb_fielddef_defaultstr(const upb_fielddef *f, size_t *len);
   1777 bool upb_fielddef_enumhasdefaultint32(const upb_fielddef *f);
   1778 bool upb_fielddef_enumhasdefaultstr(const upb_fielddef *f);
   1779 bool upb_fielddef_hassubdef(const upb_fielddef *f);
   1780 const upb_def *upb_fielddef_subdef(const upb_fielddef *f);
   1781 const upb_msgdef *upb_fielddef_msgsubdef(const upb_fielddef *f);
   1782 const upb_enumdef *upb_fielddef_enumsubdef(const upb_fielddef *f);
   1783 const char *upb_fielddef_subdefname(const upb_fielddef *f);
   1784 
   1785 void upb_fielddef_settype(upb_fielddef *f, upb_fieldtype_t type);
   1786 void upb_fielddef_setdescriptortype(upb_fielddef *f, int type);
   1787 void upb_fielddef_setlabel(upb_fielddef *f, upb_label_t label);
   1788 bool upb_fielddef_setnumber(upb_fielddef *f, uint32_t number, upb_status *s);
   1789 bool upb_fielddef_setname(upb_fielddef *f, const char *name, upb_status *s);
   1790 bool upb_fielddef_setcontainingtypename(upb_fielddef *f, const char *name,
   1791                                         upb_status *s);
   1792 void upb_fielddef_setisextension(upb_fielddef *f, bool is_extension);
   1793 void upb_fielddef_setlazy(upb_fielddef *f, bool lazy);
   1794 void upb_fielddef_setpacked(upb_fielddef *f, bool packed);
   1795 void upb_fielddef_setintfmt(upb_fielddef *f, upb_intfmt_t fmt);
   1796 void upb_fielddef_settagdelim(upb_fielddef *f, bool tag_delim);
   1797 void upb_fielddef_setdefaultint64(upb_fielddef *f, int64_t val);
   1798 void upb_fielddef_setdefaultint32(upb_fielddef *f, int32_t val);
   1799 void upb_fielddef_setdefaultuint64(upb_fielddef *f, uint64_t val);
   1800 void upb_fielddef_setdefaultuint32(upb_fielddef *f, uint32_t val);
   1801 void upb_fielddef_setdefaultbool(upb_fielddef *f, bool val);
   1802 void upb_fielddef_setdefaultfloat(upb_fielddef *f, float val);
   1803 void upb_fielddef_setdefaultdouble(upb_fielddef *f, double val);
   1804 bool upb_fielddef_setdefaultstr(upb_fielddef *f, const void *str, size_t len,
   1805                                 upb_status *s);
   1806 void upb_fielddef_setdefaultcstr(upb_fielddef *f, const char *str,
   1807                                  upb_status *s);
   1808 bool upb_fielddef_setsubdef(upb_fielddef *f, const upb_def *subdef,
   1809                             upb_status *s);
   1810 bool upb_fielddef_setmsgsubdef(upb_fielddef *f, const upb_msgdef *subdef,
   1811                                upb_status *s);
   1812 bool upb_fielddef_setenumsubdef(upb_fielddef *f, const upb_enumdef *subdef,
   1813                                 upb_status *s);
   1814 bool upb_fielddef_setsubdefname(upb_fielddef *f, const char *name,
   1815                                 upb_status *s);
   1816 
   1817 bool upb_fielddef_checklabel(int32_t label);
   1818 bool upb_fielddef_checktype(int32_t type);
   1819 bool upb_fielddef_checkdescriptortype(int32_t type);
   1820 bool upb_fielddef_checkintfmt(int32_t fmt);
   1821 
   1822 UPB_END_EXTERN_C
   1823 
   1824 
   1825 /* upb::MessageDef ************************************************************/
   1826 
   1827 typedef upb_inttable_iter upb_msg_field_iter;
   1828 typedef upb_strtable_iter upb_msg_oneof_iter;
   1829 
   1830 #ifdef __cplusplus
   1831 
   1832 /* Structure that describes a single .proto message type.
   1833  *
   1834  * Its base class is upb::Def (use upb::upcast() to convert). */
   1835 class upb::MessageDef {
   1836  public:
   1837   /* Returns NULL if memory allocation failed. */
   1838   static reffed_ptr<MessageDef> New();
   1839 
   1840   /* upb::RefCounted methods like Ref()/Unref(). */
   1841   UPB_REFCOUNTED_CPPMETHODS
   1842 
   1843   /* Functionality from upb::Def. */
   1844   const char* full_name() const;
   1845   bool set_full_name(const char* fullname, Status* s);
   1846   bool set_full_name(const std::string& fullname, Status* s);
   1847 
   1848   /* Call to freeze this MessageDef.
   1849    * WARNING: this will fail if this message has any unfrozen submessages!
   1850    * Messages with cycles must be frozen as a batch using upb::Def::Freeze(). */
   1851   bool Freeze(Status* s);
   1852 
   1853   /* The number of fields that belong to the MessageDef. */
   1854   int field_count() const;
   1855 
   1856   /* The number of oneofs that belong to the MessageDef. */
   1857   int oneof_count() const;
   1858 
   1859   /* Adds a field (upb_fielddef object) to a msgdef.  Requires that the msgdef
   1860    * and the fielddefs are mutable.  The fielddef's name and number must be
   1861    * set, and the message may not already contain any field with this name or
   1862    * number, and this fielddef may not be part of another message.  In error
   1863    * cases false is returned and the msgdef is unchanged.
   1864    *
   1865    * If the given field is part of a oneof, this call succeeds if and only if
   1866    * that oneof is already part of this msgdef. (Note that adding a oneof to a
   1867    * msgdef automatically adds all of its fields to the msgdef at the time that
   1868    * the oneof is added, so it is usually more idiomatic to add the oneof's
   1869    * fields first then add the oneof to the msgdef. This case is supported for
   1870    * convenience.)
   1871    *
   1872    * If |f| is already part of this MessageDef, this method performs no action
   1873    * and returns true (success). Thus, this method is idempotent. */
   1874   bool AddField(FieldDef* f, Status* s);
   1875   bool AddField(const reffed_ptr<FieldDef>& f, Status* s);
   1876 
   1877   /* Adds a oneof (upb_oneofdef object) to a msgdef. Requires that the msgdef,
   1878    * oneof, and any fielddefs are mutable, that the fielddefs contained in the
   1879    * oneof do not have any name or number conflicts with existing fields in the
   1880    * msgdef, and that the oneof's name is unique among all oneofs in the msgdef.
   1881    * If the oneof is added successfully, all of its fields will be added
   1882    * directly to the msgdef as well. In error cases, false is returned and the
   1883    * msgdef is unchanged. */
   1884   bool AddOneof(OneofDef* o, Status* s);
   1885   bool AddOneof(const reffed_ptr<OneofDef>& o, Status* s);
   1886 
   1887   /* These return NULL if the field is not found. */
   1888   FieldDef* FindFieldByNumber(uint32_t number);
   1889   FieldDef* FindFieldByName(const char *name, size_t len);
   1890   const FieldDef* FindFieldByNumber(uint32_t number) const;
   1891   const FieldDef* FindFieldByName(const char* name, size_t len) const;
   1892 
   1893 
   1894   FieldDef* FindFieldByName(const char *name) {
   1895     return FindFieldByName(name, strlen(name));
   1896   }
   1897   const FieldDef* FindFieldByName(const char *name) const {
   1898     return FindFieldByName(name, strlen(name));
   1899   }
   1900 
   1901   template <class T>
   1902   FieldDef* FindFieldByName(const T& str) {
   1903     return FindFieldByName(str.c_str(), str.size());
   1904   }
   1905   template <class T>
   1906   const FieldDef* FindFieldByName(const T& str) const {
   1907     return FindFieldByName(str.c_str(), str.size());
   1908   }
   1909 
   1910   OneofDef* FindOneofByName(const char* name, size_t len);
   1911   const OneofDef* FindOneofByName(const char* name, size_t len) const;
   1912 
   1913   OneofDef* FindOneofByName(const char* name) {
   1914     return FindOneofByName(name, strlen(name));
   1915   }
   1916   const OneofDef* FindOneofByName(const char* name) const {
   1917     return FindOneofByName(name, strlen(name));
   1918   }
   1919 
   1920   template<class T>
   1921   OneofDef* FindOneofByName(const T& str) {
   1922     return FindOneofByName(str.c_str(), str.size());
   1923   }
   1924   template<class T>
   1925   const OneofDef* FindOneofByName(const T& str) const {
   1926     return FindOneofByName(str.c_str(), str.size());
   1927   }
   1928 
   1929   /* Returns a new msgdef that is a copy of the given msgdef (and a copy of all
   1930    * the fields) but with any references to submessages broken and replaced
   1931    * with just the name of the submessage.  Returns NULL if memory allocation
   1932    * failed.
   1933    *
   1934    * TODO(haberman): which is more useful, keeping fields resolved or
   1935    * unresolving them?  If there's no obvious answer, Should this functionality
   1936    * just be moved into symtab.c? */
   1937   MessageDef* Dup(const void* owner) const;
   1938 
   1939   /* Is this message a map entry? */
   1940   void setmapentry(bool map_entry);
   1941   bool mapentry() const;
   1942 
   1943   /* Iteration over fields.  The order is undefined. */
   1944   class field_iterator
   1945       : public std::iterator<std::forward_iterator_tag, FieldDef*> {
   1946    public:
   1947     explicit field_iterator(MessageDef* md);
   1948     static field_iterator end(MessageDef* md);
   1949 
   1950     void operator++();
   1951     FieldDef* operator*() const;
   1952     bool operator!=(const field_iterator& other) const;
   1953     bool operator==(const field_iterator& other) const;
   1954 
   1955    private:
   1956     upb_msg_field_iter iter_;
   1957   };
   1958 
   1959   class const_field_iterator
   1960       : public std::iterator<std::forward_iterator_tag, const FieldDef*> {
   1961    public:
   1962     explicit const_field_iterator(const MessageDef* md);
   1963     static const_field_iterator end(const MessageDef* md);
   1964 
   1965     void operator++();
   1966     const FieldDef* operator*() const;
   1967     bool operator!=(const const_field_iterator& other) const;
   1968     bool operator==(const const_field_iterator& other) const;
   1969 
   1970    private:
   1971     upb_msg_field_iter iter_;
   1972   };
   1973 
   1974   /* Iteration over oneofs. The order is undefined. */
   1975   class oneof_iterator
   1976       : public std::iterator<std::forward_iterator_tag, FieldDef*> {
   1977    public:
   1978     explicit oneof_iterator(MessageDef* md);
   1979     static oneof_iterator end(MessageDef* md);
   1980 
   1981     void operator++();
   1982     OneofDef* operator*() const;
   1983     bool operator!=(const oneof_iterator& other) const;
   1984     bool operator==(const oneof_iterator& other) const;
   1985 
   1986    private:
   1987     upb_msg_oneof_iter iter_;
   1988   };
   1989 
   1990   class const_oneof_iterator
   1991       : public std::iterator<std::forward_iterator_tag, const FieldDef*> {
   1992    public:
   1993     explicit const_oneof_iterator(const MessageDef* md);
   1994     static const_oneof_iterator end(const MessageDef* md);
   1995 
   1996     void operator++();
   1997     const OneofDef* operator*() const;
   1998     bool operator!=(const const_oneof_iterator& other) const;
   1999     bool operator==(const const_oneof_iterator& other) const;
   2000 
   2001    private:
   2002     upb_msg_oneof_iter iter_;
   2003   };
   2004 
   2005   class FieldAccessor {
   2006    public:
   2007     explicit FieldAccessor(MessageDef* msg) : msg_(msg) {}
   2008     field_iterator begin() { return msg_->field_begin(); }
   2009     field_iterator end() { return msg_->field_end(); }
   2010    private:
   2011     MessageDef* msg_;
   2012   };
   2013 
   2014   class ConstFieldAccessor {
   2015    public:
   2016     explicit ConstFieldAccessor(const MessageDef* msg) : msg_(msg) {}
   2017     const_field_iterator begin() { return msg_->field_begin(); }
   2018     const_field_iterator end() { return msg_->field_end(); }
   2019    private:
   2020     const MessageDef* msg_;
   2021   };
   2022 
   2023   class OneofAccessor {
   2024    public:
   2025     explicit OneofAccessor(MessageDef* msg) : msg_(msg) {}
   2026     oneof_iterator begin() { return msg_->oneof_begin(); }
   2027     oneof_iterator end() { return msg_->oneof_end(); }
   2028    private:
   2029     MessageDef* msg_;
   2030   };
   2031 
   2032   class ConstOneofAccessor {
   2033    public:
   2034     explicit ConstOneofAccessor(const MessageDef* msg) : msg_(msg) {}
   2035     const_oneof_iterator begin() { return msg_->oneof_begin(); }
   2036     const_oneof_iterator end() { return msg_->oneof_end(); }
   2037    private:
   2038     const MessageDef* msg_;
   2039   };
   2040 
   2041   field_iterator field_begin();
   2042   field_iterator field_end();
   2043   const_field_iterator field_begin() const;
   2044   const_field_iterator field_end() const;
   2045 
   2046   oneof_iterator oneof_begin();
   2047   oneof_iterator oneof_end();
   2048   const_oneof_iterator oneof_begin() const;
   2049   const_oneof_iterator oneof_end() const;
   2050 
   2051   FieldAccessor fields() { return FieldAccessor(this); }
   2052   ConstFieldAccessor fields() const { return ConstFieldAccessor(this); }
   2053   OneofAccessor oneofs() { return OneofAccessor(this); }
   2054   ConstOneofAccessor oneofs() const { return ConstOneofAccessor(this); }
   2055 
   2056  private:
   2057   UPB_DISALLOW_POD_OPS(MessageDef, upb::MessageDef)
   2058 };
   2059 
   2060 #endif  /* __cplusplus */
   2061 
   2062 UPB_BEGIN_EXTERN_C
   2063 
   2064 /* Returns NULL if memory allocation failed. */
   2065 upb_msgdef *upb_msgdef_new(const void *owner);
   2066 
   2067 /* Include upb_refcounted methods like upb_msgdef_ref(). */
   2068 UPB_REFCOUNTED_CMETHODS(upb_msgdef, upb_msgdef_upcast2)
   2069 
   2070 bool upb_msgdef_freeze(upb_msgdef *m, upb_status *status);
   2071 
   2072 const char *upb_msgdef_fullname(const upb_msgdef *m);
   2073 bool upb_msgdef_setfullname(upb_msgdef *m, const char *fullname, upb_status *s);
   2074 
   2075 upb_msgdef *upb_msgdef_dup(const upb_msgdef *m, const void *owner);
   2076 bool upb_msgdef_addfield(upb_msgdef *m, upb_fielddef *f, const void *ref_donor,
   2077                          upb_status *s);
   2078 bool upb_msgdef_addoneof(upb_msgdef *m, upb_oneofdef *o, const void *ref_donor,
   2079                          upb_status *s);
   2080 
   2081 /* Field lookup in a couple of different variations:
   2082  *   - itof = int to field
   2083  *   - ntof = name to field
   2084  *   - ntofz = name to field, null-terminated string. */
   2085 const upb_fielddef *upb_msgdef_itof(const upb_msgdef *m, uint32_t i);
   2086 const upb_fielddef *upb_msgdef_ntof(const upb_msgdef *m, const char *name,
   2087                                     size_t len);
   2088 int upb_msgdef_numfields(const upb_msgdef *m);
   2089 
   2090 UPB_INLINE const upb_fielddef *upb_msgdef_ntofz(const upb_msgdef *m,
   2091                                                 const char *name) {
   2092   return upb_msgdef_ntof(m, name, strlen(name));
   2093 }
   2094 
   2095 UPB_INLINE upb_fielddef *upb_msgdef_itof_mutable(upb_msgdef *m, uint32_t i) {
   2096   return (upb_fielddef*)upb_msgdef_itof(m, i);
   2097 }
   2098 
   2099 UPB_INLINE upb_fielddef *upb_msgdef_ntof_mutable(upb_msgdef *m,
   2100                                                  const char *name, size_t len) {
   2101   return (upb_fielddef *)upb_msgdef_ntof(m, name, len);
   2102 }
   2103 
   2104 /* Oneof lookup:
   2105  *   - ntoo = name to oneof
   2106  *   - ntooz = name to oneof, null-terminated string. */
   2107 const upb_oneofdef *upb_msgdef_ntoo(const upb_msgdef *m, const char *name,
   2108                                     size_t len);
   2109 int upb_msgdef_numoneofs(const upb_msgdef *m);
   2110 
   2111 UPB_INLINE const upb_oneofdef *upb_msgdef_ntooz(const upb_msgdef *m,
   2112                                                const char *name) {
   2113   return upb_msgdef_ntoo(m, name, strlen(name));
   2114 }
   2115 
   2116 UPB_INLINE upb_oneofdef *upb_msgdef_ntoo_mutable(upb_msgdef *m,
   2117                                                  const char *name, size_t len) {
   2118   return (upb_oneofdef *)upb_msgdef_ntoo(m, name, len);
   2119 }
   2120 
   2121 void upb_msgdef_setmapentry(upb_msgdef *m, bool map_entry);
   2122 bool upb_msgdef_mapentry(const upb_msgdef *m);
   2123 
   2124 /* Well-known field tag numbers for map-entry messages. */
   2125 #define UPB_MAPENTRY_KEY   1
   2126 #define UPB_MAPENTRY_VALUE 2
   2127 
   2128 const upb_oneofdef *upb_msgdef_findoneof(const upb_msgdef *m,
   2129                                           const char *name);
   2130 int upb_msgdef_numoneofs(const upb_msgdef *m);
   2131 
   2132 /* upb_msg_field_iter i;
   2133  * for(upb_msg_field_begin(&i, m);
   2134  *     !upb_msg_field_done(&i);
   2135  *     upb_msg_field_next(&i)) {
   2136  *   upb_fielddef *f = upb_msg_iter_field(&i);
   2137  *   // ...
   2138  * }
   2139  *
   2140  * For C we don't have separate iterators for const and non-const.
   2141  * It is the caller's responsibility to cast the upb_fielddef* to
   2142  * const if the upb_msgdef* is const. */
   2143 void upb_msg_field_begin(upb_msg_field_iter *iter, const upb_msgdef *m);
   2144 void upb_msg_field_next(upb_msg_field_iter *iter);
   2145 bool upb_msg_field_done(const upb_msg_field_iter *iter);
   2146 upb_fielddef *upb_msg_iter_field(const upb_msg_field_iter *iter);
   2147 void upb_msg_field_iter_setdone(upb_msg_field_iter *iter);
   2148 
   2149 /* Similar to above, we also support iterating through the oneofs in a
   2150  * msgdef. */
   2151 void upb_msg_oneof_begin(upb_msg_oneof_iter *iter, const upb_msgdef *m);
   2152 void upb_msg_oneof_next(upb_msg_oneof_iter *iter);
   2153 bool upb_msg_oneof_done(const upb_msg_oneof_iter *iter);
   2154 upb_oneofdef *upb_msg_iter_oneof(const upb_msg_oneof_iter *iter);
   2155 void upb_msg_oneof_iter_setdone(upb_msg_oneof_iter *iter);
   2156 
   2157 UPB_END_EXTERN_C
   2158 
   2159 
   2160 /* upb::EnumDef ***************************************************************/
   2161 
   2162 typedef upb_strtable_iter upb_enum_iter;
   2163 
   2164 #ifdef __cplusplus
   2165 
   2166 /* Class that represents an enum.  Its base class is upb::Def (convert with
   2167  * upb::upcast()). */
   2168 class upb::EnumDef {
   2169  public:
   2170   /* Returns NULL if memory allocation failed. */
   2171   static reffed_ptr<EnumDef> New();
   2172 
   2173   /* upb::RefCounted methods like Ref()/Unref(). */
   2174   UPB_REFCOUNTED_CPPMETHODS
   2175 
   2176   /* Functionality from upb::Def. */
   2177   const char* full_name() const;
   2178   bool set_full_name(const char* fullname, Status* s);
   2179   bool set_full_name(const std::string& fullname, Status* s);
   2180 
   2181   /* Call to freeze this EnumDef. */
   2182   bool Freeze(Status* s);
   2183 
   2184   /* The value that is used as the default when no field default is specified.
   2185    * If not set explicitly, the first value that was added will be used.
   2186    * The default value must be a member of the enum.
   2187    * Requires that value_count() > 0. */
   2188   int32_t default_value() const;
   2189 
   2190   /* Sets the default value.  If this value is not valid, returns false and an
   2191    * error message in status. */
   2192   bool set_default_value(int32_t val, Status* status);
   2193 
   2194   /* Returns the number of values currently defined in the enum.  Note that
   2195    * multiple names can refer to the same number, so this may be greater than
   2196    * the total number of unique numbers. */
   2197   int value_count() const;
   2198 
   2199   /* Adds a single name/number pair to the enum.  Fails if this name has
   2200    * already been used by another value. */
   2201   bool AddValue(const char* name, int32_t num, Status* status);
   2202   bool AddValue(const std::string& name, int32_t num, Status* status);
   2203 
   2204   /* Lookups from name to integer, returning true if found. */
   2205   bool FindValueByName(const char* name, int32_t* num) const;
   2206 
   2207   /* Finds the name corresponding to the given number, or NULL if none was
   2208    * found.  If more than one name corresponds to this number, returns the
   2209    * first one that was added. */
   2210   const char* FindValueByNumber(int32_t num) const;
   2211 
   2212   /* Returns a new EnumDef with all the same values.  The new EnumDef will be
   2213    * owned by the given owner. */
   2214   EnumDef* Dup(const void* owner) const;
   2215 
   2216   /* Iteration over name/value pairs.  The order is undefined.
   2217    * Adding an enum val invalidates any iterators.
   2218    *
   2219    * TODO: make compatible with range-for, with elements as pairs? */
   2220   class Iterator {
   2221    public:
   2222     explicit Iterator(const EnumDef*);
   2223 
   2224     int32_t number();
   2225     const char *name();
   2226     bool Done();
   2227     void Next();
   2228 
   2229    private:
   2230     upb_enum_iter iter_;
   2231   };
   2232 
   2233  private:
   2234   UPB_DISALLOW_POD_OPS(EnumDef, upb::EnumDef)
   2235 };
   2236 
   2237 #endif  /* __cplusplus */
   2238 
   2239 UPB_BEGIN_EXTERN_C
   2240 
   2241 /* Native C API. */
   2242 upb_enumdef *upb_enumdef_new(const void *owner);
   2243 upb_enumdef *upb_enumdef_dup(const upb_enumdef *e, const void *owner);
   2244 
   2245 /* Include upb_refcounted methods like upb_enumdef_ref(). */
   2246 UPB_REFCOUNTED_CMETHODS(upb_enumdef, upb_enumdef_upcast2)
   2247 
   2248 bool upb_enumdef_freeze(upb_enumdef *e, upb_status *status);
   2249 
   2250 /* From upb_def. */
   2251 const char *upb_enumdef_fullname(const upb_enumdef *e);
   2252 bool upb_enumdef_setfullname(upb_enumdef *e, const char *fullname,
   2253                              upb_status *s);
   2254 
   2255 int32_t upb_enumdef_default(const upb_enumdef *e);
   2256 bool upb_enumdef_setdefault(upb_enumdef *e, int32_t val, upb_status *s);
   2257 int upb_enumdef_numvals(const upb_enumdef *e);
   2258 bool upb_enumdef_addval(upb_enumdef *e, const char *name, int32_t num,
   2259                         upb_status *status);
   2260 
   2261 /* Enum lookups:
   2262  * - ntoi:  look up a name with specified length.
   2263  * - ntoiz: look up a name provided as a null-terminated string.
   2264  * - iton:  look up an integer, returning the name as a null-terminated
   2265  *          string. */
   2266 bool upb_enumdef_ntoi(const upb_enumdef *e, const char *name, size_t len,
   2267                       int32_t *num);
   2268 UPB_INLINE bool upb_enumdef_ntoiz(const upb_enumdef *e,
   2269                                   const char *name, int32_t *num) {
   2270   return upb_enumdef_ntoi(e, name, strlen(name), num);
   2271 }
   2272 const char *upb_enumdef_iton(const upb_enumdef *e, int32_t num);
   2273 
   2274 /*  upb_enum_iter i;
   2275  *  for(upb_enum_begin(&i, e); !upb_enum_done(&i); upb_enum_next(&i)) {
   2276  *    // ...
   2277  *  }
   2278  */
   2279 void upb_enum_begin(upb_enum_iter *iter, const upb_enumdef *e);
   2280 void upb_enum_next(upb_enum_iter *iter);
   2281 bool upb_enum_done(upb_enum_iter *iter);
   2282 const char *upb_enum_iter_name(upb_enum_iter *iter);
   2283 int32_t upb_enum_iter_number(upb_enum_iter *iter);
   2284 
   2285 UPB_END_EXTERN_C
   2286 
   2287 /* upb::OneofDef **************************************************************/
   2288 
   2289 typedef upb_inttable_iter upb_oneof_iter;
   2290 
   2291 #ifdef __cplusplus
   2292 
   2293 /* Class that represents a oneof.  Its base class is upb::Def (convert with
   2294  * upb::upcast()). */
   2295 class upb::OneofDef {
   2296  public:
   2297   /* Returns NULL if memory allocation failed. */
   2298   static reffed_ptr<OneofDef> New();
   2299 
   2300   /* upb::RefCounted methods like Ref()/Unref(). */
   2301   UPB_REFCOUNTED_CPPMETHODS
   2302 
   2303   /* Functionality from upb::Def. */
   2304   const char* full_name() const;
   2305 
   2306   /* Returns the MessageDef that owns this OneofDef. */
   2307   const MessageDef* containing_type() const;
   2308 
   2309   /* Returns the name of this oneof. This is the name used to look up the oneof
   2310    * by name once added to a message def. */
   2311   const char* name() const;
   2312   bool set_name(const char* name, Status* s);
   2313 
   2314   /* Returns the number of fields currently defined in the oneof. */
   2315   int field_count() const;
   2316 
   2317   /* Adds a field to the oneof. The field must not have been added to any other
   2318    * oneof or msgdef. If the oneof is not yet part of a msgdef, then when the
   2319    * oneof is eventually added to a msgdef, all fields added to the oneof will
   2320    * also be added to the msgdef at that time. If the oneof is already part of a
   2321    * msgdef, the field must either be a part of that msgdef already, or must not
   2322    * be a part of any msgdef; in the latter case, the field is added to the
   2323    * msgdef as a part of this operation.
   2324    *
   2325    * The field may only have an OPTIONAL label, never REQUIRED or REPEATED.
   2326    *
   2327    * If |f| is already part of this MessageDef, this method performs no action
   2328    * and returns true (success). Thus, this method is idempotent. */
   2329   bool AddField(FieldDef* field, Status* s);
   2330   bool AddField(const reffed_ptr<FieldDef>& field, Status* s);
   2331 
   2332   /* Looks up by name. */
   2333   const FieldDef* FindFieldByName(const char* name, size_t len) const;
   2334   FieldDef* FindFieldByName(const char* name, size_t len);
   2335   const FieldDef* FindFieldByName(const char* name) const {
   2336     return FindFieldByName(name, strlen(name));
   2337   }
   2338   FieldDef* FindFieldByName(const char* name) {
   2339     return FindFieldByName(name, strlen(name));
   2340   }
   2341 
   2342   template <class T>
   2343   FieldDef* FindFieldByName(const T& str) {
   2344     return FindFieldByName(str.c_str(), str.size());
   2345   }
   2346   template <class T>
   2347   const FieldDef* FindFieldByName(const T& str) const {
   2348     return FindFieldByName(str.c_str(), str.size());
   2349   }
   2350 
   2351   /* Looks up by tag number. */
   2352   const FieldDef* FindFieldByNumber(uint32_t num) const;
   2353 
   2354   /* Returns a new OneofDef with all the same fields. The OneofDef will be owned
   2355    * by the given owner. */
   2356   OneofDef* Dup(const void* owner) const;
   2357 
   2358   /* Iteration over fields.  The order is undefined. */
   2359   class iterator : public std::iterator<std::forward_iterator_tag, FieldDef*> {
   2360    public:
   2361     explicit iterator(OneofDef* md);
   2362     static iterator end(OneofDef* md);
   2363 
   2364     void operator++();
   2365     FieldDef* operator*() const;
   2366     bool operator!=(const iterator& other) const;
   2367     bool operator==(const iterator& other) const;
   2368 
   2369    private:
   2370     upb_oneof_iter iter_;
   2371   };
   2372 
   2373   class const_iterator
   2374       : public std::iterator<std::forward_iterator_tag, const FieldDef*> {
   2375    public:
   2376     explicit const_iterator(const OneofDef* md);
   2377     static const_iterator end(const OneofDef* md);
   2378 
   2379     void operator++();
   2380     const FieldDef* operator*() const;
   2381     bool operator!=(const const_iterator& other) const;
   2382     bool operator==(const const_iterator& other) const;
   2383 
   2384    private:
   2385     upb_oneof_iter iter_;
   2386   };
   2387 
   2388   iterator begin();
   2389   iterator end();
   2390   const_iterator begin() const;
   2391   const_iterator end() const;
   2392 
   2393  private:
   2394   UPB_DISALLOW_POD_OPS(OneofDef, upb::OneofDef)
   2395 };
   2396 
   2397 #endif  /* __cplusplus */
   2398 
   2399 UPB_BEGIN_EXTERN_C
   2400 
   2401 /* Native C API. */
   2402 upb_oneofdef *upb_oneofdef_new(const void *owner);
   2403 upb_oneofdef *upb_oneofdef_dup(const upb_oneofdef *o, const void *owner);
   2404 
   2405 /* Include upb_refcounted methods like upb_oneofdef_ref(). */
   2406 UPB_REFCOUNTED_CMETHODS(upb_oneofdef, upb_oneofdef_upcast2)
   2407 
   2408 const char *upb_oneofdef_name(const upb_oneofdef *o);
   2409 bool upb_oneofdef_setname(upb_oneofdef *o, const char *name, upb_status *s);
   2410 
   2411 const upb_msgdef *upb_oneofdef_containingtype(const upb_oneofdef *o);
   2412 int upb_oneofdef_numfields(const upb_oneofdef *o);
   2413 bool upb_oneofdef_addfield(upb_oneofdef *o, upb_fielddef *f,
   2414                            const void *ref_donor,
   2415                            upb_status *s);
   2416 
   2417 /* Oneof lookups:
   2418  * - ntof:  look up a field by name.
   2419  * - ntofz: look up a field by name (as a null-terminated string).
   2420  * - itof:  look up a field by number. */
   2421 const upb_fielddef *upb_oneofdef_ntof(const upb_oneofdef *o,
   2422                                       const char *name, size_t length);
   2423 UPB_INLINE const upb_fielddef *upb_oneofdef_ntofz(const upb_oneofdef *o,
   2424                                                   const char *name) {
   2425   return upb_oneofdef_ntof(o, name, strlen(name));
   2426 }
   2427 const upb_fielddef *upb_oneofdef_itof(const upb_oneofdef *o, uint32_t num);
   2428 
   2429 /*  upb_oneof_iter i;
   2430  *  for(upb_oneof_begin(&i, e); !upb_oneof_done(&i); upb_oneof_next(&i)) {
   2431  *    // ...
   2432  *  }
   2433  */
   2434 void upb_oneof_begin(upb_oneof_iter *iter, const upb_oneofdef *o);
   2435 void upb_oneof_next(upb_oneof_iter *iter);
   2436 bool upb_oneof_done(upb_oneof_iter *iter);
   2437 upb_fielddef *upb_oneof_iter_field(const upb_oneof_iter *iter);
   2438 void upb_oneof_iter_setdone(upb_oneof_iter *iter);
   2439 
   2440 UPB_END_EXTERN_C
   2441 
   2442 #ifdef __cplusplus
   2443 
   2444 UPB_INLINE const char* upb_safecstr(const std::string& str) {
   2445   assert(str.size() == std::strlen(str.c_str()));
   2446   return str.c_str();
   2447 }
   2448 
   2449 /* Inline C++ wrappers. */
   2450 namespace upb {
   2451 
   2452 inline Def* Def::Dup(const void* owner) const {
   2453   return upb_def_dup(this, owner);
   2454 }
   2455 inline Def::Type Def::def_type() const { return upb_def_type(this); }
   2456 inline const char* Def::full_name() const { return upb_def_fullname(this); }
   2457 inline bool Def::set_full_name(const char* fullname, Status* s) {
   2458   return upb_def_setfullname(this, fullname, s);
   2459 }
   2460 inline bool Def::set_full_name(const std::string& fullname, Status* s) {
   2461   return upb_def_setfullname(this, upb_safecstr(fullname), s);
   2462 }
   2463 inline bool Def::Freeze(Def* const* defs, int n, Status* status) {
   2464   return upb_def_freeze(defs, n, status);
   2465 }
   2466 inline bool Def::Freeze(const std::vector<Def*>& defs, Status* status) {
   2467   return upb_def_freeze((Def* const*)&defs[0], defs.size(), status);
   2468 }
   2469 
   2470 inline bool FieldDef::CheckType(int32_t val) {
   2471   return upb_fielddef_checktype(val);
   2472 }
   2473 inline bool FieldDef::CheckLabel(int32_t val) {
   2474   return upb_fielddef_checklabel(val);
   2475 }
   2476 inline bool FieldDef::CheckDescriptorType(int32_t val) {
   2477   return upb_fielddef_checkdescriptortype(val);
   2478 }
   2479 inline bool FieldDef::CheckIntegerFormat(int32_t val) {
   2480   return upb_fielddef_checkintfmt(val);
   2481 }
   2482 inline FieldDef::Type FieldDef::ConvertType(int32_t val) {
   2483   assert(CheckType(val));
   2484   return static_cast<FieldDef::Type>(val);
   2485 }
   2486 inline FieldDef::Label FieldDef::ConvertLabel(int32_t val) {
   2487   assert(CheckLabel(val));
   2488   return static_cast<FieldDef::Label>(val);
   2489 }
   2490 inline FieldDef::DescriptorType FieldDef::ConvertDescriptorType(int32_t val) {
   2491   assert(CheckDescriptorType(val));
   2492   return static_cast<FieldDef::DescriptorType>(val);
   2493 }
   2494 inline FieldDef::IntegerFormat FieldDef::ConvertIntegerFormat(int32_t val) {
   2495   assert(CheckIntegerFormat(val));
   2496   return static_cast<FieldDef::IntegerFormat>(val);
   2497 }
   2498 
   2499 inline reffed_ptr<FieldDef> FieldDef::New() {
   2500   upb_fielddef *f = upb_fielddef_new(&f);
   2501   return reffed_ptr<FieldDef>(f, &f);
   2502 }
   2503 inline FieldDef* FieldDef::Dup(const void* owner) const {
   2504   return upb_fielddef_dup(this, owner);
   2505 }
   2506 inline const char* FieldDef::full_name() const {
   2507   return upb_fielddef_fullname(this);
   2508 }
   2509 inline bool FieldDef::set_full_name(const char* fullname, Status* s) {
   2510   return upb_fielddef_setfullname(this, fullname, s);
   2511 }
   2512 inline bool FieldDef::set_full_name(const std::string& fullname, Status* s) {
   2513   return upb_fielddef_setfullname(this, upb_safecstr(fullname), s);
   2514 }
   2515 inline bool FieldDef::type_is_set() const {
   2516   return upb_fielddef_typeisset(this);
   2517 }
   2518 inline FieldDef::Type FieldDef::type() const { return upb_fielddef_type(this); }
   2519 inline FieldDef::DescriptorType FieldDef::descriptor_type() const {
   2520   return upb_fielddef_descriptortype(this);
   2521 }
   2522 inline FieldDef::Label FieldDef::label() const {
   2523   return upb_fielddef_label(this);
   2524 }
   2525 inline uint32_t FieldDef::number() const { return upb_fielddef_number(this); }
   2526 inline const char* FieldDef::name() const { return upb_fielddef_name(this); }
   2527 inline bool FieldDef::is_extension() const {
   2528   return upb_fielddef_isextension(this);
   2529 }
   2530 inline bool FieldDef::lazy() const {
   2531   return upb_fielddef_lazy(this);
   2532 }
   2533 inline void FieldDef::set_lazy(bool lazy) {
   2534   upb_fielddef_setlazy(this, lazy);
   2535 }
   2536 inline bool FieldDef::packed() const {
   2537   return upb_fielddef_packed(this);
   2538 }
   2539 inline void FieldDef::set_packed(bool packed) {
   2540   upb_fielddef_setpacked(this, packed);
   2541 }
   2542 inline const MessageDef* FieldDef::containing_type() const {
   2543   return upb_fielddef_containingtype(this);
   2544 }
   2545 inline const OneofDef* FieldDef::containing_oneof() const {
   2546   return upb_fielddef_containingoneof(this);
   2547 }
   2548 inline const char* FieldDef::containing_type_name() {
   2549   return upb_fielddef_containingtypename(this);
   2550 }
   2551 inline bool FieldDef::set_number(uint32_t number, Status* s) {
   2552   return upb_fielddef_setnumber(this, number, s);
   2553 }
   2554 inline bool FieldDef::set_name(const char *name, Status* s) {
   2555   return upb_fielddef_setname(this, name, s);
   2556 }
   2557 inline bool FieldDef::set_name(const std::string& name, Status* s) {
   2558   return upb_fielddef_setname(this, upb_safecstr(name), s);
   2559 }
   2560 inline bool FieldDef::set_containing_type_name(const char *name, Status* s) {
   2561   return upb_fielddef_setcontainingtypename(this, name, s);
   2562 }
   2563 inline bool FieldDef::set_containing_type_name(const std::string &name,
   2564                                                Status *s) {
   2565   return upb_fielddef_setcontainingtypename(this, upb_safecstr(name), s);
   2566 }
   2567 inline void FieldDef::set_type(upb_fieldtype_t type) {
   2568   upb_fielddef_settype(this, type);
   2569 }
   2570 inline void FieldDef::set_is_extension(bool is_extension) {
   2571   upb_fielddef_setisextension(this, is_extension);
   2572 }
   2573 inline void FieldDef::set_descriptor_type(FieldDef::DescriptorType type) {
   2574   upb_fielddef_setdescriptortype(this, type);
   2575 }
   2576 inline void FieldDef::set_label(upb_label_t label) {
   2577   upb_fielddef_setlabel(this, label);
   2578 }
   2579 inline bool FieldDef::IsSubMessage() const {
   2580   return upb_fielddef_issubmsg(this);
   2581 }
   2582 inline bool FieldDef::IsString() const { return upb_fielddef_isstring(this); }
   2583 inline bool FieldDef::IsSequence() const { return upb_fielddef_isseq(this); }
   2584 inline bool FieldDef::IsMap() const { return upb_fielddef_ismap(this); }
   2585 inline int64_t FieldDef::default_int64() const {
   2586   return upb_fielddef_defaultint64(this);
   2587 }
   2588 inline int32_t FieldDef::default_int32() const {
   2589   return upb_fielddef_defaultint32(this);
   2590 }
   2591 inline uint64_t FieldDef::default_uint64() const {
   2592   return upb_fielddef_defaultuint64(this);
   2593 }
   2594 inline uint32_t FieldDef::default_uint32() const {
   2595   return upb_fielddef_defaultuint32(this);
   2596 }
   2597 inline bool FieldDef::default_bool() const {
   2598   return upb_fielddef_defaultbool(this);
   2599 }
   2600 inline float FieldDef::default_float() const {
   2601   return upb_fielddef_defaultfloat(this);
   2602 }
   2603 inline double FieldDef::default_double() const {
   2604   return upb_fielddef_defaultdouble(this);
   2605 }
   2606 inline const char* FieldDef::default_string(size_t* len) const {
   2607   return upb_fielddef_defaultstr(this, len);
   2608 }
   2609 inline void FieldDef::set_default_int64(int64_t value) {
   2610   upb_fielddef_setdefaultint64(this, value);
   2611 }
   2612 inline void FieldDef::set_default_int32(int32_t value) {
   2613   upb_fielddef_setdefaultint32(this, value);
   2614 }
   2615 inline void FieldDef::set_default_uint64(uint64_t value) {
   2616   upb_fielddef_setdefaultuint64(this, value);
   2617 }
   2618 inline void FieldDef::set_default_uint32(uint32_t value) {
   2619   upb_fielddef_setdefaultuint32(this, value);
   2620 }
   2621 inline void FieldDef::set_default_bool(bool value) {
   2622   upb_fielddef_setdefaultbool(this, value);
   2623 }
   2624 inline void FieldDef::set_default_float(float value) {
   2625   upb_fielddef_setdefaultfloat(this, value);
   2626 }
   2627 inline void FieldDef::set_default_double(double value) {
   2628   upb_fielddef_setdefaultdouble(this, value);
   2629 }
   2630 inline bool FieldDef::set_default_string(const void *str, size_t len,
   2631                                          Status *s) {
   2632   return upb_fielddef_setdefaultstr(this, str, len, s);
   2633 }
   2634 inline bool FieldDef::set_default_string(const std::string& str, Status* s) {
   2635   return upb_fielddef_setdefaultstr(this, str.c_str(), str.size(), s);
   2636 }
   2637 inline void FieldDef::set_default_cstr(const char* str, Status* s) {
   2638   return upb_fielddef_setdefaultcstr(this, str, s);
   2639 }
   2640 inline bool FieldDef::HasSubDef() const { return upb_fielddef_hassubdef(this); }
   2641 inline const Def* FieldDef::subdef() const { return upb_fielddef_subdef(this); }
   2642 inline const MessageDef *FieldDef::message_subdef() const {
   2643   return upb_fielddef_msgsubdef(this);
   2644 }
   2645 inline const EnumDef *FieldDef::enum_subdef() const {
   2646   return upb_fielddef_enumsubdef(this);
   2647 }
   2648 inline const char* FieldDef::subdef_name() const {
   2649   return upb_fielddef_subdefname(this);
   2650 }
   2651 inline bool FieldDef::set_subdef(const Def* subdef, Status* s) {
   2652   return upb_fielddef_setsubdef(this, subdef, s);
   2653 }
   2654 inline bool FieldDef::set_enum_subdef(const EnumDef* subdef, Status* s) {
   2655   return upb_fielddef_setenumsubdef(this, subdef, s);
   2656 }
   2657 inline bool FieldDef::set_message_subdef(const MessageDef* subdef, Status* s) {
   2658   return upb_fielddef_setmsgsubdef(this, subdef, s);
   2659 }
   2660 inline bool FieldDef::set_subdef_name(const char* name, Status* s) {
   2661   return upb_fielddef_setsubdefname(this, name, s);
   2662 }
   2663 inline bool FieldDef::set_subdef_name(const std::string& name, Status* s) {
   2664   return upb_fielddef_setsubdefname(this, upb_safecstr(name), s);
   2665 }
   2666 
   2667 inline reffed_ptr<MessageDef> MessageDef::New() {
   2668   upb_msgdef *m = upb_msgdef_new(&m);
   2669   return reffed_ptr<MessageDef>(m, &m);
   2670 }
   2671 inline const char *MessageDef::full_name() const {
   2672   return upb_msgdef_fullname(this);
   2673 }
   2674 inline bool MessageDef::set_full_name(const char* fullname, Status* s) {
   2675   return upb_msgdef_setfullname(this, fullname, s);
   2676 }
   2677 inline bool MessageDef::set_full_name(const std::string& fullname, Status* s) {
   2678   return upb_msgdef_setfullname(this, upb_safecstr(fullname), s);
   2679 }
   2680 inline bool MessageDef::Freeze(Status* status) {
   2681   return upb_msgdef_freeze(this, status);
   2682 }
   2683 inline int MessageDef::field_count() const {
   2684   return upb_msgdef_numfields(this);
   2685 }
   2686 inline int MessageDef::oneof_count() const {
   2687   return upb_msgdef_numoneofs(this);
   2688 }
   2689 inline bool MessageDef::AddField(upb_fielddef* f, Status* s) {
   2690   return upb_msgdef_addfield(this, f, NULL, s);
   2691 }
   2692 inline bool MessageDef::AddField(const reffed_ptr<FieldDef>& f, Status* s) {
   2693   return upb_msgdef_addfield(this, f.get(), NULL, s);
   2694 }
   2695 inline bool MessageDef::AddOneof(upb_oneofdef* o, Status* s) {
   2696   return upb_msgdef_addoneof(this, o, NULL, s);
   2697 }
   2698 inline bool MessageDef::AddOneof(const reffed_ptr<OneofDef>& o, Status* s) {
   2699   return upb_msgdef_addoneof(this, o.get(), NULL, s);
   2700 }
   2701 inline FieldDef* MessageDef::FindFieldByNumber(uint32_t number) {
   2702   return upb_msgdef_itof_mutable(this, number);
   2703 }
   2704 inline FieldDef* MessageDef::FindFieldByName(const char* name, size_t len) {
   2705   return upb_msgdef_ntof_mutable(this, name, len);
   2706 }
   2707 inline const FieldDef* MessageDef::FindFieldByNumber(uint32_t number) const {
   2708   return upb_msgdef_itof(this, number);
   2709 }
   2710 inline const FieldDef *MessageDef::FindFieldByName(const char *name,
   2711                                                    size_t len) const {
   2712   return upb_msgdef_ntof(this, name, len);
   2713 }
   2714 inline OneofDef* MessageDef::FindOneofByName(const char* name, size_t len) {
   2715   return upb_msgdef_ntoo_mutable(this, name, len);
   2716 }
   2717 inline const OneofDef* MessageDef::FindOneofByName(const char* name,
   2718                                                    size_t len) const {
   2719   return upb_msgdef_ntoo(this, name, len);
   2720 }
   2721 inline MessageDef* MessageDef::Dup(const void *owner) const {
   2722   return upb_msgdef_dup(this, owner);
   2723 }
   2724 inline void MessageDef::setmapentry(bool map_entry) {
   2725   upb_msgdef_setmapentry(this, map_entry);
   2726 }
   2727 inline bool MessageDef::mapentry() const {
   2728   return upb_msgdef_mapentry(this);
   2729 }
   2730 inline MessageDef::field_iterator MessageDef::field_begin() {
   2731   return field_iterator(this);
   2732 }
   2733 inline MessageDef::field_iterator MessageDef::field_end() {
   2734   return field_iterator::end(this);
   2735 }
   2736 inline MessageDef::const_field_iterator MessageDef::field_begin() const {
   2737   return const_field_iterator(this);
   2738 }
   2739 inline MessageDef::const_field_iterator MessageDef::field_end() const {
   2740   return const_field_iterator::end(this);
   2741 }
   2742 
   2743 inline MessageDef::oneof_iterator MessageDef::oneof_begin() {
   2744   return oneof_iterator(this);
   2745 }
   2746 inline MessageDef::oneof_iterator MessageDef::oneof_end() {
   2747   return oneof_iterator::end(this);
   2748 }
   2749 inline MessageDef::const_oneof_iterator MessageDef::oneof_begin() const {
   2750   return const_oneof_iterator(this);
   2751 }
   2752 inline MessageDef::const_oneof_iterator MessageDef::oneof_end() const {
   2753   return const_oneof_iterator::end(this);
   2754 }
   2755 
   2756 inline MessageDef::field_iterator::field_iterator(MessageDef* md) {
   2757   upb_msg_field_begin(&iter_, md);
   2758 }
   2759 inline MessageDef::field_iterator MessageDef::field_iterator::end(
   2760     MessageDef* md) {
   2761   MessageDef::field_iterator iter(md);
   2762   upb_msg_field_iter_setdone(&iter.iter_);
   2763   return iter;
   2764 }
   2765 inline FieldDef* MessageDef::field_iterator::operator*() const {
   2766   return upb_msg_iter_field(&iter_);
   2767 }
   2768 inline void MessageDef::field_iterator::operator++() {
   2769   return upb_msg_field_next(&iter_);
   2770 }
   2771 inline bool MessageDef::field_iterator::operator==(
   2772     const field_iterator &other) const {
   2773   return upb_inttable_iter_isequal(&iter_, &other.iter_);
   2774 }
   2775 inline bool MessageDef::field_iterator::operator!=(
   2776     const field_iterator &other) const {
   2777   return !(*this == other);
   2778 }
   2779 
   2780 inline MessageDef::const_field_iterator::const_field_iterator(
   2781     const MessageDef* md) {
   2782   upb_msg_field_begin(&iter_, md);
   2783 }
   2784 inline MessageDef::const_field_iterator MessageDef::const_field_iterator::end(
   2785     const MessageDef *md) {
   2786   MessageDef::const_field_iterator iter(md);
   2787   upb_msg_field_iter_setdone(&iter.iter_);
   2788   return iter;
   2789 }
   2790 inline const FieldDef* MessageDef::const_field_iterator::operator*() const {
   2791   return upb_msg_iter_field(&iter_);
   2792 }
   2793 inline void MessageDef::const_field_iterator::operator++() {
   2794   return upb_msg_field_next(&iter_);
   2795 }
   2796 inline bool MessageDef::const_field_iterator::operator==(
   2797     const const_field_iterator &other) const {
   2798   return upb_inttable_iter_isequal(&iter_, &other.iter_);
   2799 }
   2800 inline bool MessageDef::const_field_iterator::operator!=(
   2801     const const_field_iterator &other) const {
   2802   return !(*this == other);
   2803 }
   2804 
   2805 inline MessageDef::oneof_iterator::oneof_iterator(MessageDef* md) {
   2806   upb_msg_oneof_begin(&iter_, md);
   2807 }
   2808 inline MessageDef::oneof_iterator MessageDef::oneof_iterator::end(
   2809     MessageDef* md) {
   2810   MessageDef::oneof_iterator iter(md);
   2811   upb_msg_oneof_iter_setdone(&iter.iter_);
   2812   return iter;
   2813 }
   2814 inline OneofDef* MessageDef::oneof_iterator::operator*() const {
   2815   return upb_msg_iter_oneof(&iter_);
   2816 }
   2817 inline void MessageDef::oneof_iterator::operator++() {
   2818   return upb_msg_oneof_next(&iter_);
   2819 }
   2820 inline bool MessageDef::oneof_iterator::operator==(
   2821     const oneof_iterator &other) const {
   2822   return upb_strtable_iter_isequal(&iter_, &other.iter_);
   2823 }
   2824 inline bool MessageDef::oneof_iterator::operator!=(
   2825     const oneof_iterator &other) const {
   2826   return !(*this == other);
   2827 }
   2828 
   2829 inline MessageDef::const_oneof_iterator::const_oneof_iterator(
   2830     const MessageDef* md) {
   2831   upb_msg_oneof_begin(&iter_, md);
   2832 }
   2833 inline MessageDef::const_oneof_iterator MessageDef::const_oneof_iterator::end(
   2834     const MessageDef *md) {
   2835   MessageDef::const_oneof_iterator iter(md);
   2836   upb_msg_oneof_iter_setdone(&iter.iter_);
   2837   return iter;
   2838 }
   2839 inline const OneofDef* MessageDef::const_oneof_iterator::operator*() const {
   2840   return upb_msg_iter_oneof(&iter_);
   2841 }
   2842 inline void MessageDef::const_oneof_iterator::operator++() {
   2843   return upb_msg_oneof_next(&iter_);
   2844 }
   2845 inline bool MessageDef::const_oneof_iterator::operator==(
   2846     const const_oneof_iterator &other) const {
   2847   return upb_strtable_iter_isequal(&iter_, &other.iter_);
   2848 }
   2849 inline bool MessageDef::const_oneof_iterator::operator!=(
   2850     const const_oneof_iterator &other) const {
   2851   return !(*this == other);
   2852 }
   2853 
   2854 inline reffed_ptr<EnumDef> EnumDef::New() {
   2855   upb_enumdef *e = upb_enumdef_new(&e);
   2856   return reffed_ptr<EnumDef>(e, &e);
   2857 }
   2858 inline const char* EnumDef::full_name() const {
   2859   return upb_enumdef_fullname(this);
   2860 }
   2861 inline bool EnumDef::set_full_name(const char* fullname, Status* s) {
   2862   return upb_enumdef_setfullname(this, fullname, s);
   2863 }
   2864 inline bool EnumDef::set_full_name(const std::string& fullname, Status* s) {
   2865   return upb_enumdef_setfullname(this, upb_safecstr(fullname), s);
   2866 }
   2867 inline bool EnumDef::Freeze(Status* status) {
   2868   return upb_enumdef_freeze(this, status);
   2869 }
   2870 inline int32_t EnumDef::default_value() const {
   2871   return upb_enumdef_default(this);
   2872 }
   2873 inline bool EnumDef::set_default_value(int32_t val, Status* status) {
   2874   return upb_enumdef_setdefault(this, val, status);
   2875 }
   2876 inline int EnumDef::value_count() const { return upb_enumdef_numvals(this); }
   2877 inline bool EnumDef::AddValue(const char* name, int32_t num, Status* status) {
   2878   return upb_enumdef_addval(this, name, num, status);
   2879 }
   2880 inline bool EnumDef::AddValue(const std::string& name, int32_t num,
   2881                               Status* status) {
   2882   return upb_enumdef_addval(this, upb_safecstr(name), num, status);
   2883 }
   2884 inline bool EnumDef::FindValueByName(const char* name, int32_t *num) const {
   2885   return upb_enumdef_ntoiz(this, name, num);
   2886 }
   2887 inline const char* EnumDef::FindValueByNumber(int32_t num) const {
   2888   return upb_enumdef_iton(this, num);
   2889 }
   2890 inline EnumDef* EnumDef::Dup(const void* owner) const {
   2891   return upb_enumdef_dup(this, owner);
   2892 }
   2893 
   2894 inline EnumDef::Iterator::Iterator(const EnumDef* e) {
   2895   upb_enum_begin(&iter_, e);
   2896 }
   2897 inline int32_t EnumDef::Iterator::number() {
   2898   return upb_enum_iter_number(&iter_);
   2899 }
   2900 inline const char* EnumDef::Iterator::name() {
   2901   return upb_enum_iter_name(&iter_);
   2902 }
   2903 inline bool EnumDef::Iterator::Done() { return upb_enum_done(&iter_); }
   2904 inline void EnumDef::Iterator::Next() { return upb_enum_next(&iter_); }
   2905 
   2906 inline reffed_ptr<OneofDef> OneofDef::New() {
   2907   upb_oneofdef *o = upb_oneofdef_new(&o);
   2908   return reffed_ptr<OneofDef>(o, &o);
   2909 }
   2910 inline const char* OneofDef::full_name() const {
   2911   return upb_oneofdef_name(this);
   2912 }
   2913 
   2914 inline const MessageDef* OneofDef::containing_type() const {
   2915   return upb_oneofdef_containingtype(this);
   2916 }
   2917 inline const char* OneofDef::name() const {
   2918   return upb_oneofdef_name(this);
   2919 }
   2920 inline bool OneofDef::set_name(const char* name, Status* s) {
   2921   return upb_oneofdef_setname(this, name, s);
   2922 }
   2923 inline int OneofDef::field_count() const {
   2924   return upb_oneofdef_numfields(this);
   2925 }
   2926 inline bool OneofDef::AddField(FieldDef* field, Status* s) {
   2927   return upb_oneofdef_addfield(this, field, NULL, s);
   2928 }
   2929 inline bool OneofDef::AddField(const reffed_ptr<FieldDef>& field, Status* s) {
   2930   return upb_oneofdef_addfield(this, field.get(), NULL, s);
   2931 }
   2932 inline const FieldDef* OneofDef::FindFieldByName(const char* name,
   2933                                                  size_t len) const {
   2934   return upb_oneofdef_ntof(this, name, len);
   2935 }
   2936 inline const FieldDef* OneofDef::FindFieldByNumber(uint32_t num) const {
   2937   return upb_oneofdef_itof(this, num);
   2938 }
   2939 inline OneofDef::iterator OneofDef::begin() { return iterator(this); }
   2940 inline OneofDef::iterator OneofDef::end() { return iterator::end(this); }
   2941 inline OneofDef::const_iterator OneofDef::begin() const {
   2942   return const_iterator(this);
   2943 }
   2944 inline OneofDef::const_iterator OneofDef::end() const {
   2945   return const_iterator::end(this);
   2946 }
   2947 
   2948 inline OneofDef::iterator::iterator(OneofDef* o) {
   2949   upb_oneof_begin(&iter_, o);
   2950 }
   2951 inline OneofDef::iterator OneofDef::iterator::end(OneofDef* o) {
   2952   OneofDef::iterator iter(o);
   2953   upb_oneof_iter_setdone(&iter.iter_);
   2954   return iter;
   2955 }
   2956 inline FieldDef* OneofDef::iterator::operator*() const {
   2957   return upb_oneof_iter_field(&iter_);
   2958 }
   2959 inline void OneofDef::iterator::operator++() { return upb_oneof_next(&iter_); }
   2960 inline bool OneofDef::iterator::operator==(const iterator &other) const {
   2961   return upb_inttable_iter_isequal(&iter_, &other.iter_);
   2962 }
   2963 inline bool OneofDef::iterator::operator!=(const iterator &other) const {
   2964   return !(*this == other);
   2965 }
   2966 
   2967 inline OneofDef::const_iterator::const_iterator(const OneofDef* md) {
   2968   upb_oneof_begin(&iter_, md);
   2969 }
   2970 inline OneofDef::const_iterator OneofDef::const_iterator::end(
   2971     const OneofDef *md) {
   2972   OneofDef::const_iterator iter(md);
   2973   upb_oneof_iter_setdone(&iter.iter_);
   2974   return iter;
   2975 }
   2976 inline const FieldDef* OneofDef::const_iterator::operator*() const {
   2977   return upb_msg_iter_field(&iter_);
   2978 }
   2979 inline void OneofDef::const_iterator::operator++() {
   2980   return upb_oneof_next(&iter_);
   2981 }
   2982 inline bool OneofDef::const_iterator::operator==(
   2983     const const_iterator &other) const {
   2984   return upb_inttable_iter_isequal(&iter_, &other.iter_);
   2985 }
   2986 inline bool OneofDef::const_iterator::operator!=(
   2987     const const_iterator &other) const {
   2988   return !(*this == other);
   2989 }
   2990 
   2991 }  /* namespace upb */
   2992 #endif
   2993 
   2994 #endif /* UPB_DEF_H_ */
   2995 /*
   2996 ** This file contains definitions of structs that should be considered private
   2997 ** and NOT stable across versions of upb.
   2998 **
   2999 ** The only reason they are declared here and not in .c files is to allow upb
   3000 ** and the application (if desired) to embed statically-initialized instances
   3001 ** of structures like defs.
   3002 **
   3003 ** If you include this file, all guarantees of ABI compatibility go out the
   3004 ** window!  Any code that includes this file needs to recompile against the
   3005 ** exact same version of upb that they are linking against.
   3006 **
   3007 ** You also need to recompile if you change the value of the UPB_DEBUG_REFS
   3008 ** flag.
   3009 */
   3010 
   3011 
   3012 #ifndef UPB_STATICINIT_H_
   3013 #define UPB_STATICINIT_H_
   3014 
   3015 #ifdef __cplusplus
   3016 /* Because of how we do our typedefs, this header can't be included from C++. */
   3017 #error This file cannot be included from C++
   3018 #endif
   3019 
   3020 /* upb_refcounted *************************************************************/
   3021 
   3022 
   3023 /* upb_def ********************************************************************/
   3024 
   3025 struct upb_def {
   3026   upb_refcounted base;
   3027 
   3028   const char *fullname;
   3029   char type;  /* A upb_deftype_t (char to save space) */
   3030 
   3031   /* Used as a flag during the def's mutable stage.  Must be false unless
   3032    * it is currently being used by a function on the stack.  This allows
   3033    * us to easily determine which defs were passed into the function's
   3034    * current invocation. */
   3035   bool came_from_user;
   3036 };
   3037 
   3038 #define UPB_DEF_INIT(name, type, refs, ref2s) \
   3039     { UPB_REFCOUNT_INIT(refs, ref2s), name, type, false }
   3040 
   3041 
   3042 /* upb_fielddef ***************************************************************/
   3043 
   3044 struct upb_fielddef {
   3045   upb_def base;
   3046 
   3047   union {
   3048     int64_t sint;
   3049     uint64_t uint;
   3050     double dbl;
   3051     float flt;
   3052     void *bytes;
   3053   } defaultval;
   3054   union {
   3055     const upb_msgdef *def;  /* If !msg_is_symbolic. */
   3056     char *name;             /* If msg_is_symbolic. */
   3057   } msg;
   3058   union {
   3059     const upb_def *def;  /* If !subdef_is_symbolic. */
   3060     char *name;          /* If subdef_is_symbolic. */
   3061   } sub;  /* The msgdef or enumdef for this field, if upb_hassubdef(f). */
   3062   bool subdef_is_symbolic;
   3063   bool msg_is_symbolic;
   3064   const upb_oneofdef *oneof;
   3065   bool default_is_string;
   3066   bool type_is_set_;     /* False until type is explicitly set. */
   3067   bool is_extension_;
   3068   bool lazy_;
   3069   bool packed_;
   3070   upb_intfmt_t intfmt;
   3071   bool tagdelim;
   3072   upb_fieldtype_t type_;
   3073   upb_label_t label_;
   3074   uint32_t number_;
   3075   uint32_t selector_base;  /* Used to index into a upb::Handlers table. */
   3076   uint32_t index_;
   3077 };
   3078 
   3079 #define UPB_FIELDDEF_INIT(label, type, intfmt, tagdelim, is_extension, lazy,   \
   3080                           packed, name, num, msgdef, subdef, selector_base,    \
   3081                           index, defaultval, refs, ref2s)                      \
   3082   {                                                                            \
   3083     UPB_DEF_INIT(name, UPB_DEF_FIELD, refs, ref2s), defaultval, {msgdef},      \
   3084         {subdef}, NULL, false, false,                                          \
   3085         type == UPB_TYPE_STRING || type == UPB_TYPE_BYTES, true, is_extension, \
   3086         lazy, packed, intfmt, tagdelim, type, label, num, selector_base, index \
   3087   }
   3088 
   3089 
   3090 /* upb_msgdef *****************************************************************/
   3091 
   3092 struct upb_msgdef {
   3093   upb_def base;
   3094 
   3095   size_t selector_count;
   3096   uint32_t submsg_field_count;
   3097 
   3098   /* Tables for looking up fields by number and name. */
   3099   upb_inttable itof;  /* int to field */
   3100   upb_strtable ntof;  /* name to field */
   3101 
   3102   /* Tables for looking up oneofs by name. */
   3103   upb_strtable ntoo;  /* name to oneof */
   3104 
   3105   /* Is this a map-entry message?
   3106    * TODO: set this flag properly for static descriptors; regenerate
   3107    * descriptor.upb.c. */
   3108   bool map_entry;
   3109 
   3110   /* TODO(haberman): proper extension ranges (there can be multiple). */
   3111 };
   3112 
   3113 /* TODO: also support static initialization of the oneofs table. This will be
   3114  * needed if we compile in descriptors that contain oneofs. */
   3115 #define UPB_MSGDEF_INIT(name, selector_count, submsg_field_count, itof, ntof, \
   3116                         refs, ref2s)                                          \
   3117   {                                                                           \
   3118     UPB_DEF_INIT(name, UPB_DEF_MSG, refs, ref2s), selector_count,             \
   3119         submsg_field_count, itof, ntof,                                       \
   3120         UPB_EMPTY_STRTABLE_INIT(UPB_CTYPE_PTR), false                         \
   3121   }
   3122 
   3123 
   3124 /* upb_enumdef ****************************************************************/
   3125 
   3126 struct upb_enumdef {
   3127   upb_def base;
   3128 
   3129   upb_strtable ntoi;
   3130   upb_inttable iton;
   3131   int32_t defaultval;
   3132 };
   3133 
   3134 #define UPB_ENUMDEF_INIT(name, ntoi, iton, defaultval, refs, ref2s) \
   3135   { UPB_DEF_INIT(name, UPB_DEF_ENUM, refs, ref2s), ntoi, iton, defaultval }
   3136 
   3137 
   3138 /* upb_oneofdef ***************************************************************/
   3139 
   3140 struct upb_oneofdef {
   3141   upb_def base;
   3142 
   3143   upb_strtable ntof;
   3144   upb_inttable itof;
   3145   const upb_msgdef *parent;
   3146 };
   3147 
   3148 #define UPB_ONEOFDEF_INIT(name, ntof, itof, refs, ref2s) \
   3149   { UPB_DEF_INIT(name, UPB_DEF_ENUM, refs, ref2s), ntof, itof }
   3150 
   3151 
   3152 /* upb_symtab *****************************************************************/
   3153 
   3154 struct upb_symtab {
   3155   upb_refcounted base;
   3156 
   3157   upb_strtable symtab;
   3158 };
   3159 
   3160 #define UPB_SYMTAB_INIT(symtab, refs, ref2s) \
   3161   { UPB_REFCOUNT_INIT(refs, ref2s), symtab }
   3162 
   3163 
   3164 #endif  /* UPB_STATICINIT_H_ */
   3165 /*
   3166 ** upb::Handlers (upb_handlers)
   3167 **
   3168 ** A upb_handlers is like a virtual table for a upb_msgdef.  Each field of the
   3169 ** message can have associated functions that will be called when we are
   3170 ** parsing or visiting a stream of data.  This is similar to how handlers work
   3171 ** in SAX (the Simple API for XML).
   3172 **
   3173 ** The handlers have no idea where the data is coming from, so a single set of
   3174 ** handlers could be used with two completely different data sources (for
   3175 ** example, a parser and a visitor over in-memory objects).  This decoupling is
   3176 ** the most important feature of upb, because it allows parsers and serializers
   3177 ** to be highly reusable.
   3178 **
   3179 ** This is a mixed C/C++ interface that offers a full API to both languages.
   3180 ** See the top-level README for more information.
   3181 */
   3182 
   3183 #ifndef UPB_HANDLERS_H
   3184 #define UPB_HANDLERS_H
   3185 
   3186 
   3187 #ifdef __cplusplus
   3188 namespace upb {
   3189 class BufferHandle;
   3190 class BytesHandler;
   3191 class HandlerAttributes;
   3192 class Handlers;
   3193 template <class T> class Handler;
   3194 template <class T> struct CanonicalType;
   3195 }  /* namespace upb */
   3196 #endif
   3197 
   3198 UPB_DECLARE_TYPE(upb::BufferHandle, upb_bufhandle)
   3199 UPB_DECLARE_TYPE(upb::BytesHandler, upb_byteshandler)
   3200 UPB_DECLARE_TYPE(upb::HandlerAttributes, upb_handlerattr)
   3201 UPB_DECLARE_DERIVED_TYPE(upb::Handlers, upb::RefCounted,
   3202                          upb_handlers, upb_refcounted)
   3203 
   3204 /* The maximum depth that the handler graph can have.  This is a resource limit
   3205  * for the C stack since we sometimes need to recursively traverse the graph.
   3206  * Cycles are ok; the traversal will stop when it detects a cycle, but we must
   3207  * hit the cycle before the maximum depth is reached.
   3208  *
   3209  * If having a single static limit is too inflexible, we can add another variant
   3210  * of Handlers::Freeze that allows specifying this as a parameter. */
   3211 #define UPB_MAX_HANDLER_DEPTH 64
   3212 
   3213 /* All the different types of handlers that can be registered.
   3214  * Only needed for the advanced functions in upb::Handlers. */
   3215 typedef enum {
   3216   UPB_HANDLER_INT32,
   3217   UPB_HANDLER_INT64,
   3218   UPB_HANDLER_UINT32,
   3219   UPB_HANDLER_UINT64,
   3220   UPB_HANDLER_FLOAT,
   3221   UPB_HANDLER_DOUBLE,
   3222   UPB_HANDLER_BOOL,
   3223   UPB_HANDLER_STARTSTR,
   3224   UPB_HANDLER_STRING,
   3225   UPB_HANDLER_ENDSTR,
   3226   UPB_HANDLER_STARTSUBMSG,
   3227   UPB_HANDLER_ENDSUBMSG,
   3228   UPB_HANDLER_STARTSEQ,
   3229   UPB_HANDLER_ENDSEQ
   3230 } upb_handlertype_t;
   3231 
   3232 #define UPB_HANDLER_MAX (UPB_HANDLER_ENDSEQ+1)
   3233 
   3234 #define UPB_BREAK NULL
   3235 
   3236 /* A convenient definition for when no closure is needed. */
   3237 extern char _upb_noclosure;
   3238 #define UPB_NO_CLOSURE &_upb_noclosure
   3239 
   3240 /* A selector refers to a specific field handler in the Handlers object
   3241  * (for example: the STARTSUBMSG handler for field "field15"). */
   3242 typedef int32_t upb_selector_t;
   3243 
   3244 UPB_BEGIN_EXTERN_C
   3245 
   3246 /* Forward-declares for C inline accessors.  We need to declare these here
   3247  * so we can "friend" them in the class declarations in C++. */
   3248 UPB_INLINE upb_func *upb_handlers_gethandler(const upb_handlers *h,
   3249                                              upb_selector_t s);
   3250 UPB_INLINE const void *upb_handlerattr_handlerdata(const upb_handlerattr *attr);
   3251 UPB_INLINE const void *upb_handlers_gethandlerdata(const upb_handlers *h,
   3252                                                    upb_selector_t s);
   3253 
   3254 UPB_INLINE void upb_bufhandle_init(upb_bufhandle *h);
   3255 UPB_INLINE void upb_bufhandle_setobj(upb_bufhandle *h, const void *obj,
   3256                                      const void *type);
   3257 UPB_INLINE void upb_bufhandle_setbuf(upb_bufhandle *h, const char *buf,
   3258                                      size_t ofs);
   3259 UPB_INLINE const void *upb_bufhandle_obj(const upb_bufhandle *h);
   3260 UPB_INLINE const void *upb_bufhandle_objtype(const upb_bufhandle *h);
   3261 UPB_INLINE const char *upb_bufhandle_buf(const upb_bufhandle *h);
   3262 
   3263 UPB_END_EXTERN_C
   3264 
   3265 
   3266 /* Static selectors for upb::Handlers. */
   3267 #define UPB_STARTMSG_SELECTOR 0
   3268 #define UPB_ENDMSG_SELECTOR 1
   3269 #define UPB_STATIC_SELECTOR_COUNT 2
   3270 
   3271 /* Static selectors for upb::BytesHandler. */
   3272 #define UPB_STARTSTR_SELECTOR 0
   3273 #define UPB_STRING_SELECTOR 1
   3274 #define UPB_ENDSTR_SELECTOR 2
   3275 
   3276 typedef void upb_handlerfree(void *d);
   3277 
   3278 #ifdef __cplusplus
   3279 
   3280 /* A set of attributes that accompanies a handler's function pointer. */
   3281 class upb::HandlerAttributes {
   3282  public:
   3283   HandlerAttributes();
   3284   ~HandlerAttributes();
   3285 
   3286   /* Sets the handler data that will be passed as the second parameter of the
   3287    * handler.  To free this pointer when the handlers are freed, call
   3288    * Handlers::AddCleanup(). */
   3289   bool SetHandlerData(const void *handler_data);
   3290   const void* handler_data() const;
   3291 
   3292   /* Use this to specify the type of the closure.  This will be checked against
   3293    * all other closure types for handler that use the same closure.
   3294    * Registration will fail if this does not match all other non-NULL closure
   3295    * types. */
   3296   bool SetClosureType(const void *closure_type);
   3297   const void* closure_type() const;
   3298 
   3299   /* Use this to specify the type of the returned closure.  Only used for
   3300    * Start*{String,SubMessage,Sequence} handlers.  This must match the closure
   3301    * type of any handlers that use it (for example, the StringBuf handler must
   3302    * match the closure returned from StartString). */
   3303   bool SetReturnClosureType(const void *return_closure_type);
   3304   const void* return_closure_type() const;
   3305 
   3306   /* Set to indicate that the handler always returns "ok" (either "true" or a
   3307    * non-NULL closure).  This is a hint that can allow code generators to
   3308    * generate more efficient code. */
   3309   bool SetAlwaysOk(bool always_ok);
   3310   bool always_ok() const;
   3311 
   3312  private:
   3313   friend UPB_INLINE const void * ::upb_handlerattr_handlerdata(
   3314       const upb_handlerattr *attr);
   3315 #else
   3316 struct upb_handlerattr {
   3317 #endif
   3318   const void *handler_data_;
   3319   const void *closure_type_;
   3320   const void *return_closure_type_;
   3321   bool alwaysok_;
   3322 };
   3323 
   3324 #define UPB_HANDLERATTR_INITIALIZER {NULL, NULL, NULL, false}
   3325 
   3326 typedef struct {
   3327   upb_func *func;
   3328 
   3329   /* It is wasteful to include the entire attributes here:
   3330    *
   3331    * * Some of the information is redundant (like storing the closure type
   3332    *   separately for each handler that must match).
   3333    * * Some of the info is only needed prior to freeze() (like closure types).
   3334    * * alignment padding wastes a lot of space for alwaysok_.
   3335    *
   3336    * If/when the size and locality of handlers is an issue, we can optimize this
   3337    * not to store the entire attr like this.  We do not expose the table's
   3338    * layout to allow this optimization in the future. */
   3339   upb_handlerattr attr;
   3340 } upb_handlers_tabent;
   3341 
   3342 #ifdef __cplusplus
   3343 
   3344 /* Extra information about a buffer that is passed to a StringBuf handler.
   3345  * TODO(haberman): allow the handle to be pinned so that it will outlive
   3346  * the handler invocation. */
   3347 class upb::BufferHandle {
   3348  public:
   3349   BufferHandle();
   3350   ~BufferHandle();
   3351 
   3352   /* The beginning of the buffer.  This may be different than the pointer
   3353    * passed to a StringBuf handler because the handler may receive data
   3354    * that is from the middle or end of a larger buffer. */
   3355   const char* buffer() const;
   3356 
   3357   /* The offset within the attached object where this buffer begins.  Only
   3358    * meaningful if there is an attached object. */
   3359   size_t object_offset() const;
   3360 
   3361   /* Note that object_offset is the offset of "buf" within the attached
   3362    * object. */
   3363   void SetBuffer(const char* buf, size_t object_offset);
   3364 
   3365   /* The BufferHandle can have an "attached object", which can be used to
   3366    * tunnel through a pointer to the buffer's underlying representation. */
   3367   template <class T>
   3368   void SetAttachedObject(const T* obj);
   3369 
   3370   /* Returns NULL if the attached object is not of this type. */
   3371   template <class T>
   3372   const T* GetAttachedObject() const;
   3373 
   3374  private:
   3375   friend UPB_INLINE void ::upb_bufhandle_init(upb_bufhandle *h);
   3376   friend UPB_INLINE void ::upb_bufhandle_setobj(upb_bufhandle *h,
   3377                                                 const void *obj,
   3378                                                 const void *type);
   3379   friend UPB_INLINE void ::upb_bufhandle_setbuf(upb_bufhandle *h,
   3380                                                 const char *buf, size_t ofs);
   3381   friend UPB_INLINE const void* ::upb_bufhandle_obj(const upb_bufhandle *h);
   3382   friend UPB_INLINE const void* ::upb_bufhandle_objtype(
   3383       const upb_bufhandle *h);
   3384   friend UPB_INLINE const char* ::upb_bufhandle_buf(const upb_bufhandle *h);
   3385 #else
   3386 struct upb_bufhandle {
   3387 #endif
   3388   const char *buf_;
   3389   const void *obj_;
   3390   const void *objtype_;
   3391   size_t objofs_;
   3392 };
   3393 
   3394 #ifdef __cplusplus
   3395 
   3396 /* A upb::Handlers object represents the set of handlers associated with a
   3397  * message in the graph of messages.  You can think of it as a big virtual
   3398  * table with functions corresponding to all the events that can fire while
   3399  * parsing or visiting a message of a specific type.
   3400  *
   3401  * Any handlers that are not set behave as if they had successfully consumed
   3402  * the value.  Any unset Start* handlers will propagate their closure to the
   3403  * inner frame.
   3404  *
   3405  * The easiest way to create the *Handler objects needed by the Set* methods is
   3406  * with the UpbBind() and UpbMakeHandler() macros; see below. */
   3407 class upb::Handlers {
   3408  public:
   3409   typedef upb_selector_t Selector;
   3410   typedef upb_handlertype_t Type;
   3411 
   3412   typedef Handler<void *(*)(void *, const void *)> StartFieldHandler;
   3413   typedef Handler<bool (*)(void *, const void *)> EndFieldHandler;
   3414   typedef Handler<bool (*)(void *, const void *)> StartMessageHandler;
   3415   typedef Handler<bool (*)(void *, const void *, Status*)> EndMessageHandler;
   3416   typedef Handler<void *(*)(void *, const void *, size_t)> StartStringHandler;
   3417   typedef Handler<size_t (*)(void *, const void *, const char *, size_t,
   3418                              const BufferHandle *)> StringHandler;
   3419 
   3420   template <class T> struct ValueHandler {
   3421     typedef Handler<bool(*)(void *, const void *, T)> H;
   3422   };
   3423 
   3424   typedef ValueHandler<int32_t>::H     Int32Handler;
   3425   typedef ValueHandler<int64_t>::H     Int64Handler;
   3426   typedef ValueHandler<uint32_t>::H    UInt32Handler;
   3427   typedef ValueHandler<uint64_t>::H    UInt64Handler;
   3428   typedef ValueHandler<float>::H       FloatHandler;
   3429   typedef ValueHandler<double>::H      DoubleHandler;
   3430   typedef ValueHandler<bool>::H        BoolHandler;
   3431 
   3432   /* Any function pointer can be converted to this and converted back to its
   3433    * correct type. */
   3434   typedef void GenericFunction();
   3435 
   3436   typedef void HandlersCallback(const void *closure, upb_handlers *h);
   3437 
   3438   /* Returns a new handlers object for the given frozen msgdef.
   3439    * Returns NULL if memory allocation failed. */
   3440   static reffed_ptr<Handlers> New(const MessageDef *m);
   3441 
   3442   /* Convenience function for registering a graph of handlers that mirrors the
   3443    * graph of msgdefs for some message.  For "m" and all its children a new set
   3444    * of handlers will be created and the given callback will be invoked,
   3445    * allowing the client to register handlers for this message.  Note that any
   3446    * subhandlers set by the callback will be overwritten. */
   3447   static reffed_ptr<const Handlers> NewFrozen(const MessageDef *m,
   3448                                               HandlersCallback *callback,
   3449                                               const void *closure);
   3450 
   3451   /* Functionality from upb::RefCounted. */
   3452   UPB_REFCOUNTED_CPPMETHODS
   3453 
   3454   /* All handler registration functions return bool to indicate success or
   3455    * failure; details about failures are stored in this status object.  If a
   3456    * failure does occur, it must be cleared before the Handlers are frozen,
   3457    * otherwise the freeze() operation will fail.  The functions may *only* be
   3458    * used while the Handlers are mutable. */
   3459   const Status* status();
   3460   void ClearError();
   3461 
   3462   /* Call to freeze these Handlers.  Requires that any SubHandlers are already
   3463    * frozen.  For cycles, you must use the static version below and freeze the
   3464    * whole graph at once. */
   3465   bool Freeze(Status* s);
   3466 
   3467   /* Freezes the given set of handlers.  You may not freeze a handler without
   3468    * also freezing any handlers they point to. */
   3469   static bool Freeze(Handlers*const* handlers, int n, Status* s);
   3470   static bool Freeze(const std::vector<Handlers*>& handlers, Status* s);
   3471 
   3472   /* Returns the msgdef associated with this handlers object. */
   3473   const MessageDef* message_def() const;
   3474 
   3475   /* Adds the given pointer and function to the list of cleanup functions that
   3476    * will be run when these handlers are freed.  If this pointer has previously
   3477    * been registered, the function returns false and does nothing. */
   3478   bool AddCleanup(void *ptr, upb_handlerfree *cleanup);
   3479 
   3480   /* Sets the startmsg handler for the message, which is defined as follows:
   3481    *
   3482    *   bool startmsg(MyType* closure) {
   3483    *     // Called when the message begins.  Returns true if processing should
   3484    *     // continue.
   3485    *     return true;
   3486    *   }
   3487    */
   3488   bool SetStartMessageHandler(const StartMessageHandler& handler);
   3489 
   3490   /* Sets the endmsg handler for the message, which is defined as follows:
   3491    *
   3492    *   bool endmsg(MyType* closure, upb_status *status) {
   3493    *     // Called when processing of this message ends, whether in success or
   3494    *     // failure.  "status" indicates the final status of processing, and
   3495    *     // can also be modified in-place to update the final status.
   3496    *   }
   3497    */
   3498   bool SetEndMessageHandler(const EndMessageHandler& handler);
   3499 
   3500   /* Sets the value handler for the given field, which is defined as follows
   3501    * (this is for an int32 field; other field types will pass their native
   3502    * C/C++ type for "val"):
   3503    *
   3504    *   bool OnValue(MyClosure* c, const MyHandlerData* d, int32_t val) {
   3505    *     // Called when the field's value is encountered.  "d" contains
   3506    *     // whatever data was bound to this field when it was registered.
   3507    *     // Returns true if processing should continue.
   3508    *     return true;
   3509    *   }
   3510    *
   3511    *   handers->SetInt32Handler(f, UpbBind(OnValue, new MyHandlerData(...)));
   3512    *
   3513    * The value type must exactly match f->type().
   3514    * For example, a handler that takes an int32_t parameter may only be used for
   3515    * fields of type UPB_TYPE_INT32 and UPB_TYPE_ENUM.
   3516    *
   3517    * Returns false if the handler failed to register; in this case the cleanup
   3518    * handler (if any) will be called immediately.
   3519    */
   3520   bool SetInt32Handler (const FieldDef* f,  const Int32Handler& h);
   3521   bool SetInt64Handler (const FieldDef* f,  const Int64Handler& h);
   3522   bool SetUInt32Handler(const FieldDef* f, const UInt32Handler& h);
   3523   bool SetUInt64Handler(const FieldDef* f, const UInt64Handler& h);
   3524   bool SetFloatHandler (const FieldDef* f,  const FloatHandler& h);
   3525   bool SetDoubleHandler(const FieldDef* f, const DoubleHandler& h);
   3526   bool SetBoolHandler  (const FieldDef* f,   const BoolHandler& h);
   3527 
   3528   /* Like the previous, but templated on the type on the value (ie. int32).
   3529    * This is mostly useful to call from other templates.  To call this you must
   3530    * specify the template parameter explicitly, ie:
   3531    *   h->SetValueHandler<T>(f, UpbBind(MyHandler<T>, MyData)); */
   3532   template <class T>
   3533   bool SetValueHandler(
   3534       const FieldDef *f,
   3535       const typename ValueHandler<typename CanonicalType<T>::Type>::H& handler);
   3536 
   3537   /* Sets handlers for a string field, which are defined as follows:
   3538    *
   3539    *   MySubClosure* startstr(MyClosure* c, const MyHandlerData* d,
   3540    *                          size_t size_hint) {
   3541    *     // Called when a string value begins.  The return value indicates the
   3542    *     // closure for the string.  "size_hint" indicates the size of the
   3543    *     // string if it is known, however if the string is length-delimited
   3544    *     // and the end-of-string is not available size_hint will be zero.
   3545    *     // This case is indistinguishable from the case where the size is
   3546    *     // known to be zero.
   3547    *     //
   3548    *     // TODO(haberman): is it important to distinguish these cases?
   3549    *     // If we had ssize_t as a type we could make -1 "unknown", but
   3550    *     // ssize_t is POSIX (not ANSI) and therefore less portable.
   3551    *     // In practice I suspect it won't be important to distinguish.
   3552    *     return closure;
   3553    *   }
   3554    *
   3555    *   size_t str(MyClosure* closure, const MyHandlerData* d,
   3556    *              const char *str, size_t len) {
   3557    *     // Called for each buffer of string data; the multiple physical buffers
   3558    *     // are all part of the same logical string.  The return value indicates
   3559    *     // how many bytes were consumed.  If this number is less than "len",
   3560    *     // this will also indicate that processing should be halted for now,
   3561    *     // like returning false or UPB_BREAK from any other callback.  If
   3562    *     // number is greater than "len", the excess bytes will be skipped over
   3563    *     // and not passed to the callback.
   3564    *     return len;
   3565    *   }
   3566    *
   3567    *   bool endstr(MyClosure* c, const MyHandlerData* d) {
   3568    *     // Called when a string value ends.  Return value indicates whether
   3569    *     // processing should continue.
   3570    *     return true;
   3571    *   }
   3572    */
   3573   bool SetStartStringHandler(const FieldDef* f, const StartStringHandler& h);
   3574   bool SetStringHandler(const FieldDef* f, const StringHandler& h);
   3575   bool SetEndStringHandler(const FieldDef* f, const EndFieldHandler& h);
   3576 
   3577   /* Sets the startseq handler, which is defined as follows:
   3578    *
   3579    *   MySubClosure *startseq(MyClosure* c, const MyHandlerData* d) {
   3580    *     // Called when a sequence (repeated field) begins.  The returned
   3581    *     // pointer indicates the closure for the sequence (or UPB_BREAK
   3582    *     // to interrupt processing).
   3583    *     return closure;
   3584    *   }
   3585    *
   3586    *   h->SetStartSequenceHandler(f, UpbBind(startseq, new MyHandlerData(...)));
   3587    *
   3588    * Returns "false" if "f" does not belong to this message or is not a
   3589    * repeated field.
   3590    */
   3591   bool SetStartSequenceHandler(const FieldDef* f, const StartFieldHandler& h);
   3592 
   3593   /* Sets the startsubmsg handler for the given field, which is defined as
   3594    * follows:
   3595    *
   3596    *   MySubClosure* startsubmsg(MyClosure* c, const MyHandlerData* d) {
   3597    *     // Called when a submessage begins.  The returned pointer indicates the
   3598    *     // closure for the sequence (or UPB_BREAK to interrupt processing).
   3599    *     return closure;
   3600    *   }
   3601    *
   3602    *   h->SetStartSubMessageHandler(f, UpbBind(startsubmsg,
   3603    *                                           new MyHandlerData(...)));
   3604    *
   3605    * Returns "false" if "f" does not belong to this message or is not a
   3606    * submessage/group field.
   3607    */
   3608   bool SetStartSubMessageHandler(const FieldDef* f, const StartFieldHandler& h);
   3609 
   3610   /* Sets the endsubmsg handler for the given field, which is defined as
   3611    * follows:
   3612    *
   3613    *   bool endsubmsg(MyClosure* c, const MyHandlerData* d) {
   3614    *     // Called when a submessage ends.  Returns true to continue processing.
   3615    *     return true;
   3616    *   }
   3617    *
   3618    * Returns "false" if "f" does not belong to this message or is not a
   3619    * submessage/group field.
   3620    */
   3621   bool SetEndSubMessageHandler(const FieldDef *f, const EndFieldHandler &h);
   3622 
   3623   /* Starts the endsubseq handler for the given field, which is defined as
   3624    * follows:
   3625    *
   3626    *   bool endseq(MyClosure* c, const MyHandlerData* d) {
   3627    *     // Called when a sequence ends.  Returns true continue processing.
   3628    *     return true;
   3629    *   }
   3630    *
   3631    * Returns "false" if "f" does not belong to this message or is not a
   3632    * repeated field.
   3633    */
   3634   bool SetEndSequenceHandler(const FieldDef* f, const EndFieldHandler& h);
   3635 
   3636   /* Sets or gets the object that specifies handlers for the given field, which
   3637    * must be a submessage or group.  Returns NULL if no handlers are set. */
   3638   bool SetSubHandlers(const FieldDef* f, const Handlers* sub);
   3639   const Handlers* GetSubHandlers(const FieldDef* f) const;
   3640 
   3641   /* Equivalent to GetSubHandlers, but takes the STARTSUBMSG selector for the
   3642    * field. */
   3643   const Handlers* GetSubHandlers(Selector startsubmsg) const;
   3644 
   3645   /* A selector refers to a specific field handler in the Handlers object
   3646    * (for example: the STARTSUBMSG handler for field "field15").
   3647    * On success, returns true and stores the selector in "s".
   3648    * If the FieldDef or Type are invalid, returns false.
   3649    * The returned selector is ONLY valid for Handlers whose MessageDef
   3650    * contains this FieldDef. */
   3651   static bool GetSelector(const FieldDef* f, Type type, Selector* s);
   3652 
   3653   /* Given a START selector of any kind, returns the corresponding END selector. */
   3654   static Selector GetEndSelector(Selector start_selector);
   3655 
   3656   /* Returns the function pointer for this handler.  It is the client's
   3657    * responsibility to cast to the correct function type before calling it. */
   3658   GenericFunction* GetHandler(Selector selector);
   3659 
   3660   /* Sets the given attributes to the attributes for this selector. */
   3661   bool GetAttributes(Selector selector, HandlerAttributes* attr);
   3662 
   3663   /* Returns the handler data that was registered with this handler. */
   3664   const void* GetHandlerData(Selector selector);
   3665 
   3666   /* Could add any of the following functions as-needed, with some minor
   3667    * implementation changes:
   3668    *
   3669    * const FieldDef* GetFieldDef(Selector selector);
   3670    * static bool IsSequence(Selector selector); */
   3671 
   3672  private:
   3673   UPB_DISALLOW_POD_OPS(Handlers, upb::Handlers)
   3674 
   3675   friend UPB_INLINE GenericFunction *::upb_handlers_gethandler(
   3676       const upb_handlers *h, upb_selector_t s);
   3677   friend UPB_INLINE const void *::upb_handlers_gethandlerdata(
   3678       const upb_handlers *h, upb_selector_t s);
   3679 #else
   3680 struct upb_handlers {
   3681 #endif
   3682   upb_refcounted base;
   3683 
   3684   const upb_msgdef *msg;
   3685   const upb_handlers **sub;
   3686   const void *top_closure_type;
   3687   upb_inttable cleanup_;
   3688   upb_status status_;  /* Used only when mutable. */
   3689   upb_handlers_tabent table[1];  /* Dynamically-sized field handler array. */
   3690 };
   3691 
   3692 #ifdef __cplusplus
   3693 
   3694 namespace upb {
   3695 
   3696 /* Convenience macros for creating a Handler object that is wrapped with a
   3697  * type-safe wrapper function that converts the "void*" parameters/returns
   3698  * of the underlying C API into nice C++ function.
   3699  *
   3700  * Sample usage:
   3701  *   void OnValue1(MyClosure* c, const MyHandlerData* d, int32_t val) {
   3702  *     // do stuff ...
   3703  *   }
   3704  *
   3705  *   // Handler that doesn't need any data bound to it.
   3706  *   void OnValue2(MyClosure* c, int32_t val) {
   3707  *     // do stuff ...
   3708  *   }
   3709  *
   3710  *   // Handler that returns bool so it can return failure if necessary.
   3711  *   bool OnValue3(MyClosure* c, int32_t val) {
   3712  *     // do stuff ...
   3713  *     return ok;
   3714  *   }
   3715  *
   3716  *   // Member function handler.
   3717  *   class MyClosure {
   3718  *    public:
   3719  *     void OnValue(int32_t val) {
   3720  *       // do stuff ...
   3721  *     }
   3722  *   };
   3723  *
   3724  *   // Takes ownership of the MyHandlerData.
   3725  *   handlers->SetInt32Handler(f1, UpbBind(OnValue1, new MyHandlerData(...)));
   3726  *   handlers->SetInt32Handler(f2, UpbMakeHandler(OnValue2));
   3727  *   handlers->SetInt32Handler(f1, UpbMakeHandler(OnValue3));
   3728  *   handlers->SetInt32Handler(f2, UpbMakeHandler(&MyClosure::OnValue));
   3729  */
   3730 
   3731 #ifdef UPB_CXX11
   3732 
   3733 /* In C++11, the "template" disambiguator can appear even outside templates,
   3734  * so all calls can safely use this pair of macros. */
   3735 
   3736 #define UpbMakeHandler(f) upb::MatchFunc(f).template GetFunc<f>()
   3737 
   3738 /* We have to be careful to only evaluate "d" once. */
   3739 #define UpbBind(f, d) upb::MatchFunc(f).template GetFunc<f>((d))
   3740 
   3741 #else
   3742 
   3743 /* Prior to C++11, the "template" disambiguator may only appear inside a
   3744  * template, so the regular macro must not use "template" */
   3745 
   3746 #define UpbMakeHandler(f) upb::MatchFunc(f).GetFunc<f>()
   3747 
   3748 #define UpbBind(f, d) upb::MatchFunc(f).GetFunc<f>((d))
   3749 
   3750 #endif  /* UPB_CXX11 */
   3751 
   3752 /* This macro must be used in C++98 for calls from inside a template.  But we
   3753  * define this variant in all cases; code that wants to be compatible with both
   3754  * C++98 and C++11 should always use this macro when calling from a template. */
   3755 #define UpbMakeHandlerT(f) upb::MatchFunc(f).template GetFunc<f>()
   3756 
   3757 /* We have to be careful to only evaluate "d" once. */
   3758 #define UpbBindT(f, d) upb::MatchFunc(f).template GetFunc<f>((d))
   3759 
   3760 /* Handler: a struct that contains the (handler, data, deleter) tuple that is
   3761  * used to register all handlers.  Users can Make() these directly but it's
   3762  * more convenient to use the UpbMakeHandler/UpbBind macros above. */
   3763 template <class T> class Handler {
   3764  public:
   3765   /* The underlying, handler function signature that upb uses internally. */
   3766   typedef T FuncPtr;
   3767 
   3768   /* Intentionally implicit. */
   3769   template <class F> Handler(F func);
   3770   ~Handler();
   3771 
   3772  private:
   3773   void AddCleanup(Handlers* h) const {
   3774     if (cleanup_func_) {
   3775       bool ok = h->AddCleanup(cleanup_data_, cleanup_func_);
   3776       UPB_ASSERT_VAR(ok, ok);
   3777     }
   3778   }
   3779 
   3780   UPB_DISALLOW_COPY_AND_ASSIGN(Handler)
   3781   friend class Handlers;
   3782   FuncPtr handler_;
   3783   mutable HandlerAttributes attr_;
   3784   mutable bool registered_;
   3785   void *cleanup_data_;
   3786   upb_handlerfree *cleanup_func_;
   3787 };
   3788 
   3789 }  /* namespace upb */
   3790 
   3791 #endif  /* __cplusplus */
   3792 
   3793 UPB_BEGIN_EXTERN_C
   3794 
   3795 /* Native C API. */
   3796 
   3797 /* Handler function typedefs. */
   3798 typedef bool upb_startmsg_handlerfunc(void *c, const void*);
   3799 typedef bool upb_endmsg_handlerfunc(void *c, const void *, upb_status *status);
   3800 typedef void* upb_startfield_handlerfunc(void *c, const void *hd);
   3801 typedef bool upb_endfield_handlerfunc(void *c, const void *hd);
   3802 typedef bool upb_int32_handlerfunc(void *c, const void *hd, int32_t val);
   3803 typedef bool upb_int64_handlerfunc(void *c, const void *hd, int64_t val);
   3804 typedef bool upb_uint32_handlerfunc(void *c, const void *hd, uint32_t val);
   3805 typedef bool upb_uint64_handlerfunc(void *c, const void *hd, uint64_t val);
   3806 typedef bool upb_float_handlerfunc(void *c, const void *hd, float val);
   3807 typedef bool upb_double_handlerfunc(void *c, const void *hd, double val);
   3808 typedef bool upb_bool_handlerfunc(void *c, const void *hd, bool val);
   3809 typedef void *upb_startstr_handlerfunc(void *c, const void *hd,
   3810                                        size_t size_hint);
   3811 typedef size_t upb_string_handlerfunc(void *c, const void *hd, const char *buf,
   3812                                       size_t n, const upb_bufhandle* handle);
   3813 
   3814 /* upb_bufhandle */
   3815 size_t upb_bufhandle_objofs(const upb_bufhandle *h);
   3816 
   3817 /* upb_handlerattr */
   3818 void upb_handlerattr_init(upb_handlerattr *attr);
   3819 void upb_handlerattr_uninit(upb_handlerattr *attr);
   3820 
   3821 bool upb_handlerattr_sethandlerdata(upb_handlerattr *attr, const void *hd);
   3822 bool upb_handlerattr_setclosuretype(upb_handlerattr *attr, const void *type);
   3823 const void *upb_handlerattr_closuretype(const upb_handlerattr *attr);
   3824 bool upb_handlerattr_setreturnclosuretype(upb_handlerattr *attr,
   3825                                           const void *type);
   3826 const void *upb_handlerattr_returnclosuretype(const upb_handlerattr *attr);
   3827 bool upb_handlerattr_setalwaysok(upb_handlerattr *attr, bool alwaysok);
   3828 bool upb_handlerattr_alwaysok(const upb_handlerattr *attr);
   3829 
   3830 UPB_INLINE const void *upb_handlerattr_handlerdata(
   3831     const upb_handlerattr *attr) {
   3832   return attr->handler_data_;
   3833 }
   3834 
   3835 /* upb_handlers */
   3836 typedef void upb_handlers_callback(const void *closure, upb_handlers *h);
   3837 upb_handlers *upb_handlers_new(const upb_msgdef *m,
   3838                                const void *owner);
   3839 const upb_handlers *upb_handlers_newfrozen(const upb_msgdef *m,
   3840                                            const void *owner,
   3841                                            upb_handlers_callback *callback,
   3842                                            const void *closure);
   3843 
   3844 /* Include refcounted methods like upb_handlers_ref(). */
   3845 UPB_REFCOUNTED_CMETHODS(upb_handlers, upb_handlers_upcast)
   3846 
   3847 const upb_status *upb_handlers_status(upb_handlers *h);
   3848 void upb_handlers_clearerr(upb_handlers *h);
   3849 const upb_msgdef *upb_handlers_msgdef(const upb_handlers *h);
   3850 bool upb_handlers_addcleanup(upb_handlers *h, void *p, upb_handlerfree *hfree);
   3851 
   3852 bool upb_handlers_setstartmsg(upb_handlers *h, upb_startmsg_handlerfunc *func,
   3853                               upb_handlerattr *attr);
   3854 bool upb_handlers_setendmsg(upb_handlers *h, upb_endmsg_handlerfunc *func,
   3855                             upb_handlerattr *attr);
   3856 bool upb_handlers_setint32(upb_handlers *h, const upb_fielddef *f,
   3857                            upb_int32_handlerfunc *func, upb_handlerattr *attr);
   3858 bool upb_handlers_setint64(upb_handlers *h, const upb_fielddef *f,
   3859                            upb_int64_handlerfunc *func, upb_handlerattr *attr);
   3860 bool upb_handlers_setuint32(upb_handlers *h, const upb_fielddef *f,
   3861                             upb_uint32_handlerfunc *func,
   3862                             upb_handlerattr *attr);
   3863 bool upb_handlers_setuint64(upb_handlers *h, const upb_fielddef *f,
   3864                             upb_uint64_handlerfunc *func,
   3865                             upb_handlerattr *attr);
   3866 bool upb_handlers_setfloat(upb_handlers *h, const upb_fielddef *f,
   3867                            upb_float_handlerfunc *func, upb_handlerattr *attr);
   3868 bool upb_handlers_setdouble(upb_handlers *h, const upb_fielddef *f,
   3869                             upb_double_handlerfunc *func,
   3870                             upb_handlerattr *attr);
   3871 bool upb_handlers_setbool(upb_handlers *h, const upb_fielddef *f,
   3872                           upb_bool_handlerfunc *func,
   3873                           upb_handlerattr *attr);
   3874 bool upb_handlers_setstartstr(upb_handlers *h, const upb_fielddef *f,
   3875                               upb_startstr_handlerfunc *func,
   3876                               upb_handlerattr *attr);
   3877 bool upb_handlers_setstring(upb_handlers *h, const upb_fielddef *f,
   3878                             upb_string_handlerfunc *func,
   3879                             upb_handlerattr *attr);
   3880 bool upb_handlers_setendstr(upb_handlers *h, const upb_fielddef *f,
   3881                             upb_endfield_handlerfunc *func,
   3882                             upb_handlerattr *attr);
   3883 bool upb_handlers_setstartseq(upb_handlers *h, const upb_fielddef *f,
   3884                               upb_startfield_handlerfunc *func,
   3885                               upb_handlerattr *attr);
   3886 bool upb_handlers_setstartsubmsg(upb_handlers *h, const upb_fielddef *f,
   3887                                  upb_startfield_handlerfunc *func,
   3888                                  upb_handlerattr *attr);
   3889 bool upb_handlers_setendsubmsg(upb_handlers *h, const upb_fielddef *f,
   3890                                upb_endfield_handlerfunc *func,
   3891                                upb_handlerattr *attr);
   3892 bool upb_handlers_setendseq(upb_handlers *h, const upb_fielddef *f,
   3893                             upb_endfield_handlerfunc *func,
   3894                             upb_handlerattr *attr);
   3895 
   3896 bool upb_handlers_setsubhandlers(upb_handlers *h, const upb_fielddef *f,
   3897                                  const upb_handlers *sub);
   3898 const upb_handlers *upb_handlers_getsubhandlers(const upb_handlers *h,
   3899                                                 const upb_fielddef *f);
   3900 const upb_handlers *upb_handlers_getsubhandlers_sel(const upb_handlers *h,
   3901                                                     upb_selector_t sel);
   3902 
   3903 UPB_INLINE upb_func *upb_handlers_gethandler(const upb_handlers *h,
   3904                                              upb_selector_t s) {
   3905   return (upb_func *)h->table[s].func;
   3906 }
   3907 
   3908 bool upb_handlers_getattr(const upb_handlers *h, upb_selector_t s,
   3909                           upb_handlerattr *attr);
   3910 
   3911 UPB_INLINE const void *upb_handlers_gethandlerdata(const upb_handlers *h,
   3912                                                    upb_selector_t s) {
   3913   return upb_handlerattr_handlerdata(&h->table[s].attr);
   3914 }
   3915 
   3916 #ifdef __cplusplus
   3917 
   3918 /* Handler types for single fields.
   3919  * Right now we only have one for TYPE_BYTES but ones for other types
   3920  * should follow.
   3921  *
   3922  * These follow the same handlers protocol for fields of a message. */
   3923 class upb::BytesHandler {
   3924  public:
   3925   BytesHandler();
   3926   ~BytesHandler();
   3927 #else
   3928 struct upb_byteshandler {
   3929 #endif
   3930   upb_handlers_tabent table[3];
   3931 };
   3932 
   3933 void upb_byteshandler_init(upb_byteshandler *h);
   3934 
   3935 /* Caller must ensure that "d" outlives the handlers.
   3936  * TODO(haberman): should this have a "freeze" operation?  It's not necessary
   3937  * for memory management, but could be useful to force immutability and provide
   3938  * a convenient moment to verify that all registration succeeded. */
   3939 bool upb_byteshandler_setstartstr(upb_byteshandler *h,
   3940                                   upb_startstr_handlerfunc *func, void *d);
   3941 bool upb_byteshandler_setstring(upb_byteshandler *h,
   3942                                 upb_string_handlerfunc *func, void *d);
   3943 bool upb_byteshandler_setendstr(upb_byteshandler *h,
   3944                                 upb_endfield_handlerfunc *func, void *d);
   3945 
   3946 /* "Static" methods */
   3947 bool upb_handlers_freeze(upb_handlers *const *handlers, int n, upb_status *s);
   3948 upb_handlertype_t upb_handlers_getprimitivehandlertype(const upb_fielddef *f);
   3949 bool upb_handlers_getselector(const upb_fielddef *f, upb_handlertype_t type,
   3950                               upb_selector_t *s);
   3951 UPB_INLINE upb_selector_t upb_handlers_getendselector(upb_selector_t start) {
   3952   return start + 1;
   3953 }
   3954 
   3955 /* Internal-only. */
   3956 uint32_t upb_handlers_selectorbaseoffset(const upb_fielddef *f);
   3957 uint32_t upb_handlers_selectorcount(const upb_fielddef *f);
   3958 
   3959 UPB_END_EXTERN_C
   3960 
   3961 /*
   3962 ** Inline definitions for handlers.h, which are particularly long and a bit
   3963 ** tricky.
   3964 */
   3965 
   3966 #ifndef UPB_HANDLERS_INL_H_
   3967 #define UPB_HANDLERS_INL_H_
   3968 
   3969 #include <limits.h>
   3970 
   3971 /* C inline methods. */
   3972 
   3973 /* upb_bufhandle */
   3974 UPB_INLINE void upb_bufhandle_init(upb_bufhandle *h) {
   3975   h->obj_ = NULL;
   3976   h->objtype_ = NULL;
   3977   h->buf_ = NULL;
   3978   h->objofs_ = 0;
   3979 }
   3980 UPB_INLINE void upb_bufhandle_uninit(upb_bufhandle *h) {
   3981   UPB_UNUSED(h);
   3982 }
   3983 UPB_INLINE void upb_bufhandle_setobj(upb_bufhandle *h, const void *obj,
   3984                                      const void *type) {
   3985   h->obj_ = obj;
   3986   h->objtype_ = type;
   3987 }
   3988 UPB_INLINE void upb_bufhandle_setbuf(upb_bufhandle *h, const char *buf,
   3989                                      size_t ofs) {
   3990   h->buf_ = buf;
   3991   h->objofs_ = ofs;
   3992 }
   3993 UPB_INLINE const void *upb_bufhandle_obj(const upb_bufhandle *h) {
   3994   return h->obj_;
   3995 }
   3996 UPB_INLINE const void *upb_bufhandle_objtype(const upb_bufhandle *h) {
   3997   return h->objtype_;
   3998 }
   3999 UPB_INLINE const char *upb_bufhandle_buf(const upb_bufhandle *h) {
   4000   return h->buf_;
   4001 }
   4002 
   4003 
   4004 #ifdef __cplusplus
   4005 
   4006 /* Type detection and typedefs for integer types.
   4007  * For platforms where there are multiple 32-bit or 64-bit types, we need to be
   4008  * able to enumerate them so we can properly create overloads for all variants.
   4009  *
   4010  * If any platform existed where there were three integer types with the same
   4011  * size, this would have to become more complicated.  For example, short, int,
   4012  * and long could all be 32-bits.  Even more diabolically, short, int, long,
   4013  * and long long could all be 64 bits and still be standard-compliant.
   4014  * However, few platforms are this strange, and it's unlikely that upb will be
   4015  * used on the strangest ones. */
   4016 
   4017 /* Can't count on stdint.h limits like INT32_MAX, because in C++ these are
   4018  * only defined when __STDC_LIMIT_MACROS are defined before the *first* include
   4019  * of stdint.h.  We can't guarantee that someone else didn't include these first
   4020  * without defining __STDC_LIMIT_MACROS. */
   4021 #define UPB_INT32_MAX 0x7fffffffLL
   4022 #define UPB_INT32_MIN (-UPB_INT32_MAX - 1)
   4023 #define UPB_INT64_MAX 0x7fffffffffffffffLL
   4024 #define UPB_INT64_MIN (-UPB_INT64_MAX - 1)
   4025 
   4026 #if INT_MAX == UPB_INT32_MAX && INT_MIN == UPB_INT32_MIN
   4027 #define UPB_INT_IS_32BITS 1
   4028 #endif
   4029 
   4030 #if LONG_MAX == UPB_INT32_MAX && LONG_MIN == UPB_INT32_MIN
   4031 #define UPB_LONG_IS_32BITS 1
   4032 #endif
   4033 
   4034 #if LONG_MAX == UPB_INT64_MAX && LONG_MIN == UPB_INT64_MIN
   4035 #define UPB_LONG_IS_64BITS 1
   4036 #endif
   4037 
   4038 #if LLONG_MAX == UPB_INT64_MAX && LLONG_MIN == UPB_INT64_MIN
   4039 #define UPB_LLONG_IS_64BITS 1
   4040 #endif
   4041 
   4042 /* We use macros instead of typedefs so we can undefine them later and avoid
   4043  * leaking them outside this header file. */
   4044 #if UPB_INT_IS_32BITS
   4045 #define UPB_INT32_T int
   4046 #define UPB_UINT32_T unsigned int
   4047 
   4048 #if UPB_LONG_IS_32BITS
   4049 #define UPB_TWO_32BIT_TYPES 1
   4050 #define UPB_INT32ALT_T long
   4051 #define UPB_UINT32ALT_T unsigned long
   4052 #endif  /* UPB_LONG_IS_32BITS */
   4053 
   4054 #elif UPB_LONG_IS_32BITS  /* && !UPB_INT_IS_32BITS */
   4055 #define UPB_INT32_T long
   4056 #define UPB_UINT32_T unsigned long
   4057 #endif  /* UPB_INT_IS_32BITS */
   4058 
   4059 
   4060 #if UPB_LONG_IS_64BITS
   4061 #define UPB_INT64_T long
   4062 #define UPB_UINT64_T unsigned long
   4063 
   4064 #if UPB_LLONG_IS_64BITS
   4065 #define UPB_TWO_64BIT_TYPES 1
   4066 #define UPB_INT64ALT_T long long
   4067 #define UPB_UINT64ALT_T unsigned long long
   4068 #endif  /* UPB_LLONG_IS_64BITS */
   4069 
   4070 #elif UPB_LLONG_IS_64BITS  /* && !UPB_LONG_IS_64BITS */
   4071 #define UPB_INT64_T long long
   4072 #define UPB_UINT64_T unsigned long long
   4073 #endif  /* UPB_LONG_IS_64BITS */
   4074 
   4075 #undef UPB_INT32_MAX
   4076 #undef UPB_INT32_MIN
   4077 #undef UPB_INT64_MAX
   4078 #undef UPB_INT64_MIN
   4079 #undef UPB_INT_IS_32BITS
   4080 #undef UPB_LONG_IS_32BITS
   4081 #undef UPB_LONG_IS_64BITS
   4082 #undef UPB_LLONG_IS_64BITS
   4083 
   4084 
   4085 namespace upb {
   4086 
   4087 typedef void CleanupFunc(void *ptr);
   4088 
   4089 /* Template to remove "const" from "const T*" and just return "T*".
   4090  *
   4091  * We define a nonsense default because otherwise it will fail to instantiate as
   4092  * a function parameter type even in cases where we don't expect any caller to
   4093  * actually match the overload. */
   4094 class CouldntRemoveConst {};
   4095 template <class T> struct remove_constptr { typedef CouldntRemoveConst type; };
   4096 template <class T> struct remove_constptr<const T *> { typedef T *type; };
   4097 
   4098 /* Template that we use below to remove a template specialization from
   4099  * consideration if it matches a specific type. */
   4100 template <class T, class U> struct disable_if_same { typedef void Type; };
   4101 template <class T> struct disable_if_same<T, T> {};
   4102 
   4103 template <class T> void DeletePointer(void *p) { delete static_cast<T>(p); }
   4104 
   4105 template <class T1, class T2>
   4106 struct FirstUnlessVoidOrBool {
   4107   typedef T1 value;
   4108 };
   4109 
   4110 template <class T2>
   4111 struct FirstUnlessVoidOrBool<void, T2> {
   4112   typedef T2 value;
   4113 };
   4114 
   4115 template <class T2>
   4116 struct FirstUnlessVoidOrBool<bool, T2> {
   4117   typedef T2 value;
   4118 };
   4119 
   4120 template<class T, class U>
   4121 struct is_same {
   4122   static bool value;
   4123 };
   4124 
   4125 template<class T>
   4126 struct is_same<T, T> {
   4127   static bool value;
   4128 };
   4129 
   4130 template<class T, class U>
   4131 bool is_same<T, U>::value = false;
   4132 
   4133 template<class T>
   4134 bool is_same<T, T>::value = true;
   4135 
   4136 /* FuncInfo *******************************************************************/
   4137 
   4138 /* Info about the user's original, pre-wrapped function. */
   4139 template <class C, class R = void>
   4140 struct FuncInfo {
   4141   /* The type of the closure that the function takes (its first param). */
   4142   typedef C Closure;
   4143 
   4144   /* The return type. */
   4145   typedef R Return;
   4146 };
   4147 
   4148 /* Func ***********************************************************************/
   4149 
   4150 /* Func1, Func2, Func3: Template classes representing a function and its
   4151  * signature.
   4152  *
   4153  * Since the function is a template parameter, calling the function can be
   4154  * inlined at compile-time and does not require a function pointer at runtime.
   4155  * These functions are not bound to a handler data so have no data or cleanup
   4156  * handler. */
   4157 struct UnboundFunc {
   4158   CleanupFunc *GetCleanup() { return NULL; }
   4159   void *GetData() { return NULL; }
   4160 };
   4161 
   4162 template <class R, class P1, R F(P1), class I>
   4163 struct Func1 : public UnboundFunc {
   4164   typedef R Return;
   4165   typedef I FuncInfo;
   4166   static R Call(P1 p1) { return F(p1); }
   4167 };
   4168 
   4169 template <class R, class P1, class P2, R F(P1, P2), class I>
   4170 struct Func2 : public UnboundFunc {
   4171   typedef R Return;
   4172   typedef I FuncInfo;
   4173   static R Call(P1 p1, P2 p2) { return F(p1, p2); }
   4174 };
   4175 
   4176 template <class R, class P1, class P2, class P3, R F(P1, P2, P3), class I>
   4177 struct Func3 : public UnboundFunc {
   4178   typedef R Return;
   4179   typedef I FuncInfo;
   4180   static R Call(P1 p1, P2 p2, P3 p3) { return F(p1, p2, p3); }
   4181 };
   4182 
   4183 template <class R, class P1, class P2, class P3, class P4, R F(P1, P2, P3, P4),
   4184           class I>
   4185 struct Func4 : public UnboundFunc {
   4186   typedef R Return;
   4187   typedef I FuncInfo;
   4188   static R Call(P1 p1, P2 p2, P3 p3, P4 p4) { return F(p1, p2, p3, p4); }
   4189 };
   4190 
   4191 template <class R, class P1, class P2, class P3, class P4, class P5,
   4192           R F(P1, P2, P3, P4, P5), class I>
   4193 struct Func5 : public UnboundFunc {
   4194   typedef R Return;
   4195   typedef I FuncInfo;
   4196   static R Call(P1 p1, P2 p2, P3 p3, P4 p4, P5 p5) {
   4197     return F(p1, p2, p3, p4, p5);
   4198   }
   4199 };
   4200 
   4201 /* BoundFunc ******************************************************************/
   4202 
   4203 /* BoundFunc2, BoundFunc3: Like Func2/Func3 except also contains a value that
   4204  * shall be bound to the function's second parameter.
   4205  *
   4206  * Note that the second parameter is a const pointer, but our stored bound value
   4207  * is non-const so we can free it when the handlers are destroyed. */
   4208 template <class T>
   4209 struct BoundFunc {
   4210   typedef typename remove_constptr<T>::type MutableP2;
   4211   explicit BoundFunc(MutableP2 data_) : data(data_) {}
   4212   CleanupFunc *GetCleanup() { return &DeletePointer<MutableP2>; }
   4213   MutableP2 GetData() { return data; }
   4214   MutableP2 data;
   4215 };
   4216 
   4217 template <class R, class P1, class P2, R F(P1, P2), class I>
   4218 struct BoundFunc2 : public BoundFunc<P2> {
   4219   typedef BoundFunc<P2> Base;
   4220   typedef I FuncInfo;
   4221   explicit BoundFunc2(typename Base::MutableP2 arg) : Base(arg) {}
   4222 };
   4223 
   4224 template <class R, class P1, class P2, class P3, R F(P1, P2, P3), class I>
   4225 struct BoundFunc3 : public BoundFunc<P2> {
   4226   typedef BoundFunc<P2> Base;
   4227   typedef I FuncInfo;
   4228   explicit BoundFunc3(typename Base::MutableP2 arg) : Base(arg) {}
   4229 };
   4230 
   4231 template <class R, class P1, class P2, class P3, class P4, R F(P1, P2, P3, P4),
   4232           class I>
   4233 struct BoundFunc4 : public BoundFunc<P2> {
   4234   typedef BoundFunc<P2> Base;
   4235   typedef I FuncInfo;
   4236   explicit BoundFunc4(typename Base::MutableP2 arg) : Base(arg) {}
   4237 };
   4238 
   4239 template <class R, class P1, class P2, class P3, class P4, class P5,
   4240           R F(P1, P2, P3, P4, P5), class I>
   4241 struct BoundFunc5 : public BoundFunc<P2> {
   4242   typedef BoundFunc<P2> Base;
   4243   typedef I FuncInfo;
   4244   explicit BoundFunc5(typename Base::MutableP2 arg) : Base(arg) {}
   4245 };
   4246 
   4247 /* FuncSig ********************************************************************/
   4248 
   4249 /* FuncSig1, FuncSig2, FuncSig3: template classes reflecting a function
   4250  * *signature*, but without a specific function attached.
   4251  *
   4252  * These classes contain member functions that can be invoked with a
   4253  * specific function to return a Func/BoundFunc class. */
   4254 template <class R, class P1>
   4255 struct FuncSig1 {
   4256   template <R F(P1)>
   4257   Func1<R, P1, F, FuncInfo<P1, R> > GetFunc() {
   4258     return Func1<R, P1, F, FuncInfo<P1, R> >();
   4259   }
   4260 };
   4261 
   4262 template <class R, class P1, class P2>
   4263 struct FuncSig2 {
   4264   template <R F(P1, P2)>
   4265   Func2<R, P1, P2, F, FuncInfo<P1, R> > GetFunc() {
   4266     return Func2<R, P1, P2, F, FuncInfo<P1, R> >();
   4267   }
   4268 
   4269   template <R F(P1, P2)>
   4270   BoundFunc2<R, P1, P2, F, FuncInfo<P1, R> > GetFunc(
   4271       typename remove_constptr<P2>::type param2) {
   4272     return BoundFunc2<R, P1, P2, F, FuncInfo<P1, R> >(param2);
   4273   }
   4274 };
   4275 
   4276 template <class R, class P1, class P2, class P3>
   4277 struct FuncSig3 {
   4278   template <R F(P1, P2, P3)>
   4279   Func3<R, P1, P2, P3, F, FuncInfo<P1, R> > GetFunc() {
   4280     return Func3<R, P1, P2, P3, F, FuncInfo<P1, R> >();
   4281   }
   4282 
   4283   template <R F(P1, P2, P3)>
   4284   BoundFunc3<R, P1, P2, P3, F, FuncInfo<P1, R> > GetFunc(
   4285       typename remove_constptr<P2>::type param2) {
   4286     return BoundFunc3<R, P1, P2, P3, F, FuncInfo<P1, R> >(param2);
   4287   }
   4288 };
   4289 
   4290 template <class R, class P1, class P2, class P3, class P4>
   4291 struct FuncSig4 {
   4292   template <R F(P1, P2, P3, P4)>
   4293   Func4<R, P1, P2, P3, P4, F, FuncInfo<P1, R> > GetFunc() {
   4294     return Func4<R, P1, P2, P3, P4, F, FuncInfo<P1, R> >();
   4295   }
   4296 
   4297   template <R F(P1, P2, P3, P4)>
   4298   BoundFunc4<R, P1, P2, P3, P4, F, FuncInfo<P1, R> > GetFunc(
   4299       typename remove_constptr<P2>::type param2) {
   4300     return BoundFunc4<R, P1, P2, P3, P4, F, FuncInfo<P1, R> >(param2);
   4301   }
   4302 };
   4303 
   4304 template <class R, class P1, class P2, class P3, class P4, class P5>
   4305 struct FuncSig5 {
   4306   template <R F(P1, P2, P3, P4, P5)>
   4307   Func5<R, P1, P2, P3, P4, P5, F, FuncInfo<P1, R> > GetFunc() {
   4308     return Func5<R, P1, P2, P3, P4, P5, F, FuncInfo<P1, R> >();
   4309   }
   4310 
   4311   template <R F(P1, P2, P3, P4, P5)>
   4312   BoundFunc5<R, P1, P2, P3, P4, P5, F, FuncInfo<P1, R> > GetFunc(
   4313       typename remove_constptr<P2>::type param2) {
   4314     return BoundFunc5<R, P1, P2, P3, P4, P5, F, FuncInfo<P1, R> >(param2);
   4315   }
   4316 };
   4317 
   4318 /* Overloaded template function that can construct the appropriate FuncSig*
   4319  * class given a function pointer by deducing the template parameters. */
   4320 template <class R, class P1>
   4321 inline FuncSig1<R, P1> MatchFunc(R (*f)(P1)) {
   4322   UPB_UNUSED(f);  /* Only used for template parameter deduction. */
   4323   return FuncSig1<R, P1>();
   4324 }
   4325 
   4326 template <class R, class P1, class P2>
   4327 inline FuncSig2<R, P1, P2> MatchFunc(R (*f)(P1, P2)) {
   4328   UPB_UNUSED(f);  /* Only used for template parameter deduction. */
   4329   return FuncSig2<R, P1, P2>();
   4330 }
   4331 
   4332 template <class R, class P1, class P2, class P3>
   4333 inline FuncSig3<R, P1, P2, P3> MatchFunc(R (*f)(P1, P2, P3)) {
   4334   UPB_UNUSED(f);  /* Only used for template parameter deduction. */
   4335   return FuncSig3<R, P1, P2, P3>();
   4336 }
   4337 
   4338 template <class R, class P1, class P2, class P3, class P4>
   4339 inline FuncSig4<R, P1, P2, P3, P4> MatchFunc(R (*f)(P1, P2, P3, P4)) {
   4340   UPB_UNUSED(f);  /* Only used for template parameter deduction. */
   4341   return FuncSig4<R, P1, P2, P3, P4>();
   4342 }
   4343 
   4344 template <class R, class P1, class P2, class P3, class P4, class P5>
   4345 inline FuncSig5<R, P1, P2, P3, P4, P5> MatchFunc(R (*f)(P1, P2, P3, P4, P5)) {
   4346   UPB_UNUSED(f);  /* Only used for template parameter deduction. */
   4347   return FuncSig5<R, P1, P2, P3, P4, P5>();
   4348 }
   4349 
   4350 /* MethodSig ******************************************************************/
   4351 
   4352 /* CallMethod*: a function template that calls a given method. */
   4353 template <class R, class C, R (C::*F)()>
   4354 R CallMethod0(C *obj) {
   4355   return ((*obj).*F)();
   4356 }
   4357 
   4358 template <class R, class C, class P1, R (C::*F)(P1)>
   4359 R CallMethod1(C *obj, P1 arg1) {
   4360   return ((*obj).*F)(arg1);
   4361 }
   4362 
   4363 template <class R, class C, class P1, class P2, R (C::*F)(P1, P2)>
   4364 R CallMethod2(C *obj, P1 arg1, P2 arg2) {
   4365   return ((*obj).*F)(arg1, arg2);
   4366 }
   4367 
   4368 template <class R, class C, class P1, class P2, class P3, R (C::*F)(P1, P2, P3)>
   4369 R CallMethod3(C *obj, P1 arg1, P2 arg2, P3 arg3) {
   4370   return ((*obj).*F)(arg1, arg2, arg3);
   4371 }
   4372 
   4373 template <class R, class C, class P1, class P2, class P3, class P4,
   4374           R (C::*F)(P1, P2, P3, P4)>
   4375 R CallMethod4(C *obj, P1 arg1, P2 arg2, P3 arg3, P4 arg4) {
   4376   return ((*obj).*F)(arg1, arg2, arg3, arg4);
   4377 }
   4378 
   4379 /* MethodSig: like FuncSig, but for member functions.
   4380  *
   4381  * GetFunc() returns a normal FuncN object, so after calling GetFunc() no
   4382  * more logic is required to special-case methods. */
   4383 template <class R, class C>
   4384 struct MethodSig0 {
   4385   template <R (C::*F)()>
   4386   Func1<R, C *, CallMethod0<R, C, F>, FuncInfo<C *, R> > GetFunc() {
   4387     return Func1<R, C *, CallMethod0<R, C, F>, FuncInfo<C *, R> >();
   4388   }
   4389 };
   4390 
   4391 template <class R, class C, class P1>
   4392 struct MethodSig1 {
   4393   template <R (C::*F)(P1)>
   4394   Func2<R, C *, P1, CallMethod1<R, C, P1, F>, FuncInfo<C *, R> > GetFunc() {
   4395     return Func2<R, C *, P1, CallMethod1<R, C, P1, F>, FuncInfo<C *, R> >();
   4396   }
   4397 
   4398   template <R (C::*F)(P1)>
   4399   BoundFunc2<R, C *, P1, CallMethod1<R, C, P1, F>, FuncInfo<C *, R> > GetFunc(
   4400       typename remove_constptr<P1>::type param1) {
   4401     return BoundFunc2<R, C *, P1, CallMethod1<R, C, P1, F>, FuncInfo<C *, R> >(
   4402         param1);
   4403   }
   4404 };
   4405 
   4406 template <class R, class C, class P1, class P2>
   4407 struct MethodSig2 {
   4408   template <R (C::*F)(P1, P2)>
   4409   Func3<R, C *, P1, P2, CallMethod2<R, C, P1, P2, F>, FuncInfo<C *, R> >
   4410   GetFunc() {
   4411     return Func3<R, C *, P1, P2, CallMethod2<R, C, P1, P2, F>,
   4412                  FuncInfo<C *, R> >();
   4413   }
   4414 
   4415   template <R (C::*F)(P1, P2)>
   4416   BoundFunc3<R, C *, P1, P2, CallMethod2<R, C, P1, P2, F>, FuncInfo<C *, R> >
   4417   GetFunc(typename remove_constptr<P1>::type param1) {
   4418     return BoundFunc3<R, C *, P1, P2, CallMethod2<R, C, P1, P2, F>,
   4419                       FuncInfo<C *, R> >(param1);
   4420   }
   4421 };
   4422 
   4423 template <class R, class C, class P1, class P2, class P3>
   4424 struct MethodSig3 {
   4425   template <R (C::*F)(P1, P2, P3)>
   4426   Func4<R, C *, P1, P2, P3, CallMethod3<R, C, P1, P2, P3, F>, FuncInfo<C *, R> >
   4427   GetFunc() {
   4428     return Func4<R, C *, P1, P2, P3, CallMethod3<R, C, P1, P2, P3, F>,
   4429                  FuncInfo<C *, R> >();
   4430   }
   4431 
   4432   template <R (C::*F)(P1, P2, P3)>
   4433   BoundFunc4<R, C *, P1, P2, P3, CallMethod3<R, C, P1, P2, P3, F>,
   4434              FuncInfo<C *, R> >
   4435   GetFunc(typename remove_constptr<P1>::type param1) {
   4436     return BoundFunc4<R, C *, P1, P2, P3, CallMethod3<R, C, P1, P2, P3, F>,
   4437                       FuncInfo<C *, R> >(param1);
   4438   }
   4439 };
   4440 
   4441 template <class R, class C, class P1, class P2, class P3, class P4>
   4442 struct MethodSig4 {
   4443   template <R (C::*F)(P1, P2, P3, P4)>
   4444   Func5<R, C *, P1, P2, P3, P4, CallMethod4<R, C, P1, P2, P3, P4, F>,
   4445         FuncInfo<C *, R> >
   4446   GetFunc() {
   4447     return Func5<R, C *, P1, P2, P3, P4, CallMethod4<R, C, P1, P2, P3, P4, F>,
   4448                  FuncInfo<C *, R> >();
   4449   }
   4450 
   4451   template <R (C::*F)(P1, P2, P3, P4)>
   4452   BoundFunc5<R, C *, P1, P2, P3, P4, CallMethod4<R, C, P1, P2, P3, P4, F>,
   4453              FuncInfo<C *, R> >
   4454   GetFunc(typename remove_constptr<P1>::type param1) {
   4455     return BoundFunc5<R, C *, P1, P2, P3, P4,
   4456                       CallMethod4<R, C, P1, P2, P3, P4, F>, FuncInfo<C *, R> >(
   4457         param1);
   4458   }
   4459 };
   4460 
   4461 template <class R, class C>
   4462 inline MethodSig0<R, C> MatchFunc(R (C::*f)()) {
   4463   UPB_UNUSED(f);  /* Only used for template parameter deduction. */
   4464   return MethodSig0<R, C>();
   4465 }
   4466 
   4467 template <class R, class C, class P1>
   4468 inline MethodSig1<R, C, P1> MatchFunc(R (C::*f)(P1)) {
   4469   UPB_UNUSED(f);  /* Only used for template parameter deduction. */
   4470   return MethodSig1<R, C, P1>();
   4471 }
   4472 
   4473 template <class R, class C, class P1, class P2>
   4474 inline MethodSig2<R, C, P1, P2> MatchFunc(R (C::*f)(P1, P2)) {
   4475   UPB_UNUSED(f);  /* Only used for template parameter deduction. */
   4476   return MethodSig2<R, C, P1, P2>();
   4477 }
   4478 
   4479 template <class R, class C, class P1, class P2, class P3>
   4480 inline MethodSig3<R, C, P1, P2, P3> MatchFunc(R (C::*f)(P1, P2, P3)) {
   4481   UPB_UNUSED(f);  /* Only used for template parameter deduction. */
   4482   return MethodSig3<R, C, P1, P2, P3>();
   4483 }
   4484 
   4485 template <class R, class C, class P1, class P2, class P3, class P4>
   4486 inline MethodSig4<R, C, P1, P2, P3, P4> MatchFunc(R (C::*f)(P1, P2, P3, P4)) {
   4487   UPB_UNUSED(f);  /* Only used for template parameter deduction. */
   4488   return MethodSig4<R, C, P1, P2, P3, P4>();
   4489 }
   4490 
   4491 /* MaybeWrapReturn ************************************************************/
   4492 
   4493 /* Template class that attempts to wrap the return value of the function so it
   4494  * matches the expected type.  There are two main adjustments it may make:
   4495  *
   4496  *   1. If the function returns void, make it return the expected type and with
   4497  *      a value that always indicates success.
   4498  *   2. If the function returns bool, make it return the expected type with a
   4499  *      value that indicates success or failure.
   4500  *
   4501  * The "expected type" for return is:
   4502  *   1. void* for start handlers.  If the closure parameter has a different type
   4503  *      we will cast it to void* for the return in the success case.
   4504  *   2. size_t for string buffer handlers.
   4505  *   3. bool for everything else. */
   4506 
   4507 /* Template parameters are FuncN type and desired return type. */
   4508 template <class F, class R, class Enable = void>
   4509 struct MaybeWrapReturn;
   4510 
   4511 /* If the return type matches, return the given function unwrapped. */
   4512 template <class F>
   4513 struct MaybeWrapReturn<F, typename F::Return> {
   4514   typedef F Func;
   4515 };
   4516 
   4517 /* Function wrapper that munges the return value from void to (bool)true. */
   4518 template <class P1, class P2, void F(P1, P2)>
   4519 bool ReturnTrue2(P1 p1, P2 p2) {
   4520   F(p1, p2);
   4521   return true;
   4522 }
   4523 
   4524 template <class P1, class P2, class P3, void F(P1, P2, P3)>
   4525 bool ReturnTrue3(P1 p1, P2 p2, P3 p3) {
   4526   F(p1, p2, p3);
   4527   return true;
   4528 }
   4529 
   4530 /* Function wrapper that munges the return value from void to (void*)arg1  */
   4531 template <class P1, class P2, void F(P1, P2)>
   4532 void *ReturnClosure2(P1 p1, P2 p2) {
   4533   F(p1, p2);
   4534   return p1;
   4535 }
   4536 
   4537 template <class P1, class P2, class P3, void F(P1, P2, P3)>
   4538 void *ReturnClosure3(P1 p1, P2 p2, P3 p3) {
   4539   F(p1, p2, p3);
   4540   return p1;
   4541 }
   4542 
   4543 /* Function wrapper that munges the return value from R to void*. */
   4544 template <class R, class P1, class P2, R F(P1, P2)>
   4545 void *CastReturnToVoidPtr2(P1 p1, P2 p2) {
   4546   return F(p1, p2);
   4547 }
   4548 
   4549 template <class R, class P1, class P2, class P3, R F(P1, P2, P3)>
   4550 void *CastReturnToVoidPtr3(P1 p1, P2 p2, P3 p3) {
   4551   return F(p1, p2, p3);
   4552 }
   4553 
   4554 /* Function wrapper that munges the return value from bool to void*. */
   4555 template <class P1, class P2, bool F(P1, P2)>
   4556 void *ReturnClosureOrBreak2(P1 p1, P2 p2) {
   4557   return F(p1, p2) ? p1 : UPB_BREAK;
   4558 }
   4559 
   4560 template <class P1, class P2, class P3, bool F(P1, P2, P3)>
   4561 void *ReturnClosureOrBreak3(P1 p1, P2 p2, P3 p3) {
   4562   return F(p1, p2, p3) ? p1 : UPB_BREAK;
   4563 }
   4564 
   4565 /* For the string callback, which takes five params, returns the size param. */
   4566 template <class P1, class P2,
   4567           void F(P1, P2, const char *, size_t, const BufferHandle *)>
   4568 size_t ReturnStringLen(P1 p1, P2 p2, const char *p3, size_t p4,
   4569                        const BufferHandle *p5) {
   4570   F(p1, p2, p3, p4, p5);
   4571   return p4;
   4572 }
   4573 
   4574 /* For the string callback, which takes five params, returns the size param or
   4575  * zero. */
   4576 template <class P1, class P2,
   4577           bool F(P1, P2, const char *, size_t, const BufferHandle *)>
   4578 size_t ReturnNOr0(P1 p1, P2 p2, const char *p3, size_t p4,
   4579                   const BufferHandle *p5) {
   4580   return F(p1, p2, p3, p4, p5) ? p4 : 0;
   4581 }
   4582 
   4583 /* If we have a function returning void but want a function returning bool, wrap
   4584  * it in a function that returns true. */
   4585 template <class P1, class P2, void F(P1, P2), class I>
   4586 struct MaybeWrapReturn<Func2<void, P1, P2, F, I>, bool> {
   4587   typedef Func2<bool, P1, P2, ReturnTrue2<P1, P2, F>, I> Func;
   4588 };
   4589 
   4590 template <class P1, class P2, class P3, void F(P1, P2, P3), class I>
   4591 struct MaybeWrapReturn<Func3<void, P1, P2, P3, F, I>, bool> {
   4592   typedef Func3<bool, P1, P2, P3, ReturnTrue3<P1, P2, P3, F>, I> Func;
   4593 };
   4594 
   4595 /* If our function returns void but we want one returning void*, wrap it in a
   4596  * function that returns the first argument. */
   4597 template <class P1, class P2, void F(P1, P2), class I>
   4598 struct MaybeWrapReturn<Func2<void, P1, P2, F, I>, void *> {
   4599   typedef Func2<void *, P1, P2, ReturnClosure2<P1, P2, F>, I> Func;
   4600 };
   4601 
   4602 template <class P1, class P2, class P3, void F(P1, P2, P3), class I>
   4603 struct MaybeWrapReturn<Func3<void, P1, P2, P3, F, I>, void *> {
   4604   typedef Func3<void *, P1, P2, P3, ReturnClosure3<P1, P2, P3, F>, I> Func;
   4605 };
   4606 
   4607 /* If our function returns R* but we want one returning void*, wrap it in a
   4608  * function that casts to void*. */
   4609 template <class R, class P1, class P2, R *F(P1, P2), class I>
   4610 struct MaybeWrapReturn<Func2<R *, P1, P2, F, I>, void *,
   4611                        typename disable_if_same<R *, void *>::Type> {
   4612   typedef Func2<void *, P1, P2, CastReturnToVoidPtr2<R *, P1, P2, F>, I> Func;
   4613 };
   4614 
   4615 template <class R, class P1, class P2, class P3, R *F(P1, P2, P3), class I>
   4616 struct MaybeWrapReturn<Func3<R *, P1, P2, P3, F, I>, void *,
   4617                        typename disable_if_same<R *, void *>::Type> {
   4618   typedef Func3<void *, P1, P2, P3, CastReturnToVoidPtr3<R *, P1, P2, P3, F>, I>
   4619       Func;
   4620 };
   4621 
   4622 /* If our function returns bool but we want one returning void*, wrap it in a
   4623  * function that returns either the first param or UPB_BREAK. */
   4624 template <class P1, class P2, bool F(P1, P2), class I>
   4625 struct MaybeWrapReturn<Func2<bool, P1, P2, F, I>, void *> {
   4626   typedef Func2<void *, P1, P2, ReturnClosureOrBreak2<P1, P2, F>, I> Func;
   4627 };
   4628 
   4629 template <class P1, class P2, class P3, bool F(P1, P2, P3), class I>
   4630 struct MaybeWrapReturn<Func3<bool, P1, P2, P3, F, I>, void *> {
   4631   typedef Func3<void *, P1, P2, P3, ReturnClosureOrBreak3<P1, P2, P3, F>, I>
   4632       Func;
   4633 };
   4634 
   4635 /* If our function returns void but we want one returning size_t, wrap it in a
   4636  * function that returns the size argument. */
   4637 template <class P1, class P2,
   4638           void F(P1, P2, const char *, size_t, const BufferHandle *), class I>
   4639 struct MaybeWrapReturn<
   4640     Func5<void, P1, P2, const char *, size_t, const BufferHandle *, F, I>,
   4641           size_t> {
   4642   typedef Func5<size_t, P1, P2, const char *, size_t, const BufferHandle *,
   4643                 ReturnStringLen<P1, P2, F>, I> Func;
   4644 };
   4645 
   4646 /* If our function returns bool but we want one returning size_t, wrap it in a
   4647  * function that returns either 0 or the buf size. */
   4648 template <class P1, class P2,
   4649           bool F(P1, P2, const char *, size_t, const BufferHandle *), class I>
   4650 struct MaybeWrapReturn<
   4651     Func5<bool, P1, P2, const char *, size_t, const BufferHandle *, F, I>,
   4652     size_t> {
   4653   typedef Func5<size_t, P1, P2, const char *, size_t, const BufferHandle *,
   4654                 ReturnNOr0<P1, P2, F>, I> Func;
   4655 };
   4656 
   4657 /* ConvertParams **************************************************************/
   4658 
   4659 /* Template class that converts the function parameters if necessary, and
   4660  * ignores the HandlerData parameter if appropriate.
   4661  *
   4662  * Template parameter is the are FuncN function type. */
   4663 template <class F, class T>
   4664 struct ConvertParams;
   4665 
   4666 /* Function that discards the handler data parameter. */
   4667 template <class R, class P1, R F(P1)>
   4668 R IgnoreHandlerData2(void *p1, const void *hd) {
   4669   UPB_UNUSED(hd);
   4670   return F(static_cast<P1>(p1));
   4671 }
   4672 
   4673 template <class R, class P1, class P2Wrapper, class P2Wrapped,
   4674           R F(P1, P2Wrapped)>
   4675 R IgnoreHandlerData3(void *p1, const void *hd, P2Wrapper p2) {
   4676   UPB_UNUSED(hd);
   4677   return F(static_cast<P1>(p1), p2);
   4678 }
   4679 
   4680 template <class R, class P1, class P2, class P3, R F(P1, P2, P3)>
   4681 R IgnoreHandlerData4(void *p1, const void *hd, P2 p2, P3 p3) {
   4682   UPB_UNUSED(hd);
   4683   return F(static_cast<P1>(p1), p2, p3);
   4684 }
   4685 
   4686 template <class R, class P1, class P2, class P3, class P4, R F(P1, P2, P3, P4)>
   4687 R IgnoreHandlerData5(void *p1, const void *hd, P2 p2, P3 p3, P4 p4) {
   4688   UPB_UNUSED(hd);
   4689   return F(static_cast<P1>(p1), p2, p3, p4);
   4690 }
   4691 
   4692 template <class R, class P1, R F(P1, const char*, size_t)>
   4693 R IgnoreHandlerDataIgnoreHandle(void *p1, const void *hd, const char *p2,
   4694                                 size_t p3, const BufferHandle *handle) {
   4695   UPB_UNUSED(hd);
   4696   UPB_UNUSED(handle);
   4697   return F(static_cast<P1>(p1), p2, p3);
   4698 }
   4699 
   4700 /* Function that casts the handler data parameter. */
   4701 template <class R, class P1, class P2, R F(P1, P2)>
   4702 R CastHandlerData2(void *c, const void *hd) {
   4703   return F(static_cast<P1>(c), static_cast<P2>(hd));
   4704 }
   4705 
   4706 template <class R, class P1, class P2, class P3Wrapper, class P3Wrapped,
   4707           R F(P1, P2, P3Wrapped)>
   4708 R CastHandlerData3(void *c, const void *hd, P3Wrapper p3) {
   4709   return F(static_cast<P1>(c), static_cast<P2>(hd), p3);
   4710 }
   4711 
   4712 template <class R, class P1, class P2, class P3, class P4, class P5,
   4713           R F(P1, P2, P3, P4, P5)>
   4714 R CastHandlerData5(void *c, const void *hd, P3 p3, P4 p4, P5 p5) {
   4715   return F(static_cast<P1>(c), static_cast<P2>(hd), p3, p4, p5);
   4716 }
   4717 
   4718 template <class R, class P1, class P2, R F(P1, P2, const char *, size_t)>
   4719 R CastHandlerDataIgnoreHandle(void *c, const void *hd, const char *p3,
   4720                               size_t p4, const BufferHandle *handle) {
   4721   UPB_UNUSED(handle);
   4722   return F(static_cast<P1>(c), static_cast<P2>(hd), p3, p4);
   4723 }
   4724 
   4725 /* For unbound functions, ignore the handler data. */
   4726 template <class R, class P1, R F(P1), class I, class T>
   4727 struct ConvertParams<Func1<R, P1, F, I>, T> {
   4728   typedef Func2<R, void *, const void *, IgnoreHandlerData2<R, P1, F>, I> Func;
   4729 };
   4730 
   4731 template <class R, class P1, class P2, R F(P1, P2), class I,
   4732           class R2, class P1_2, class P2_2, class P3_2>
   4733 struct ConvertParams<Func2<R, P1, P2, F, I>,
   4734                      R2 (*)(P1_2, P2_2, P3_2)> {
   4735   typedef Func3<R, void *, const void *, P3_2,
   4736                 IgnoreHandlerData3<R, P1, P3_2, P2, F>, I> Func;
   4737 };
   4738 
   4739 /* For StringBuffer only; this ignores both the handler data and the
   4740  * BufferHandle. */
   4741 template <class R, class P1, R F(P1, const char *, size_t), class I, class T>
   4742 struct ConvertParams<Func3<R, P1, const char *, size_t, F, I>, T> {
   4743   typedef Func5<R, void *, const void *, const char *, size_t,
   4744                 const BufferHandle *, IgnoreHandlerDataIgnoreHandle<R, P1, F>,
   4745                 I> Func;
   4746 };
   4747 
   4748 template <class R, class P1, class P2, class P3, class P4, R F(P1, P2, P3, P4),
   4749           class I, class T>
   4750 struct ConvertParams<Func4<R, P1, P2, P3, P4, F, I>, T> {
   4751   typedef Func5<R, void *, const void *, P2, P3, P4,
   4752                 IgnoreHandlerData5<R, P1, P2, P3, P4, F>, I> Func;
   4753 };
   4754 
   4755 /* For bound functions, cast the handler data. */
   4756 template <class R, class P1, class P2, R F(P1, P2), class I, class T>
   4757 struct ConvertParams<BoundFunc2<R, P1, P2, F, I>, T> {
   4758   typedef Func2<R, void *, const void *, CastHandlerData2<R, P1, P2, F>, I>
   4759       Func;
   4760 };
   4761 
   4762 template <class R, class P1, class P2, class P3, R F(P1, P2, P3), class I,
   4763           class R2, class P1_2, class P2_2, class P3_2>
   4764 struct ConvertParams<BoundFunc3<R, P1, P2, P3, F, I>,
   4765                      R2 (*)(P1_2, P2_2, P3_2)> {
   4766   typedef Func3<R, void *, const void *, P3_2,
   4767                 CastHandlerData3<R, P1, P2, P3_2, P3, F>, I> Func;
   4768 };
   4769 
   4770 /* For StringBuffer only; this ignores the BufferHandle. */
   4771 template <class R, class P1, class P2, R F(P1, P2, const char *, size_t),
   4772           class I, class T>
   4773 struct ConvertParams<BoundFunc4<R, P1, P2, const char *, size_t, F, I>, T> {
   4774   typedef Func5<R, void *, const void *, const char *, size_t,
   4775                 const BufferHandle *, CastHandlerDataIgnoreHandle<R, P1, P2, F>,
   4776                 I> Func;
   4777 };
   4778 
   4779 template <class R, class P1, class P2, class P3, class P4, class P5,
   4780           R F(P1, P2, P3, P4, P5), class I, class T>
   4781 struct ConvertParams<BoundFunc5<R, P1, P2, P3, P4, P5, F, I>, T> {
   4782   typedef Func5<R, void *, const void *, P3, P4, P5,
   4783                 CastHandlerData5<R, P1, P2, P3, P4, P5, F>, I> Func;
   4784 };
   4785 
   4786 /* utype/ltype are upper/lower-case, ctype is canonical C type, vtype is
   4787  * variant C type. */
   4788 #define TYPE_METHODS(utype, ltype, ctype, vtype)                               \
   4789   template <> struct CanonicalType<vtype> {                                    \
   4790     typedef ctype Type;                                                        \
   4791   };                                                                           \
   4792   template <>                                                                  \
   4793   inline bool Handlers::SetValueHandler<vtype>(                                \
   4794       const FieldDef *f,                                                       \
   4795       const Handlers::utype ## Handler& handler) {                             \
   4796     assert(!handler.registered_);                                              \
   4797     handler.AddCleanup(this);                                                  \
   4798     handler.registered_ = true;                                                \
   4799     return upb_handlers_set##ltype(this, f, handler.handler_, &handler.attr_); \
   4800   }                                                                            \
   4801 
   4802 TYPE_METHODS(Double, double, double,   double)
   4803 TYPE_METHODS(Float,  float,  float,    float)
   4804 TYPE_METHODS(UInt64, uint64, uint64_t, UPB_UINT64_T)
   4805 TYPE_METHODS(UInt32, uint32, uint32_t, UPB_UINT32_T)
   4806 TYPE_METHODS(Int64,  int64,  int64_t,  UPB_INT64_T)
   4807 TYPE_METHODS(Int32,  int32,  int32_t,  UPB_INT32_T)
   4808 TYPE_METHODS(Bool,   bool,   bool,     bool)
   4809 
   4810 #ifdef UPB_TWO_32BIT_TYPES
   4811 TYPE_METHODS(Int32,  int32,  int32_t,  UPB_INT32ALT_T)
   4812 TYPE_METHODS(UInt32, uint32, uint32_t, UPB_UINT32ALT_T)
   4813 #endif
   4814 
   4815 #ifdef UPB_TWO_64BIT_TYPES
   4816 TYPE_METHODS(Int64,  int64,  int64_t,  UPB_INT64ALT_T)
   4817 TYPE_METHODS(UInt64, uint64, uint64_t, UPB_UINT64ALT_T)
   4818 #endif
   4819 #undef TYPE_METHODS
   4820 
   4821 template <> struct CanonicalType<Status*> {
   4822   typedef Status* Type;
   4823 };
   4824 
   4825 /* Type methods that are only one-per-canonical-type and not
   4826  * one-per-cvariant. */
   4827 
   4828 #define TYPE_METHODS(utype, ctype) \
   4829     inline bool Handlers::Set##utype##Handler(const FieldDef *f, \
   4830                                               const utype##Handler &h) { \
   4831       return SetValueHandler<ctype>(f, h); \
   4832     } \
   4833 
   4834 TYPE_METHODS(Double, double)
   4835 TYPE_METHODS(Float,  float)
   4836 TYPE_METHODS(UInt64, uint64_t)
   4837 TYPE_METHODS(UInt32, uint32_t)
   4838 TYPE_METHODS(Int64,  int64_t)
   4839 TYPE_METHODS(Int32,  int32_t)
   4840 TYPE_METHODS(Bool,   bool)
   4841 #undef TYPE_METHODS
   4842 
   4843 template <class F> struct ReturnOf;
   4844 
   4845 template <class R, class P1, class P2>
   4846 struct ReturnOf<R (*)(P1, P2)> {
   4847   typedef R Return;
   4848 };
   4849 
   4850 template <class R, class P1, class P2, class P3>
   4851 struct ReturnOf<R (*)(P1, P2, P3)> {
   4852   typedef R Return;
   4853 };
   4854 
   4855 template <class R, class P1, class P2, class P3, class P4>
   4856 struct ReturnOf<R (*)(P1, P2, P3, P4)> {
   4857   typedef R Return;
   4858 };
   4859 
   4860 template <class R, class P1, class P2, class P3, class P4, class P5>
   4861 struct ReturnOf<R (*)(P1, P2, P3, P4, P5)> {
   4862   typedef R Return;
   4863 };
   4864 
   4865 template<class T> const void *UniquePtrForType() {
   4866   static const char ch = 0;
   4867   return &ch;
   4868 }
   4869 
   4870 template <class T>
   4871 template <class F>
   4872 inline Handler<T>::Handler(F func)
   4873     : registered_(false),
   4874       cleanup_data_(func.GetData()),
   4875       cleanup_func_(func.GetCleanup()) {
   4876   upb_handlerattr_sethandlerdata(&attr_, func.GetData());
   4877   typedef typename ReturnOf<T>::Return Return;
   4878   typedef typename ConvertParams<F, T>::Func ConvertedParamsFunc;
   4879   typedef typename MaybeWrapReturn<ConvertedParamsFunc, Return>::Func
   4880       ReturnWrappedFunc;
   4881   handler_ = ReturnWrappedFunc().Call;
   4882 
   4883   /* Set attributes based on what templates can statically tell us about the
   4884    * user's function. */
   4885 
   4886   /* If the original function returns void, then we know that we wrapped it to
   4887    * always return ok. */
   4888   bool always_ok = is_same<typename F::FuncInfo::Return, void>::value;
   4889   attr_.SetAlwaysOk(always_ok);
   4890 
   4891   /* Closure parameter and return type. */
   4892   attr_.SetClosureType(UniquePtrForType<typename F::FuncInfo::Closure>());
   4893 
   4894   /* We use the closure type (from the first parameter) if the return type is
   4895    * void or bool, since these are the two cases we wrap to return the closure's
   4896    * type anyway.
   4897    *
   4898    * This is all nonsense for non START* handlers, but it doesn't matter because
   4899    * in that case the value will be ignored. */
   4900   typedef typename FirstUnlessVoidOrBool<typename F::FuncInfo::Return,
   4901                                          typename F::FuncInfo::Closure>::value
   4902       EffectiveReturn;
   4903   attr_.SetReturnClosureType(UniquePtrForType<EffectiveReturn>());
   4904 }
   4905 
   4906 template <class T>
   4907 inline Handler<T>::~Handler() {
   4908   assert(registered_);
   4909 }
   4910 
   4911 inline HandlerAttributes::HandlerAttributes() { upb_handlerattr_init(this); }
   4912 inline HandlerAttributes::~HandlerAttributes() { upb_handlerattr_uninit(this); }
   4913 inline bool HandlerAttributes::SetHandlerData(const void *hd) {
   4914   return upb_handlerattr_sethandlerdata(this, hd);
   4915 }
   4916 inline const void* HandlerAttributes::handler_data() const {
   4917   return upb_handlerattr_handlerdata(this);
   4918 }
   4919 inline bool HandlerAttributes::SetClosureType(const void *type) {
   4920   return upb_handlerattr_setclosuretype(this, type);
   4921 }
   4922 inline const void* HandlerAttributes::closure_type() const {
   4923   return upb_handlerattr_closuretype(this);
   4924 }
   4925 inline bool HandlerAttributes::SetReturnClosureType(const void *type) {
   4926   return upb_handlerattr_setreturnclosuretype(this, type);
   4927 }
   4928 inline const void* HandlerAttributes::return_closure_type() const {
   4929   return upb_handlerattr_returnclosuretype(this);
   4930 }
   4931 inline bool HandlerAttributes::SetAlwaysOk(bool always_ok) {
   4932   return upb_handlerattr_setalwaysok(this, always_ok);
   4933 }
   4934 inline bool HandlerAttributes::always_ok() const {
   4935   return upb_handlerattr_alwaysok(this);
   4936 }
   4937 
   4938 inline BufferHandle::BufferHandle() { upb_bufhandle_init(this); }
   4939 inline BufferHandle::~BufferHandle() { upb_bufhandle_uninit(this); }
   4940 inline const char* BufferHandle::buffer() const {
   4941   return upb_bufhandle_buf(this);
   4942 }
   4943 inline size_t BufferHandle::object_offset() const {
   4944   return upb_bufhandle_objofs(this);
   4945 }
   4946 inline void BufferHandle::SetBuffer(const char* buf, size_t ofs) {
   4947   upb_bufhandle_setbuf(this, buf, ofs);
   4948 }
   4949 template <class T>
   4950 void BufferHandle::SetAttachedObject(const T* obj) {
   4951   upb_bufhandle_setobj(this, obj, UniquePtrForType<T>());
   4952 }
   4953 template <class T>
   4954 const T* BufferHandle::GetAttachedObject() const {
   4955   return upb_bufhandle_objtype(this) == UniquePtrForType<T>()
   4956       ? static_cast<const T *>(upb_bufhandle_obj(this))
   4957                                : NULL;
   4958 }
   4959 
   4960 inline reffed_ptr<Handlers> Handlers::New(const MessageDef *m) {
   4961   upb_handlers *h = upb_handlers_new(m, &h);
   4962   return reffed_ptr<Handlers>(h, &h);
   4963 }
   4964 inline reffed_ptr<const Handlers> Handlers::NewFrozen(
   4965     const MessageDef *m, upb_handlers_callback *callback,
   4966     const void *closure) {
   4967   const upb_handlers *h = upb_handlers_newfrozen(m, &h, callback, closure);
   4968   return reffed_ptr<const Handlers>(h, &h);
   4969 }
   4970 inline const Status* Handlers::status() {
   4971   return upb_handlers_status(this);
   4972 }
   4973 inline void Handlers::ClearError() {
   4974   return upb_handlers_clearerr(this);
   4975 }
   4976 inline bool Handlers::Freeze(Status *s) {
   4977   upb::Handlers* h = this;
   4978   return upb_handlers_freeze(&h, 1, s);
   4979 }
   4980 inline bool Handlers::Freeze(Handlers *const *handlers, int n, Status *s) {
   4981   return upb_handlers_freeze(handlers, n, s);
   4982 }
   4983 inline bool Handlers::Freeze(const std::vector<Handlers*>& h, Status* status) {
   4984   return upb_handlers_freeze((Handlers* const*)&h[0], h.size(), status);
   4985 }
   4986 inline const MessageDef *Handlers::message_def() const {
   4987   return upb_handlers_msgdef(this);
   4988 }
   4989 inline bool Handlers::AddCleanup(void *p, upb_handlerfree *func) {
   4990   return upb_handlers_addcleanup(this, p, func);
   4991 }
   4992 inline bool Handlers::SetStartMessageHandler(
   4993     const Handlers::StartMessageHandler &handler) {
   4994   assert(!handler.registered_);
   4995   handler.registered_ = true;
   4996   handler.AddCleanup(this);
   4997   return upb_handlers_setstartmsg(this, handler.handler_, &handler.attr_);
   4998 }
   4999 inline bool Handlers::SetEndMessageHandler(
   5000     const Handlers::EndMessageHandler &handler) {
   5001   assert(!handler.registered_);
   5002   handler.registered_ = true;
   5003   handler.AddCleanup(this);
   5004   return upb_handlers_setendmsg(this, handler.handler_, &handler.attr_);
   5005 }
   5006 inline bool Handlers::SetStartStringHandler(const FieldDef *f,
   5007                                             const StartStringHandler &handler) {
   5008   assert(!handler.registered_);
   5009   handler.registered_ = true;
   5010   handler.AddCleanup(this);
   5011   return upb_handlers_setstartstr(this, f, handler.handler_, &handler.attr_);
   5012 }
   5013 inline bool Handlers::SetEndStringHandler(const FieldDef *f,
   5014                                           const EndFieldHandler &handler) {
   5015   assert(!handler.registered_);
   5016   handler.registered_ = true;
   5017   handler.AddCleanup(this);
   5018   return upb_handlers_setendstr(this, f, handler.handler_, &handler.attr_);
   5019 }
   5020 inline bool Handlers::SetStringHandler(const FieldDef *f,
   5021                                        const StringHandler& handler) {
   5022   assert(!handler.registered_);
   5023   handler.registered_ = true;
   5024   handler.AddCleanup(this);
   5025   return upb_handlers_setstring(this, f, handler.handler_, &handler.attr_);
   5026 }
   5027 inline bool Handlers::SetStartSequenceHandler(
   5028     const FieldDef *f, const StartFieldHandler &handler) {
   5029   assert(!handler.registered_);
   5030   handler.registered_ = true;
   5031   handler.AddCleanup(this);
   5032   return upb_handlers_setstartseq(this, f, handler.handler_, &handler.attr_);
   5033 }
   5034 inline bool Handlers::SetStartSubMessageHandler(
   5035     const FieldDef *f, const StartFieldHandler &handler) {
   5036   assert(!handler.registered_);
   5037   handler.registered_ = true;
   5038   handler.AddCleanup(this);
   5039   return upb_handlers_setstartsubmsg(this, f, handler.handler_, &handler.attr_);
   5040 }
   5041 inline bool Handlers::SetEndSubMessageHandler(const FieldDef *f,
   5042                                               const EndFieldHandler &handler) {
   5043   assert(!handler.registered_);
   5044   handler.registered_ = true;
   5045   handler.AddCleanup(this);
   5046   return upb_handlers_setendsubmsg(this, f, handler.handler_, &handler.attr_);
   5047 }
   5048 inline bool Handlers::SetEndSequenceHandler(const FieldDef *f,
   5049                                             const EndFieldHandler &handler) {
   5050   assert(!handler.registered_);
   5051   handler.registered_ = true;
   5052   handler.AddCleanup(this);
   5053   return upb_handlers_setendseq(this, f, handler.handler_, &handler.attr_);
   5054 }
   5055 inline bool Handlers::SetSubHandlers(const FieldDef *f, const Handlers *sub) {
   5056   return upb_handlers_setsubhandlers(this, f, sub);
   5057 }
   5058 inline const Handlers *Handlers::GetSubHandlers(const FieldDef *f) const {
   5059   return upb_handlers_getsubhandlers(this, f);
   5060 }
   5061 inline const Handlers *Handlers::GetSubHandlers(Handlers::Selector sel) const {
   5062   return upb_handlers_getsubhandlers_sel(this, sel);
   5063 }
   5064 inline bool Handlers::GetSelector(const FieldDef *f, Handlers::Type type,
   5065                                   Handlers::Selector *s) {
   5066   return upb_handlers_getselector(f, type, s);
   5067 }
   5068 inline Handlers::Selector Handlers::GetEndSelector(Handlers::Selector start) {
   5069   return upb_handlers_getendselector(start);
   5070 }
   5071 inline Handlers::GenericFunction *Handlers::GetHandler(
   5072     Handlers::Selector selector) {
   5073   return upb_handlers_gethandler(this, selector);
   5074 }
   5075 inline const void *Handlers::GetHandlerData(Handlers::Selector selector) {
   5076   return upb_handlers_gethandlerdata(this, selector);
   5077 }
   5078 
   5079 inline BytesHandler::BytesHandler() {
   5080   upb_byteshandler_init(this);
   5081 }
   5082 
   5083 inline BytesHandler::~BytesHandler() {}
   5084 
   5085 }  /* namespace upb */
   5086 
   5087 #endif  /* __cplusplus */
   5088 
   5089 
   5090 #undef UPB_TWO_32BIT_TYPES
   5091 #undef UPB_TWO_64BIT_TYPES
   5092 #undef UPB_INT32_T
   5093 #undef UPB_UINT32_T
   5094 #undef UPB_INT32ALT_T
   5095 #undef UPB_UINT32ALT_T
   5096 #undef UPB_INT64_T
   5097 #undef UPB_UINT64_T
   5098 #undef UPB_INT64ALT_T
   5099 #undef UPB_UINT64ALT_T
   5100 
   5101 #endif  /* UPB_HANDLERS_INL_H_ */
   5102 
   5103 #endif  /* UPB_HANDLERS_H */
   5104 /*
   5105 ** upb::Environment (upb_env)
   5106 **
   5107 ** A upb::Environment provides a means for injecting malloc and an
   5108 ** error-reporting callback into encoders/decoders.  This allows them to be
   5109 ** independent of nearly all assumptions about their actual environment.
   5110 **
   5111 ** It is also a container for allocating the encoders/decoders themselves that
   5112 ** insulates clients from knowing their actual size.  This provides ABI
   5113 ** compatibility even if the size of the objects change.  And this allows the
   5114 ** structure definitions to be in the .c files instead of the .h files, making
   5115 ** the .h files smaller and more readable.
   5116 */
   5117 
   5118 
   5119 #ifndef UPB_ENV_H_
   5120 #define UPB_ENV_H_
   5121 
   5122 #ifdef __cplusplus
   5123 namespace upb {
   5124 class Environment;
   5125 class SeededAllocator;
   5126 }
   5127 #endif
   5128 
   5129 UPB_DECLARE_TYPE(upb::Environment, upb_env)
   5130 UPB_DECLARE_TYPE(upb::SeededAllocator, upb_seededalloc)
   5131 
   5132 typedef void *upb_alloc_func(void *ud, void *ptr, size_t oldsize, size_t size);
   5133 typedef void upb_cleanup_func(void *ud);
   5134 typedef bool upb_error_func(void *ud, const upb_status *status);
   5135 
   5136 #ifdef __cplusplus
   5137 
   5138 /* An environment is *not* thread-safe. */
   5139 class upb::Environment {
   5140  public:
   5141   Environment();
   5142   ~Environment();
   5143 
   5144   /* Set a custom memory allocation function for the environment.  May ONLY
   5145    * be called before any calls to Malloc()/Realloc()/AddCleanup() below.
   5146    * If this is not called, the system realloc() function will be used.
   5147    * The given user pointer "ud" will be passed to the allocation function.
   5148    *
   5149    * The allocation function will not receive corresponding "free" calls.  it
   5150    * must ensure that the memory is valid for the lifetime of the Environment,
   5151    * but it may be reclaimed any time thereafter.  The likely usage is that
   5152    * "ud" points to a stateful allocator, and that the allocator frees all
   5153    * memory, arena-style, when it is destroyed.  In this case the allocator must
   5154    * outlive the Environment.  Another possibility is that the allocation
   5155    * function returns GC-able memory that is guaranteed to be GC-rooted for the
   5156    * life of the Environment. */
   5157   void SetAllocationFunction(upb_alloc_func* alloc, void* ud);
   5158 
   5159   template<class T>
   5160   void SetAllocator(T* allocator) {
   5161     SetAllocationFunction(allocator->GetAllocationFunction(), allocator);
   5162   }
   5163 
   5164   /* Set a custom error reporting function. */
   5165   void SetErrorFunction(upb_error_func* func, void* ud);
   5166 
   5167   /* Set the error reporting function to simply copy the status to the given
   5168    * status and abort. */
   5169   void ReportErrorsTo(Status* status);
   5170 
   5171   /* Returns true if all allocations and AddCleanup() calls have succeeded,
   5172    * and no errors were reported with ReportError() (except ones that recovered
   5173    * successfully). */
   5174   bool ok() const;
   5175 
   5176   /* Functions for use by encoders/decoders. **********************************/
   5177 
   5178   /* Reports an error to this environment's callback, returning true if
   5179    * the caller should try to recover. */
   5180   bool ReportError(const Status* status);
   5181 
   5182   /* Allocate memory.  Uses the environment's allocation function.
   5183    *
   5184    * There is no need to free(). All memory will be freed automatically, but is
   5185    * guaranteed to outlive the Environment. */
   5186   void* Malloc(size_t size);
   5187 
   5188   /* Reallocate memory.  Preserves "oldsize" bytes from the existing buffer
   5189    * Requires: oldsize <= existing_size.
   5190    *
   5191    * TODO(haberman): should we also enforce that oldsize <= size? */
   5192   void* Realloc(void* ptr, size_t oldsize, size_t size);
   5193 
   5194   /* Add a cleanup function to run when the environment is destroyed.
   5195    * Returns false on out-of-memory.
   5196    *
   5197    * The first call to AddCleanup() after SetAllocationFunction() is guaranteed
   5198    * to return true -- this makes it possible to robustly set a cleanup handler
   5199    * for a custom allocation function. */
   5200   bool AddCleanup(upb_cleanup_func* func, void* ud);
   5201 
   5202   /* Total number of bytes that have been allocated.  It is undefined what
   5203    * Realloc() does to this counter. */
   5204   size_t BytesAllocated() const;
   5205 
   5206  private:
   5207   UPB_DISALLOW_COPY_AND_ASSIGN(Environment)
   5208 
   5209 #else
   5210 struct upb_env {
   5211 #endif  /* __cplusplus */
   5212 
   5213   bool ok_;
   5214   size_t bytes_allocated;
   5215 
   5216   /* Alloc function. */
   5217   upb_alloc_func *alloc;
   5218   void *alloc_ud;
   5219 
   5220   /* Error-reporting function. */
   5221   upb_error_func *err;
   5222   void *err_ud;
   5223 
   5224   /* Userdata for default alloc func. */
   5225   void *default_alloc_ud;
   5226 
   5227   /* Cleanup entries.  Pointer to a cleanup_ent, defined in env.c */
   5228   void *cleanup_head;
   5229 
   5230   /* For future expansion, since the size of this struct is exposed to users. */
   5231   void *future1;
   5232   void *future2;
   5233 };
   5234 
   5235 UPB_BEGIN_EXTERN_C
   5236 
   5237 void upb_env_init(upb_env *e);
   5238 void upb_env_uninit(upb_env *e);
   5239 void upb_env_setallocfunc(upb_env *e, upb_alloc_func *func, void *ud);
   5240 void upb_env_seterrorfunc(upb_env *e, upb_error_func *func, void *ud);
   5241 void upb_env_reporterrorsto(upb_env *e, upb_status *status);
   5242 bool upb_env_ok(const upb_env *e);
   5243 bool upb_env_reporterror(upb_env *e, const upb_status *status);
   5244 void *upb_env_malloc(upb_env *e, size_t size);
   5245 void *upb_env_realloc(upb_env *e, void *ptr, size_t oldsize, size_t size);
   5246 bool upb_env_addcleanup(upb_env *e, upb_cleanup_func *func, void *ud);
   5247 size_t upb_env_bytesallocated(const upb_env *e);
   5248 
   5249 UPB_END_EXTERN_C
   5250 
   5251 #ifdef __cplusplus
   5252 
   5253 /* An allocator that allocates from an initial memory region (likely the stack)
   5254  * before falling back to another allocator. */
   5255 class upb::SeededAllocator {
   5256  public:
   5257   SeededAllocator(void *mem, size_t len);
   5258   ~SeededAllocator();
   5259 
   5260   /* Set a custom fallback memory allocation function for the allocator, to use
   5261    * once the initial region runs out.
   5262    *
   5263    * May ONLY be called before GetAllocationFunction().  If this is not
   5264    * called, the system realloc() will be the fallback allocator. */
   5265   void SetFallbackAllocator(upb_alloc_func *alloc, void *ud);
   5266 
   5267   /* Gets the allocation function for this allocator. */
   5268   upb_alloc_func* GetAllocationFunction();
   5269 
   5270  private:
   5271   UPB_DISALLOW_COPY_AND_ASSIGN(SeededAllocator)
   5272 
   5273 #else
   5274 struct upb_seededalloc {
   5275 #endif  /* __cplusplus */
   5276 
   5277   /* Fallback alloc function.  */
   5278   upb_alloc_func *alloc;
   5279   upb_cleanup_func *alloc_cleanup;
   5280   void *alloc_ud;
   5281   bool need_cleanup;
   5282   bool returned_allocfunc;
   5283 
   5284   /* Userdata for default alloc func. */
   5285   void *default_alloc_ud;
   5286 
   5287   /* Pointers for the initial memory region. */
   5288   char *mem_base;
   5289   char *mem_ptr;
   5290   char *mem_limit;
   5291 
   5292   /* For future expansion, since the size of this struct is exposed to users. */
   5293   void *future1;
   5294   void *future2;
   5295 };
   5296 
   5297 UPB_BEGIN_EXTERN_C
   5298 
   5299 void upb_seededalloc_init(upb_seededalloc *a, void *mem, size_t len);
   5300 void upb_seededalloc_uninit(upb_seededalloc *a);
   5301 void upb_seededalloc_setfallbackalloc(upb_seededalloc *a, upb_alloc_func *func,
   5302                                       void *ud);
   5303 upb_alloc_func *upb_seededalloc_getallocfunc(upb_seededalloc *a);
   5304 
   5305 UPB_END_EXTERN_C
   5306 
   5307 #ifdef __cplusplus
   5308 
   5309 namespace upb {
   5310 
   5311 inline Environment::Environment() {
   5312   upb_env_init(this);
   5313 }
   5314 inline Environment::~Environment() {
   5315   upb_env_uninit(this);
   5316 }
   5317 inline void Environment::SetAllocationFunction(upb_alloc_func *alloc,
   5318                                                void *ud) {
   5319   upb_env_setallocfunc(this, alloc, ud);
   5320 }
   5321 inline void Environment::SetErrorFunction(upb_error_func *func, void *ud) {
   5322   upb_env_seterrorfunc(this, func, ud);
   5323 }
   5324 inline void Environment::ReportErrorsTo(Status* status) {
   5325   upb_env_reporterrorsto(this, status);
   5326 }
   5327 inline bool Environment::ok() const {
   5328   return upb_env_ok(this);
   5329 }
   5330 inline bool Environment::ReportError(const Status* status) {
   5331   return upb_env_reporterror(this, status);
   5332 }
   5333 inline void *Environment::Malloc(size_t size) {
   5334   return upb_env_malloc(this, size);
   5335 }
   5336 inline void *Environment::Realloc(void *ptr, size_t oldsize, size_t size) {
   5337   return upb_env_realloc(this, ptr, oldsize, size);
   5338 }
   5339 inline bool Environment::AddCleanup(upb_cleanup_func *func, void *ud) {
   5340   return upb_env_addcleanup(this, func, ud);
   5341 }
   5342 inline size_t Environment::BytesAllocated() const {
   5343   return upb_env_bytesallocated(this);
   5344 }
   5345 
   5346 inline SeededAllocator::SeededAllocator(void *mem, size_t len) {
   5347   upb_seededalloc_init(this, mem, len);
   5348 }
   5349 inline SeededAllocator::~SeededAllocator() {
   5350   upb_seededalloc_uninit(this);
   5351 }
   5352 inline void SeededAllocator::SetFallbackAllocator(upb_alloc_func *alloc,
   5353                                                   void *ud) {
   5354   upb_seededalloc_setfallbackalloc(this, alloc, ud);
   5355 }
   5356 inline upb_alloc_func *SeededAllocator::GetAllocationFunction() {
   5357   return upb_seededalloc_getallocfunc(this);
   5358 }
   5359 
   5360 }  /* namespace upb */
   5361 
   5362 #endif  /* __cplusplus */
   5363 
   5364 #endif  /* UPB_ENV_H_ */
   5365 /*
   5366 ** upb::Sink (upb_sink)
   5367 ** upb::BytesSink (upb_bytessink)
   5368 **
   5369 ** A upb_sink is an object that binds a upb_handlers object to some runtime
   5370 ** state.  It is the object that can actually receive data via the upb_handlers
   5371 ** interface.
   5372 **
   5373 ** Unlike upb_def and upb_handlers, upb_sink is never frozen, immutable, or
   5374 ** thread-safe.  You can create as many of them as you want, but each one may
   5375 ** only be used in a single thread at a time.
   5376 **
   5377 ** If we compare with class-based OOP, a you can think of a upb_def as an
   5378 ** abstract base class, a upb_handlers as a concrete derived class, and a
   5379 ** upb_sink as an object (class instance).
   5380 */
   5381 
   5382 #ifndef UPB_SINK_H
   5383 #define UPB_SINK_H
   5384 
   5385 
   5386 #ifdef __cplusplus
   5387 namespace upb {
   5388 class BufferSource;
   5389 class BytesSink;
   5390 class Sink;
   5391 }
   5392 #endif
   5393 
   5394 UPB_DECLARE_TYPE(upb::BufferSource, upb_bufsrc)
   5395 UPB_DECLARE_TYPE(upb::BytesSink, upb_bytessink)
   5396 UPB_DECLARE_TYPE(upb::Sink, upb_sink)
   5397 
   5398 #ifdef __cplusplus
   5399 
   5400 /* A upb::Sink is an object that binds a upb::Handlers object to some runtime
   5401  * state.  It represents an endpoint to which data can be sent.
   5402  *
   5403  * TODO(haberman): right now all of these functions take selectors.  Should they
   5404  * take selectorbase instead?
   5405  *
   5406  * ie. instead of calling:
   5407  *   sink->StartString(FOO_FIELD_START_STRING, ...)
   5408  * a selector base would let you say:
   5409  *   sink->StartString(FOO_FIELD, ...)
   5410  *
   5411  * This would make call sites a little nicer and require emitting fewer selector
   5412  * definitions in .h files.
   5413  *
   5414  * But the current scheme has the benefit that you can retrieve a function
   5415  * pointer for any handler with handlers->GetHandler(selector), without having
   5416  * to have a separate GetHandler() function for each handler type.  The JIT
   5417  * compiler uses this.  To accommodate we'd have to expose a separate
   5418  * GetHandler() for every handler type.
   5419  *
   5420  * Also to ponder: selectors right now are independent of a specific Handlers
   5421  * instance.  In other words, they allocate a number to every possible handler
   5422  * that *could* be registered, without knowing anything about what handlers
   5423  * *are* registered.  That means that using selectors as table offsets prohibits
   5424  * us from compacting the handler table at Freeze() time.  If the table is very
   5425  * sparse, this could be wasteful.
   5426  *
   5427  * Having another selector-like thing that is specific to a Handlers instance
   5428  * would allow this compacting, but then it would be impossible to write code
   5429  * ahead-of-time that can be bound to any Handlers instance at runtime.  For
   5430  * example, a .proto file parser written as straight C will not know what
   5431  * Handlers it will be bound to, so when it calls sink->StartString() what
   5432  * selector will it pass?  It needs a selector like we have today, that is
   5433  * independent of any particular upb::Handlers.
   5434  *
   5435  * Is there a way then to allow Handlers table compaction? */
   5436 class upb::Sink {
   5437  public:
   5438   /* Constructor with no initialization; must be Reset() before use. */
   5439   Sink() {}
   5440 
   5441   /* Constructs a new sink for the given frozen handlers and closure.
   5442    *
   5443    * TODO: once the Handlers know the expected closure type, verify that T
   5444    * matches it. */
   5445   template <class T> Sink(const Handlers* handlers, T* closure);
   5446 
   5447   /* Resets the value of the sink. */
   5448   template <class T> void Reset(const Handlers* handlers, T* closure);
   5449 
   5450   /* Returns the top-level object that is bound to this sink.
   5451    *
   5452    * TODO: once the Handlers know the expected closure type, verify that T
   5453    * matches it. */
   5454   template <class T> T* GetObject() const;
   5455 
   5456   /* Functions for pushing data into the sink.
   5457    *
   5458    * These return false if processing should stop (either due to error or just
   5459    * to suspend).
   5460    *
   5461    * These may not be called from within one of the same sink's handlers (in
   5462    * other words, handlers are not re-entrant). */
   5463 
   5464   /* Should be called at the start and end of every message; both the top-level
   5465    * message and submessages.  This means that submessages should use the
   5466    * following sequence:
   5467    *   sink->StartSubMessage(startsubmsg_selector);
   5468    *   sink->StartMessage();
   5469    *   // ...
   5470    *   sink->EndMessage(&status);
   5471    *   sink->EndSubMessage(endsubmsg_selector); */
   5472   bool StartMessage();
   5473   bool EndMessage(Status* status);
   5474 
   5475   /* Putting of individual values.  These work for both repeated and
   5476    * non-repeated fields, but for repeated fields you must wrap them in
   5477    * calls to StartSequence()/EndSequence(). */
   5478   bool PutInt32(Handlers::Selector s, int32_t val);
   5479   bool PutInt64(Handlers::Selector s, int64_t val);
   5480   bool PutUInt32(Handlers::Selector s, uint32_t val);
   5481   bool PutUInt64(Handlers::Selector s, uint64_t val);
   5482   bool PutFloat(Handlers::Selector s, float val);
   5483   bool PutDouble(Handlers::Selector s, double val);
   5484   bool PutBool(Handlers::Selector s, bool val);
   5485 
   5486   /* Putting of string/bytes values.  Each string can consist of zero or more
   5487    * non-contiguous buffers of data.
   5488    *
   5489    * For StartString(), the function will write a sink for the string to "sub."
   5490    * The sub-sink must be used for any/all PutStringBuffer() calls. */
   5491   bool StartString(Handlers::Selector s, size_t size_hint, Sink* sub);
   5492   size_t PutStringBuffer(Handlers::Selector s, const char *buf, size_t len,
   5493                          const BufferHandle *handle);
   5494   bool EndString(Handlers::Selector s);
   5495 
   5496   /* For submessage fields.
   5497    *
   5498    * For StartSubMessage(), the function will write a sink for the string to
   5499    * "sub." The sub-sink must be used for any/all handlers called within the
   5500    * submessage. */
   5501   bool StartSubMessage(Handlers::Selector s, Sink* sub);
   5502   bool EndSubMessage(Handlers::Selector s);
   5503 
   5504   /* For repeated fields of any type, the sequence of values must be wrapped in
   5505    * these calls.
   5506    *
   5507    * For StartSequence(), the function will write a sink for the string to
   5508    * "sub." The sub-sink must be used for any/all handlers called within the
   5509    * sequence. */
   5510   bool StartSequence(Handlers::Selector s, Sink* sub);
   5511   bool EndSequence(Handlers::Selector s);
   5512 
   5513   /* Copy and assign specifically allowed.
   5514    * We don't even bother making these members private because so many
   5515    * functions need them and this is mainly just a dumb data container anyway.
   5516    */
   5517 #else
   5518 struct upb_sink {
   5519 #endif
   5520   const upb_handlers *handlers;
   5521   void *closure;
   5522 };
   5523 
   5524 #ifdef __cplusplus
   5525 class upb::BytesSink {
   5526  public:
   5527   BytesSink() {}
   5528 
   5529   /* Constructs a new sink for the given frozen handlers and closure.
   5530    *
   5531    * TODO(haberman): once the Handlers know the expected closure type, verify
   5532    * that T matches it. */
   5533   template <class T> BytesSink(const BytesHandler* handler, T* closure);
   5534 
   5535   /* Resets the value of the sink. */
   5536   template <class T> void Reset(const BytesHandler* handler, T* closure);
   5537 
   5538   bool Start(size_t size_hint, void **subc);
   5539   size_t PutBuffer(void *subc, const char *buf, size_t len,
   5540                    const BufferHandle *handle);
   5541   bool End();
   5542 #else
   5543 struct upb_bytessink {
   5544 #endif
   5545   const upb_byteshandler *handler;
   5546   void *closure;
   5547 };
   5548 
   5549 #ifdef __cplusplus
   5550 
   5551 /* A class for pushing a flat buffer of data to a BytesSink.
   5552  * You can construct an instance of this to get a resumable source,
   5553  * or just call the static PutBuffer() to do a non-resumable push all in one
   5554  * go. */
   5555 class upb::BufferSource {
   5556  public:
   5557   BufferSource();
   5558   BufferSource(const char* buf, size_t len, BytesSink* sink);
   5559 
   5560   /* Returns true if the entire buffer was pushed successfully.  Otherwise the
   5561    * next call to PutNext() will resume where the previous one left off.
   5562    * TODO(haberman): implement this. */
   5563   bool PutNext();
   5564 
   5565   /* A static version; with this version is it not possible to resume in the
   5566    * case of failure or a partially-consumed buffer. */
   5567   static bool PutBuffer(const char* buf, size_t len, BytesSink* sink);
   5568 
   5569   template <class T> static bool PutBuffer(const T& str, BytesSink* sink) {
   5570     return PutBuffer(str.c_str(), str.size(), sink);
   5571   }
   5572 #else
   5573 struct upb_bufsrc {
   5574   char dummy;
   5575 #endif
   5576 };
   5577 
   5578 UPB_BEGIN_EXTERN_C
   5579 
   5580 /* Inline definitions. */
   5581 
   5582 UPB_INLINE void upb_bytessink_reset(upb_bytessink *s, const upb_byteshandler *h,
   5583                                     void *closure) {
   5584   s->handler = h;
   5585   s->closure = closure;
   5586 }
   5587 
   5588 UPB_INLINE bool upb_bytessink_start(upb_bytessink *s, size_t size_hint,
   5589                                     void **subc) {
   5590   typedef upb_startstr_handlerfunc func;
   5591   func *start;
   5592   *subc = s->closure;
   5593   if (!s->handler) return true;
   5594   start = (func *)s->handler->table[UPB_STARTSTR_SELECTOR].func;
   5595 
   5596   if (!start) return true;
   5597   *subc = start(s->closure, upb_handlerattr_handlerdata(
   5598                                 &s->handler->table[UPB_STARTSTR_SELECTOR].attr),
   5599                 size_hint);
   5600   return *subc != NULL;
   5601 }
   5602 
   5603 UPB_INLINE size_t upb_bytessink_putbuf(upb_bytessink *s, void *subc,
   5604                                        const char *buf, size_t size,
   5605                                        const upb_bufhandle* handle) {
   5606   typedef upb_string_handlerfunc func;
   5607   func *putbuf;
   5608   if (!s->handler) return true;
   5609   putbuf = (func *)s->handler->table[UPB_STRING_SELECTOR].func;
   5610 
   5611   if (!putbuf) return true;
   5612   return putbuf(subc, upb_handlerattr_handlerdata(
   5613                           &s->handler->table[UPB_STRING_SELECTOR].attr),
   5614                 buf, size, handle);
   5615 }
   5616 
   5617 UPB_INLINE bool upb_bytessink_end(upb_bytessink *s) {
   5618   typedef upb_endfield_handlerfunc func;
   5619   func *end;
   5620   if (!s->handler) return true;
   5621   end = (func *)s->handler->table[UPB_ENDSTR_SELECTOR].func;
   5622 
   5623   if (!end) return true;
   5624   return end(s->closure,
   5625              upb_handlerattr_handlerdata(
   5626                  &s->handler->table[UPB_ENDSTR_SELECTOR].attr));
   5627 }
   5628 
   5629 UPB_INLINE bool upb_bufsrc_putbuf(const char *buf, size_t len,
   5630                                   upb_bytessink *sink) {
   5631   void *subc;
   5632   bool ret;
   5633   upb_bufhandle handle;
   5634   upb_bufhandle_init(&handle);
   5635   upb_bufhandle_setbuf(&handle, buf, 0);
   5636   ret = upb_bytessink_start(sink, len, &subc);
   5637   if (ret && len != 0) {
   5638     ret = (upb_bytessink_putbuf(sink, subc, buf, len, &handle) >= len);
   5639   }
   5640   if (ret) {
   5641     ret = upb_bytessink_end(sink);
   5642   }
   5643   upb_bufhandle_uninit(&handle);
   5644   return ret;
   5645 }
   5646 
   5647 #define PUTVAL(type, ctype)                                                    \
   5648   UPB_INLINE bool upb_sink_put##type(upb_sink *s, upb_selector_t sel,          \
   5649                                      ctype val) {                              \
   5650     typedef upb_##type##_handlerfunc functype;                                 \
   5651     functype *func;                                                            \
   5652     const void *hd;                                                            \
   5653     if (!s->handlers) return true;                                             \
   5654     func = (functype *)upb_handlers_gethandler(s->handlers, sel);              \
   5655     if (!func) return true;                                                    \
   5656     hd = upb_handlers_gethandlerdata(s->handlers, sel);                        \
   5657     return func(s->closure, hd, val);                                          \
   5658   }
   5659 
   5660 PUTVAL(int32,  int32_t)
   5661 PUTVAL(int64,  int64_t)
   5662 PUTVAL(uint32, uint32_t)
   5663 PUTVAL(uint64, uint64_t)
   5664 PUTVAL(float,  float)
   5665 PUTVAL(double, double)
   5666 PUTVAL(bool,   bool)
   5667 #undef PUTVAL
   5668 
   5669 UPB_INLINE void upb_sink_reset(upb_sink *s, const upb_handlers *h, void *c) {
   5670   s->handlers = h;
   5671   s->closure = c;
   5672 }
   5673 
   5674 UPB_INLINE size_t upb_sink_putstring(upb_sink *s, upb_selector_t sel,
   5675                                      const char *buf, size_t n,
   5676                                      const upb_bufhandle *handle) {
   5677   typedef upb_string_handlerfunc func;
   5678   func *handler;
   5679   const void *hd;
   5680   if (!s->handlers) return n;
   5681   handler = (func *)upb_handlers_gethandler(s->handlers, sel);
   5682 
   5683   if (!handler) return n;
   5684   hd = upb_handlers_gethandlerdata(s->handlers, sel);
   5685   return handler(s->closure, hd, buf, n, handle);
   5686 }
   5687 
   5688 UPB_INLINE bool upb_sink_startmsg(upb_sink *s) {
   5689   typedef upb_startmsg_handlerfunc func;
   5690   func *startmsg;
   5691   const void *hd;
   5692   if (!s->handlers) return true;
   5693   startmsg = (func*)upb_handlers_gethandler(s->handlers, UPB_STARTMSG_SELECTOR);
   5694 
   5695   if (!startmsg) return true;
   5696   hd = upb_handlers_gethandlerdata(s->handlers, UPB_STARTMSG_SELECTOR);
   5697   return startmsg(s->closure, hd);
   5698 }
   5699 
   5700 UPB_INLINE bool upb_sink_endmsg(upb_sink *s, upb_status *status) {
   5701   typedef upb_endmsg_handlerfunc func;
   5702   func *endmsg;
   5703   const void *hd;
   5704   if (!s->handlers) return true;
   5705   endmsg = (func *)upb_handlers_gethandler(s->handlers, UPB_ENDMSG_SELECTOR);
   5706 
   5707   if (!endmsg) return true;
   5708   hd = upb_handlers_gethandlerdata(s->handlers, UPB_ENDMSG_SELECTOR);
   5709   return endmsg(s->closure, hd, status);
   5710 }
   5711 
   5712 UPB_INLINE bool upb_sink_startseq(upb_sink *s, upb_selector_t sel,
   5713                                   upb_sink *sub) {
   5714   typedef upb_startfield_handlerfunc func;
   5715   func *startseq;
   5716   const void *hd;
   5717   sub->closure = s->closure;
   5718   sub->handlers = s->handlers;
   5719   if (!s->handlers) return true;
   5720   startseq = (func*)upb_handlers_gethandler(s->handlers, sel);
   5721 
   5722   if (!startseq) return true;
   5723   hd = upb_handlers_gethandlerdata(s->handlers, sel);
   5724   sub->closure = startseq(s->closure, hd);
   5725   return sub->closure ? true : false;
   5726 }
   5727 
   5728 UPB_INLINE bool upb_sink_endseq(upb_sink *s, upb_selector_t sel) {
   5729   typedef upb_endfield_handlerfunc func;
   5730   func *endseq;
   5731   const void *hd;
   5732   if (!s->handlers) return true;
   5733   endseq = (func*)upb_handlers_gethandler(s->handlers, sel);
   5734 
   5735   if (!endseq) return true;
   5736   hd = upb_handlers_gethandlerdata(s->handlers, sel);
   5737   return endseq(s->closure, hd);
   5738 }
   5739 
   5740 UPB_INLINE bool upb_sink_startstr(upb_sink *s, upb_selector_t sel,
   5741                                   size_t size_hint, upb_sink *sub) {
   5742   typedef upb_startstr_handlerfunc func;
   5743   func *startstr;
   5744   const void *hd;
   5745   sub->closure = s->closure;
   5746   sub->handlers = s->handlers;
   5747   if (!s->handlers) return true;
   5748   startstr = (func*)upb_handlers_gethandler(s->handlers, sel);
   5749 
   5750   if (!startstr) return true;
   5751   hd = upb_handlers_gethandlerdata(s->handlers, sel);
   5752   sub->closure = startstr(s->closure, hd, size_hint);
   5753   return sub->closure ? true : false;
   5754 }
   5755 
   5756 UPB_INLINE bool upb_sink_endstr(upb_sink *s, upb_selector_t sel) {
   5757   typedef upb_endfield_handlerfunc func;
   5758   func *endstr;
   5759   const void *hd;
   5760   if (!s->handlers) return true;
   5761   endstr = (func*)upb_handlers_gethandler(s->handlers, sel);
   5762 
   5763   if (!endstr) return true;
   5764   hd = upb_handlers_gethandlerdata(s->handlers, sel);
   5765   return endstr(s->closure, hd);
   5766 }
   5767 
   5768 UPB_INLINE bool upb_sink_startsubmsg(upb_sink *s, upb_selector_t sel,
   5769                                      upb_sink *sub) {
   5770   typedef upb_startfield_handlerfunc func;
   5771   func *startsubmsg;
   5772   const void *hd;
   5773   sub->closure = s->closure;
   5774   if (!s->handlers) {
   5775     sub->handlers = NULL;
   5776     return true;
   5777   }
   5778   sub->handlers = upb_handlers_getsubhandlers_sel(s->handlers, sel);
   5779   startsubmsg = (func*)upb_handlers_gethandler(s->handlers, sel);
   5780 
   5781   if (!startsubmsg) return true;
   5782   hd = upb_handlers_gethandlerdata(s->handlers, sel);
   5783   sub->closure = startsubmsg(s->closure, hd);
   5784   return sub->closure ? true : false;
   5785 }
   5786 
   5787 UPB_INLINE bool upb_sink_endsubmsg(upb_sink *s, upb_selector_t sel) {
   5788   typedef upb_endfield_handlerfunc func;
   5789   func *endsubmsg;
   5790   const void *hd;
   5791   if (!s->handlers) return true;
   5792   endsubmsg = (func*)upb_handlers_gethandler(s->handlers, sel);
   5793 
   5794   if (!endsubmsg) return s->closure;
   5795   hd = upb_handlers_gethandlerdata(s->handlers, sel);
   5796   return endsubmsg(s->closure, hd);
   5797 }
   5798 
   5799 UPB_END_EXTERN_C
   5800 
   5801 #ifdef __cplusplus
   5802 
   5803 namespace upb {
   5804 
   5805 template <class T> Sink::Sink(const Handlers* handlers, T* closure) {
   5806   upb_sink_reset(this, handlers, closure);
   5807 }
   5808 template <class T>
   5809 inline void Sink::Reset(const Handlers* handlers, T* closure) {
   5810   upb_sink_reset(this, handlers, closure);
   5811 }
   5812 inline bool Sink::StartMessage() {
   5813   return upb_sink_startmsg(this);
   5814 }
   5815 inline bool Sink::EndMessage(Status* status) {
   5816   return upb_sink_endmsg(this, status);
   5817 }
   5818 inline bool Sink::PutInt32(Handlers::Selector sel, int32_t val) {
   5819   return upb_sink_putint32(this, sel, val);
   5820 }
   5821 inline bool Sink::PutInt64(Handlers::Selector sel, int64_t val) {
   5822   return upb_sink_putint64(this, sel, val);
   5823 }
   5824 inline bool Sink::PutUInt32(Handlers::Selector sel, uint32_t val) {
   5825   return upb_sink_putuint32(this, sel, val);
   5826 }
   5827 inline bool Sink::PutUInt64(Handlers::Selector sel, uint64_t val) {
   5828   return upb_sink_putuint64(this, sel, val);
   5829 }
   5830 inline bool Sink::PutFloat(Handlers::Selector sel, float val) {
   5831   return upb_sink_putfloat(this, sel, val);
   5832 }
   5833 inline bool Sink::PutDouble(Handlers::Selector sel, double val) {
   5834   return upb_sink_putdouble(this, sel, val);
   5835 }
   5836 inline bool Sink::PutBool(Handlers::Selector sel, bool val) {
   5837   return upb_sink_putbool(this, sel, val);
   5838 }
   5839 inline bool Sink::StartString(Handlers::Selector sel, size_t size_hint,
   5840                               Sink *sub) {
   5841   return upb_sink_startstr(this, sel, size_hint, sub);
   5842 }
   5843 inline size_t Sink::PutStringBuffer(Handlers::Selector sel, const char *buf,
   5844                                     size_t len, const BufferHandle* handle) {
   5845   return upb_sink_putstring(this, sel, buf, len, handle);
   5846 }
   5847 inline bool Sink::EndString(Handlers::Selector sel) {
   5848   return upb_sink_endstr(this, sel);
   5849 }
   5850 inline bool Sink::StartSubMessage(Handlers::Selector sel, Sink* sub) {
   5851   return upb_sink_startsubmsg(this, sel, sub);
   5852 }
   5853 inline bool Sink::EndSubMessage(Handlers::Selector sel) {
   5854   return upb_sink_endsubmsg(this, sel);
   5855 }
   5856 inline bool Sink::StartSequence(Handlers::Selector sel, Sink* sub) {
   5857   return upb_sink_startseq(this, sel, sub);
   5858 }
   5859 inline bool Sink::EndSequence(Handlers::Selector sel) {
   5860   return upb_sink_endseq(this, sel);
   5861 }
   5862 
   5863 template <class T>
   5864 BytesSink::BytesSink(const BytesHandler* handler, T* closure) {
   5865   Reset(handler, closure);
   5866 }
   5867 
   5868 template <class T>
   5869 void BytesSink::Reset(const BytesHandler *handler, T *closure) {
   5870   upb_bytessink_reset(this, handler, closure);
   5871 }
   5872 inline bool BytesSink::Start(size_t size_hint, void **subc) {
   5873   return upb_bytessink_start(this, size_hint, subc);
   5874 }
   5875 inline size_t BytesSink::PutBuffer(void *subc, const char *buf, size_t len,
   5876                                    const BufferHandle *handle) {
   5877   return upb_bytessink_putbuf(this, subc, buf, len, handle);
   5878 }
   5879 inline bool BytesSink::End() {
   5880   return upb_bytessink_end(this);
   5881 }
   5882 
   5883 inline bool BufferSource::PutBuffer(const char *buf, size_t len,
   5884                                     BytesSink *sink) {
   5885   return upb_bufsrc_putbuf(buf, len, sink);
   5886 }
   5887 
   5888 }  /* namespace upb */
   5889 #endif
   5890 
   5891 #endif
   5892 /*
   5893 ** For handlers that do very tiny, very simple operations, the function call
   5894 ** overhead of calling a handler can be significant.  This file allows the
   5895 ** user to define handlers that do something very simple like store the value
   5896 ** to memory and/or set a hasbit.  JIT compilers can then special-case these
   5897 ** handlers and emit specialized code for them instead of actually calling the
   5898 ** handler.
   5899 **
   5900 ** The functionality is very simple/limited right now but may expand to be able
   5901 ** to call another function.
   5902 */
   5903 
   5904 #ifndef UPB_SHIM_H
   5905 #define UPB_SHIM_H
   5906 
   5907 
   5908 typedef struct {
   5909   size_t offset;
   5910   int32_t hasbit;
   5911 } upb_shim_data;
   5912 
   5913 #ifdef __cplusplus
   5914 
   5915 namespace upb {
   5916 
   5917 struct Shim {
   5918   typedef upb_shim_data Data;
   5919 
   5920   /* Sets a handler for the given field that writes the value to the given
   5921    * offset and, if hasbit >= 0, sets a bit at the given bit offset.  Returns
   5922    * true if the handler was set successfully. */
   5923   static bool Set(Handlers *h, const FieldDef *f, size_t ofs, int32_t hasbit);
   5924 
   5925   /* If this handler is a shim, returns the corresponding upb::Shim::Data and
   5926    * stores the type in "type".  Otherwise returns NULL. */
   5927   static const Data* GetData(const Handlers* h, Handlers::Selector s,
   5928                              FieldDef::Type* type);
   5929 };
   5930 
   5931 }  /* namespace upb */
   5932 
   5933 #endif
   5934 
   5935 UPB_BEGIN_EXTERN_C
   5936 
   5937 /* C API. */
   5938 bool upb_shim_set(upb_handlers *h, const upb_fielddef *f, size_t offset,
   5939                   int32_t hasbit);
   5940 const upb_shim_data *upb_shim_getdata(const upb_handlers *h, upb_selector_t s,
   5941                                       upb_fieldtype_t *type);
   5942 
   5943 UPB_END_EXTERN_C
   5944 
   5945 #ifdef __cplusplus
   5946 /* C++ Wrappers. */
   5947 namespace upb {
   5948 inline bool Shim::Set(Handlers* h, const FieldDef* f, size_t ofs,
   5949                       int32_t hasbit) {
   5950   return upb_shim_set(h, f, ofs, hasbit);
   5951 }
   5952 inline const Shim::Data* Shim::GetData(const Handlers* h, Handlers::Selector s,
   5953                                        FieldDef::Type* type) {
   5954   return upb_shim_getdata(h, s, type);
   5955 }
   5956 }  /* namespace upb */
   5957 #endif
   5958 
   5959 #endif  /* UPB_SHIM_H */
   5960 /*
   5961 ** upb::SymbolTable (upb_symtab)
   5962 **
   5963 ** A symtab (symbol table) stores a name->def map of upb_defs.  Clients could
   5964 ** always create such tables themselves, but upb_symtab has logic for resolving
   5965 ** symbolic references, and in particular, for keeping a whole set of consistent
   5966 ** defs when replacing some subset of those defs.  This logic is nontrivial.
   5967 **
   5968 ** This is a mixed C/C++ interface that offers a full API to both languages.
   5969 ** See the top-level README for more information.
   5970 */
   5971 
   5972 #ifndef UPB_SYMTAB_H_
   5973 #define UPB_SYMTAB_H_
   5974 
   5975 
   5976 #ifdef __cplusplus
   5977 #include <vector>
   5978 namespace upb { class SymbolTable; }
   5979 #endif
   5980 
   5981 UPB_DECLARE_DERIVED_TYPE(upb::SymbolTable, upb::RefCounted,
   5982                          upb_symtab, upb_refcounted)
   5983 
   5984 typedef struct {
   5985  UPB_PRIVATE_FOR_CPP
   5986   upb_strtable_iter iter;
   5987   upb_deftype_t type;
   5988 } upb_symtab_iter;
   5989 
   5990 #ifdef __cplusplus
   5991 
   5992 /* Non-const methods in upb::SymbolTable are NOT thread-safe. */
   5993 class upb::SymbolTable {
   5994  public:
   5995   /* Returns a new symbol table with a single ref owned by "owner."
   5996    * Returns NULL if memory allocation failed. */
   5997   static reffed_ptr<SymbolTable> New();
   5998 
   5999   /* Include RefCounted base methods. */
   6000   UPB_REFCOUNTED_CPPMETHODS
   6001 
   6002   /* For all lookup functions, the returned pointer is not owned by the
   6003    * caller; it may be invalidated by any non-const call or unref of the
   6004    * SymbolTable!  To protect against this, take a ref if desired. */
   6005 
   6006   /* Freezes the symbol table: prevents further modification of it.
   6007    * After the Freeze() operation is successful, the SymbolTable must only be
   6008    * accessed via a const pointer.
   6009    *
   6010    * Unlike with upb::MessageDef/upb::EnumDef/etc, freezing a SymbolTable is not
   6011    * a necessary step in using a SymbolTable.  If you have no need for it to be
   6012    * immutable, there is no need to freeze it ever.  However sometimes it is
   6013    * useful, and SymbolTables that are statically compiled into the binary are
   6014    * always frozen by nature. */
   6015   void Freeze();
   6016 
   6017   /* Resolves the given symbol using the rules described in descriptor.proto,
   6018    * namely:
   6019    *
   6020    *    If the name starts with a '.', it is fully-qualified.  Otherwise,
   6021    *    C++-like scoping rules are used to find the type (i.e. first the nested
   6022    *    types within this message are searched, then within the parent, on up
   6023    *    to the root namespace).
   6024    *
   6025    * If not found, returns NULL. */
   6026   const Def* Resolve(const char* base, const char* sym) const;
   6027 
   6028   /* Finds an entry in the symbol table with this exact name.  If not found,
   6029    * returns NULL. */
   6030   const Def* Lookup(const char *sym) const;
   6031   const MessageDef* LookupMessage(const char *sym) const;
   6032   const EnumDef* LookupEnum(const char *sym) const;
   6033 
   6034   /* TODO: introduce a C++ iterator, but make it nice and templated so that if
   6035    * you ask for an iterator of MessageDef the iterated elements are strongly
   6036    * typed as MessageDef*. */
   6037 
   6038   /* Adds the given mutable defs to the symtab, resolving all symbols
   6039    * (including enum default values) and finalizing the defs.  Only one def per
   6040    * name may be in the list, but defs can replace existing defs in the symtab.
   6041    * All defs must have a name -- anonymous defs are not allowed.  Anonymous
   6042    * defs can still be frozen by calling upb_def_freeze() directly.
   6043    *
   6044    * Any existing defs that can reach defs that are being replaced will
   6045    * themselves be replaced also, so that the resulting set of defs is fully
   6046    * consistent.
   6047    *
   6048    * This logic implemented in this method is a convenience; ultimately it
   6049    * calls some combination of upb_fielddef_setsubdef(), upb_def_dup(), and
   6050    * upb_freeze(), any of which the client could call themself.  However, since
   6051    * the logic for doing so is nontrivial, we provide it here.
   6052    *
   6053    * The entire operation either succeeds or fails.  If the operation fails,
   6054    * the symtab is unchanged, false is returned, and status indicates the
   6055    * error.  The caller passes a ref on all defs to the symtab (even if the
   6056    * operation fails).
   6057    *
   6058    * TODO(haberman): currently failure will leave the symtab unchanged, but may
   6059    * leave the defs themselves partially resolved.  Does this matter?  If so we
   6060    * could do a prepass that ensures that all symbols are resolvable and bail
   6061    * if not, so we don't mutate anything until we know the operation will
   6062    * succeed.
   6063    *
   6064    * TODO(haberman): since the defs must be mutable, refining a frozen def
   6065    * requires making mutable copies of the entire tree.  This is wasteful if
   6066    * only a few messages are changing.  We may want to add a way of adding a
   6067    * tree of frozen defs to the symtab (perhaps an alternate constructor where
   6068    * you pass the root of the tree?) */
   6069   bool Add(Def*const* defs, int n, void* ref_donor, upb_status* status);
   6070 
   6071   bool Add(const std::vector<Def*>& defs, void *owner, Status* status) {
   6072     return Add((Def*const*)&defs[0], defs.size(), owner, status);
   6073   }
   6074 
   6075  private:
   6076   UPB_DISALLOW_POD_OPS(SymbolTable, upb::SymbolTable)
   6077 };
   6078 
   6079 #endif  /* __cplusplus */
   6080 
   6081 UPB_BEGIN_EXTERN_C
   6082 
   6083 /* Native C API. */
   6084 
   6085 /* Include refcounted methods like upb_symtab_ref(). */
   6086 UPB_REFCOUNTED_CMETHODS(upb_symtab, upb_symtab_upcast)
   6087 
   6088 upb_symtab *upb_symtab_new(const void *owner);
   6089 void upb_symtab_freeze(upb_symtab *s);
   6090 const upb_def *upb_symtab_resolve(const upb_symtab *s, const char *base,
   6091                                   const char *sym);
   6092 const upb_def *upb_symtab_lookup(const upb_symtab *s, const char *sym);
   6093 const upb_msgdef *upb_symtab_lookupmsg(const upb_symtab *s, const char *sym);
   6094 const upb_enumdef *upb_symtab_lookupenum(const upb_symtab *s, const char *sym);
   6095 bool upb_symtab_add(upb_symtab *s, upb_def *const*defs, int n, void *ref_donor,
   6096                     upb_status *status);
   6097 
   6098 /* upb_symtab_iter i;
   6099  * for(upb_symtab_begin(&i, s, type); !upb_symtab_done(&i);
   6100  *     upb_symtab_next(&i)) {
   6101  *   const upb_def *def = upb_symtab_iter_def(&i);
   6102  *    // ...
   6103  * }
   6104  *
   6105  * For C we don't have separate iterators for const and non-const.
   6106  * It is the caller's responsibility to cast the upb_fielddef* to
   6107  * const if the upb_msgdef* is const. */
   6108 void upb_symtab_begin(upb_symtab_iter *iter, const upb_symtab *s,
   6109                       upb_deftype_t type);
   6110 void upb_symtab_next(upb_symtab_iter *iter);
   6111 bool upb_symtab_done(const upb_symtab_iter *iter);
   6112 const upb_def *upb_symtab_iter_def(const upb_symtab_iter *iter);
   6113 
   6114 UPB_END_EXTERN_C
   6115 
   6116 #ifdef __cplusplus
   6117 /* C++ inline wrappers. */
   6118 namespace upb {
   6119 inline reffed_ptr<SymbolTable> SymbolTable::New() {
   6120   upb_symtab *s = upb_symtab_new(&s);
   6121   return reffed_ptr<SymbolTable>(s, &s);
   6122 }
   6123 
   6124 inline void SymbolTable::Freeze() {
   6125   return upb_symtab_freeze(this);
   6126 }
   6127 inline const Def *SymbolTable::Resolve(const char *base,
   6128                                        const char *sym) const {
   6129   return upb_symtab_resolve(this, base, sym);
   6130 }
   6131 inline const Def* SymbolTable::Lookup(const char *sym) const {
   6132   return upb_symtab_lookup(this, sym);
   6133 }
   6134 inline const MessageDef *SymbolTable::LookupMessage(const char *sym) const {
   6135   return upb_symtab_lookupmsg(this, sym);
   6136 }
   6137 inline bool SymbolTable::Add(
   6138     Def*const* defs, int n, void* ref_donor, upb_status* status) {
   6139   return upb_symtab_add(this, (upb_def*const*)defs, n, ref_donor, status);
   6140 }
   6141 }  /* namespace upb */
   6142 #endif
   6143 
   6144 #endif  /* UPB_SYMTAB_H_ */
   6145 /*
   6146 ** upb::descriptor::Reader (upb_descreader)
   6147 **
   6148 ** Provides a way of building upb::Defs from data in descriptor.proto format.
   6149 */
   6150 
   6151 #ifndef UPB_DESCRIPTOR_H
   6152 #define UPB_DESCRIPTOR_H
   6153 
   6154 
   6155 #ifdef __cplusplus
   6156 namespace upb {
   6157 namespace descriptor {
   6158 class Reader;
   6159 }  /* namespace descriptor */
   6160 }  /* namespace upb */
   6161 #endif
   6162 
   6163 UPB_DECLARE_TYPE(upb::descriptor::Reader, upb_descreader)
   6164 
   6165 #ifdef __cplusplus
   6166 
   6167 /* Class that receives descriptor data according to the descriptor.proto schema
   6168  * and use it to build upb::Defs corresponding to that schema. */
   6169 class upb::descriptor::Reader {
   6170  public:
   6171   /* These handlers must have come from NewHandlers() and must outlive the
   6172    * Reader.
   6173    *
   6174    * TODO: generate the handlers statically (like we do with the
   6175    * descriptor.proto defs) so that there is no need to pass this parameter (or
   6176    * to build/memory-manage the handlers at runtime at all).  Unfortunately this
   6177    * is a bit tricky to implement for Handlers, but necessary to simplify this
   6178    * interface. */
   6179   static Reader* Create(Environment* env, const Handlers* handlers);
   6180 
   6181   /* The reader's input; this is where descriptor.proto data should be sent. */
   6182   Sink* input();
   6183 
   6184   /* Returns an array of all defs that have been parsed, and transfers ownership
   6185    * of them to "owner".  The number of defs is stored in *n.  Ownership of the
   6186    * returned array is retained and is invalidated by any other call into
   6187    * Reader.
   6188    *
   6189    * These defs are not frozen or resolved; they are ready to be added to a
   6190    * symtab. */
   6191   upb::Def** GetDefs(void* owner, int* n);
   6192 
   6193   /* Builds and returns handlers for the reader, owned by "owner." */
   6194   static Handlers* NewHandlers(const void* owner);
   6195 
   6196  private:
   6197   UPB_DISALLOW_POD_OPS(Reader, upb::descriptor::Reader)
   6198 };
   6199 
   6200 #endif
   6201 
   6202 UPB_BEGIN_EXTERN_C
   6203 
   6204 /* C API. */
   6205 upb_descreader *upb_descreader_create(upb_env *e, const upb_handlers *h);
   6206 upb_sink *upb_descreader_input(upb_descreader *r);
   6207 upb_def **upb_descreader_getdefs(upb_descreader *r, void *owner, int *n);
   6208 const upb_handlers *upb_descreader_newhandlers(const void *owner);
   6209 
   6210 UPB_END_EXTERN_C
   6211 
   6212 #ifdef __cplusplus
   6213 /* C++ implementation details. ************************************************/
   6214 namespace upb {
   6215 namespace descriptor {
   6216 inline Reader* Reader::Create(Environment* e, const Handlers *h) {
   6217   return upb_descreader_create(e, h);
   6218 }
   6219 inline Sink* Reader::input() { return upb_descreader_input(this); }
   6220 inline upb::Def** Reader::GetDefs(void* owner, int* n) {
   6221   return upb_descreader_getdefs(this, owner, n);
   6222 }
   6223 }  /* namespace descriptor */
   6224 }  /* namespace upb */
   6225 #endif
   6226 
   6227 #endif  /* UPB_DESCRIPTOR_H */
   6228 /* This file contains accessors for a set of compiled-in defs.
   6229  * Note that unlike Google's protobuf, it does *not* define
   6230  * generated classes or any other kind of data structure for
   6231  * actually storing protobufs.  It only contains *defs* which
   6232  * let you reflect over a protobuf *schema*.
   6233  */
   6234 /* This file was generated by upbc (the upb compiler).
   6235  * Do not edit -- your changes will be discarded when the file is
   6236  * regenerated. */
   6237 
   6238 #ifndef GOOGLE_PROTOBUF_DESCRIPTOR_UPB_H_
   6239 #define GOOGLE_PROTOBUF_DESCRIPTOR_UPB_H_
   6240 
   6241 
   6242 #ifdef __cplusplus
   6243 UPB_BEGIN_EXTERN_C
   6244 #endif
   6245 
   6246 /* Enums */
   6247 
   6248 typedef enum {
   6249   GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_LABEL_OPTIONAL = 1,
   6250   GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_LABEL_REQUIRED = 2,
   6251   GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_LABEL_REPEATED = 3
   6252 } google_protobuf_FieldDescriptorProto_Label;
   6253 
   6254 typedef enum {
   6255   GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_DOUBLE = 1,
   6256   GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_FLOAT = 2,
   6257   GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_INT64 = 3,
   6258   GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_UINT64 = 4,
   6259   GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_INT32 = 5,
   6260   GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_FIXED64 = 6,
   6261   GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_FIXED32 = 7,
   6262   GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_BOOL = 8,
   6263   GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_STRING = 9,
   6264   GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_GROUP = 10,
   6265   GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_MESSAGE = 11,
   6266   GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_BYTES = 12,
   6267   GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_UINT32 = 13,
   6268   GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_ENUM = 14,
   6269   GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_SFIXED32 = 15,
   6270   GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_SFIXED64 = 16,
   6271   GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_SINT32 = 17,
   6272   GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_SINT64 = 18
   6273 } google_protobuf_FieldDescriptorProto_Type;
   6274 
   6275 typedef enum {
   6276   GOOGLE_PROTOBUF_FIELDOPTIONS_STRING = 0,
   6277   GOOGLE_PROTOBUF_FIELDOPTIONS_CORD = 1,
   6278   GOOGLE_PROTOBUF_FIELDOPTIONS_STRING_PIECE = 2
   6279 } google_protobuf_FieldOptions_CType;
   6280 
   6281 typedef enum {
   6282   GOOGLE_PROTOBUF_FILEOPTIONS_SPEED = 1,
   6283   GOOGLE_PROTOBUF_FILEOPTIONS_CODE_SIZE = 2,
   6284   GOOGLE_PROTOBUF_FILEOPTIONS_LITE_RUNTIME = 3
   6285 } google_protobuf_FileOptions_OptimizeMode;
   6286 
   6287 /* Selectors */
   6288 
   6289 /* google.protobuf.DescriptorProto */
   6290 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_FIELD_STARTSUBMSG 2
   6291 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_NESTED_TYPE_STARTSUBMSG 3
   6292 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_ENUM_TYPE_STARTSUBMSG 4
   6293 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_EXTENSION_RANGE_STARTSUBMSG 5
   6294 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_EXTENSION_STARTSUBMSG 6
   6295 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_OPTIONS_STARTSUBMSG 7
   6296 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_FIELD_STARTSEQ 8
   6297 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_FIELD_ENDSEQ 9
   6298 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_FIELD_ENDSUBMSG 10
   6299 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_NESTED_TYPE_STARTSEQ 11
   6300 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_NESTED_TYPE_ENDSEQ 12
   6301 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_NESTED_TYPE_ENDSUBMSG 13
   6302 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_ENUM_TYPE_STARTSEQ 14
   6303 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_ENUM_TYPE_ENDSEQ 15
   6304 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_ENUM_TYPE_ENDSUBMSG 16
   6305 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_EXTENSION_RANGE_STARTSEQ 17
   6306 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_EXTENSION_RANGE_ENDSEQ 18
   6307 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_EXTENSION_RANGE_ENDSUBMSG 19
   6308 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_EXTENSION_STARTSEQ 20
   6309 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_EXTENSION_ENDSEQ 21
   6310 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_EXTENSION_ENDSUBMSG 22
   6311 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_OPTIONS_ENDSUBMSG 23
   6312 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_NAME_STRING 24
   6313 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_NAME_STARTSTR 25
   6314 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_NAME_ENDSTR 26
   6315 
   6316 /* google.protobuf.DescriptorProto.ExtensionRange */
   6317 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_EXTENSIONRANGE_START_INT32 2
   6318 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_EXTENSIONRANGE_END_INT32 3
   6319 
   6320 /* google.protobuf.EnumDescriptorProto */
   6321 #define SEL_GOOGLE_PROTOBUF_ENUMDESCRIPTORPROTO_VALUE_STARTSUBMSG 2
   6322 #define SEL_GOOGLE_PROTOBUF_ENUMDESCRIPTORPROTO_OPTIONS_STARTSUBMSG 3
   6323 #define SEL_GOOGLE_PROTOBUF_ENUMDESCRIPTORPROTO_VALUE_STARTSEQ 4
   6324 #define SEL_GOOGLE_PROTOBUF_ENUMDESCRIPTORPROTO_VALUE_ENDSEQ 5
   6325 #define SEL_GOOGLE_PROTOBUF_ENUMDESCRIPTORPROTO_VALUE_ENDSUBMSG 6
   6326 #define SEL_GOOGLE_PROTOBUF_ENUMDESCRIPTORPROTO_OPTIONS_ENDSUBMSG 7
   6327 #define SEL_GOOGLE_PROTOBUF_ENUMDESCRIPTORPROTO_NAME_STRING 8
   6328 #define SEL_GOOGLE_PROTOBUF_ENUMDESCRIPTORPROTO_NAME_STARTSTR 9
   6329 #define SEL_GOOGLE_PROTOBUF_ENUMDESCRIPTORPROTO_NAME_ENDSTR 10
   6330 
   6331 /* google.protobuf.EnumOptions */
   6332 #define SEL_GOOGLE_PROTOBUF_ENUMOPTIONS_UNINTERPRETED_OPTION_STARTSUBMSG 2
   6333 #define SEL_GOOGLE_PROTOBUF_ENUMOPTIONS_UNINTERPRETED_OPTION_STARTSEQ 3
   6334 #define SEL_GOOGLE_PROTOBUF_ENUMOPTIONS_UNINTERPRETED_OPTION_ENDSEQ 4
   6335 #define SEL_GOOGLE_PROTOBUF_ENUMOPTIONS_UNINTERPRETED_OPTION_ENDSUBMSG 5
   6336 #define SEL_GOOGLE_PROTOBUF_ENUMOPTIONS_ALLOW_ALIAS_BOOL 6
   6337 
   6338 /* google.protobuf.EnumValueDescriptorProto */
   6339 #define SEL_GOOGLE_PROTOBUF_ENUMVALUEDESCRIPTORPROTO_OPTIONS_STARTSUBMSG 2
   6340 #define SEL_GOOGLE_PROTOBUF_ENUMVALUEDESCRIPTORPROTO_OPTIONS_ENDSUBMSG 3
   6341 #define SEL_GOOGLE_PROTOBUF_ENUMVALUEDESCRIPTORPROTO_NAME_STRING 4
   6342 #define SEL_GOOGLE_PROTOBUF_ENUMVALUEDESCRIPTORPROTO_NAME_STARTSTR 5
   6343 #define SEL_GOOGLE_PROTOBUF_ENUMVALUEDESCRIPTORPROTO_NAME_ENDSTR 6
   6344 #define SEL_GOOGLE_PROTOBUF_ENUMVALUEDESCRIPTORPROTO_NUMBER_INT32 7
   6345 
   6346 /* google.protobuf.EnumValueOptions */
   6347 #define SEL_GOOGLE_PROTOBUF_ENUMVALUEOPTIONS_UNINTERPRETED_OPTION_STARTSUBMSG 2
   6348 #define SEL_GOOGLE_PROTOBUF_ENUMVALUEOPTIONS_UNINTERPRETED_OPTION_STARTSEQ 3
   6349 #define SEL_GOOGLE_PROTOBUF_ENUMVALUEOPTIONS_UNINTERPRETED_OPTION_ENDSEQ 4
   6350 #define SEL_GOOGLE_PROTOBUF_ENUMVALUEOPTIONS_UNINTERPRETED_OPTION_ENDSUBMSG 5
   6351 
   6352 /* google.protobuf.FieldDescriptorProto */
   6353 #define SEL_GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_OPTIONS_STARTSUBMSG 2
   6354 #define SEL_GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_OPTIONS_ENDSUBMSG 3
   6355 #define SEL_GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_NAME_STRING 4
   6356 #define SEL_GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_NAME_STARTSTR 5
   6357 #define SEL_GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_NAME_ENDSTR 6
   6358 #define SEL_GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_EXTENDEE_STRING 7
   6359 #define SEL_GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_EXTENDEE_STARTSTR 8
   6360 #define SEL_GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_EXTENDEE_ENDSTR 9
   6361 #define SEL_GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_NUMBER_INT32 10
   6362 #define SEL_GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_LABEL_INT32 11
   6363 #define SEL_GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_INT32 12
   6364 #define SEL_GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_NAME_STRING 13
   6365 #define SEL_GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_NAME_STARTSTR 14
   6366 #define SEL_GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_NAME_ENDSTR 15
   6367 #define SEL_GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_DEFAULT_VALUE_STRING 16
   6368 #define SEL_GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_DEFAULT_VALUE_STARTSTR 17
   6369 #define SEL_GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_DEFAULT_VALUE_ENDSTR 18
   6370 
   6371 /* google.protobuf.FieldOptions */
   6372 #define SEL_GOOGLE_PROTOBUF_FIELDOPTIONS_UNINTERPRETED_OPTION_STARTSUBMSG 2
   6373 #define SEL_GOOGLE_PROTOBUF_FIELDOPTIONS_UNINTERPRETED_OPTION_STARTSEQ 3
   6374 #define SEL_GOOGLE_PROTOBUF_FIELDOPTIONS_UNINTERPRETED_OPTION_ENDSEQ 4
   6375 #define SEL_GOOGLE_PROTOBUF_FIELDOPTIONS_UNINTERPRETED_OPTION_ENDSUBMSG 5
   6376 #define SEL_GOOGLE_PROTOBUF_FIELDOPTIONS_CTYPE_INT32 6
   6377 #define SEL_GOOGLE_PROTOBUF_FIELDOPTIONS_PACKED_BOOL 7
   6378 #define SEL_GOOGLE_PROTOBUF_FIELDOPTIONS_DEPRECATED_BOOL 8
   6379 #define SEL_GOOGLE_PROTOBUF_FIELDOPTIONS_LAZY_BOOL 9
   6380 #define SEL_GOOGLE_PROTOBUF_FIELDOPTIONS_EXPERIMENTAL_MAP_KEY_STRING 10
   6381 #define SEL_GOOGLE_PROTOBUF_FIELDOPTIONS_EXPERIMENTAL_MAP_KEY_STARTSTR 11
   6382 #define SEL_GOOGLE_PROTOBUF_FIELDOPTIONS_EXPERIMENTAL_MAP_KEY_ENDSTR 12
   6383 #define SEL_GOOGLE_PROTOBUF_FIELDOPTIONS_WEAK_BOOL 13
   6384 
   6385 /* google.protobuf.FileDescriptorProto */
   6386 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_MESSAGE_TYPE_STARTSUBMSG 2
   6387 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_ENUM_TYPE_STARTSUBMSG 3
   6388 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_SERVICE_STARTSUBMSG 4
   6389 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_EXTENSION_STARTSUBMSG 5
   6390 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_OPTIONS_STARTSUBMSG 6
   6391 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_SOURCE_CODE_INFO_STARTSUBMSG 7
   6392 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_MESSAGE_TYPE_STARTSEQ 8
   6393 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_MESSAGE_TYPE_ENDSEQ 9
   6394 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_MESSAGE_TYPE_ENDSUBMSG 10
   6395 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_ENUM_TYPE_STARTSEQ 11
   6396 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_ENUM_TYPE_ENDSEQ 12
   6397 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_ENUM_TYPE_ENDSUBMSG 13
   6398 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_SERVICE_STARTSEQ 14
   6399 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_SERVICE_ENDSEQ 15
   6400 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_SERVICE_ENDSUBMSG 16
   6401 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_EXTENSION_STARTSEQ 17
   6402 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_EXTENSION_ENDSEQ 18
   6403 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_EXTENSION_ENDSUBMSG 19
   6404 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_OPTIONS_ENDSUBMSG 20
   6405 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_SOURCE_CODE_INFO_ENDSUBMSG 21
   6406 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_NAME_STRING 22
   6407 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_NAME_STARTSTR 23
   6408 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_NAME_ENDSTR 24
   6409 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_PACKAGE_STRING 25
   6410 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_PACKAGE_STARTSTR 26
   6411 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_PACKAGE_ENDSTR 27
   6412 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_DEPENDENCY_STARTSEQ 28
   6413 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_DEPENDENCY_ENDSEQ 29
   6414 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_DEPENDENCY_STRING 30
   6415 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_DEPENDENCY_STARTSTR 31
   6416 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_DEPENDENCY_ENDSTR 32
   6417 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_PUBLIC_DEPENDENCY_STARTSEQ 33
   6418 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_PUBLIC_DEPENDENCY_ENDSEQ 34
   6419 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_PUBLIC_DEPENDENCY_INT32 35
   6420 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_WEAK_DEPENDENCY_STARTSEQ 36
   6421 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_WEAK_DEPENDENCY_ENDSEQ 37
   6422 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_WEAK_DEPENDENCY_INT32 38
   6423 
   6424 /* google.protobuf.FileDescriptorSet */
   6425 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORSET_FILE_STARTSUBMSG 2
   6426 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORSET_FILE_STARTSEQ 3
   6427 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORSET_FILE_ENDSEQ 4
   6428 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORSET_FILE_ENDSUBMSG 5
   6429 
   6430 /* google.protobuf.FileOptions */
   6431 #define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_UNINTERPRETED_OPTION_STARTSUBMSG 2
   6432 #define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_UNINTERPRETED_OPTION_STARTSEQ 3
   6433 #define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_UNINTERPRETED_OPTION_ENDSEQ 4
   6434 #define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_UNINTERPRETED_OPTION_ENDSUBMSG 5
   6435 #define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_JAVA_PACKAGE_STRING 6
   6436 #define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_JAVA_PACKAGE_STARTSTR 7
   6437 #define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_JAVA_PACKAGE_ENDSTR 8
   6438 #define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_JAVA_OUTER_CLASSNAME_STRING 9
   6439 #define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_JAVA_OUTER_CLASSNAME_STARTSTR 10
   6440 #define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_JAVA_OUTER_CLASSNAME_ENDSTR 11
   6441 #define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_OPTIMIZE_FOR_INT32 12
   6442 #define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_JAVA_MULTIPLE_FILES_BOOL 13
   6443 #define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_GO_PACKAGE_STRING 14
   6444 #define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_GO_PACKAGE_STARTSTR 15
   6445 #define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_GO_PACKAGE_ENDSTR 16
   6446 #define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_CC_GENERIC_SERVICES_BOOL 17
   6447 #define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_JAVA_GENERIC_SERVICES_BOOL 18
   6448 #define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_PY_GENERIC_SERVICES_BOOL 19
   6449 #define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_JAVA_GENERATE_EQUALS_AND_HASH_BOOL 20
   6450 
   6451 /* google.protobuf.MessageOptions */
   6452 #define SEL_GOOGLE_PROTOBUF_MESSAGEOPTIONS_UNINTERPRETED_OPTION_STARTSUBMSG 2
   6453 #define SEL_GOOGLE_PROTOBUF_MESSAGEOPTIONS_UNINTERPRETED_OPTION_STARTSEQ 3
   6454 #define SEL_GOOGLE_PROTOBUF_MESSAGEOPTIONS_UNINTERPRETED_OPTION_ENDSEQ 4
   6455 #define SEL_GOOGLE_PROTOBUF_MESSAGEOPTIONS_UNINTERPRETED_OPTION_ENDSUBMSG 5
   6456 #define SEL_GOOGLE_PROTOBUF_MESSAGEOPTIONS_MESSAGE_SET_WIRE_FORMAT_BOOL 6
   6457 #define SEL_GOOGLE_PROTOBUF_MESSAGEOPTIONS_NO_STANDARD_DESCRIPTOR_ACCESSOR_BOOL 7
   6458 
   6459 /* google.protobuf.MethodDescriptorProto */
   6460 #define SEL_GOOGLE_PROTOBUF_METHODDESCRIPTORPROTO_OPTIONS_STARTSUBMSG 2
   6461 #define SEL_GOOGLE_PROTOBUF_METHODDESCRIPTORPROTO_OPTIONS_ENDSUBMSG 3
   6462 #define SEL_GOOGLE_PROTOBUF_METHODDESCRIPTORPROTO_NAME_STRING 4
   6463 #define SEL_GOOGLE_PROTOBUF_METHODDESCRIPTORPROTO_NAME_STARTSTR 5
   6464 #define SEL_GOOGLE_PROTOBUF_METHODDESCRIPTORPROTO_NAME_ENDSTR 6
   6465 #define SEL_GOOGLE_PROTOBUF_METHODDESCRIPTORPROTO_INPUT_TYPE_STRING 7
   6466 #define SEL_GOOGLE_PROTOBUF_METHODDESCRIPTORPROTO_INPUT_TYPE_STARTSTR 8
   6467 #define SEL_GOOGLE_PROTOBUF_METHODDESCRIPTORPROTO_INPUT_TYPE_ENDSTR 9
   6468 #define SEL_GOOGLE_PROTOBUF_METHODDESCRIPTORPROTO_OUTPUT_TYPE_STRING 10
   6469 #define SEL_GOOGLE_PROTOBUF_METHODDESCRIPTORPROTO_OUTPUT_TYPE_STARTSTR 11
   6470 #define SEL_GOOGLE_PROTOBUF_METHODDESCRIPTORPROTO_OUTPUT_TYPE_ENDSTR 12
   6471 
   6472 /* google.protobuf.MethodOptions */
   6473 #define SEL_GOOGLE_PROTOBUF_METHODOPTIONS_UNINTERPRETED_OPTION_STARTSUBMSG 2
   6474 #define SEL_GOOGLE_PROTOBUF_METHODOPTIONS_UNINTERPRETED_OPTION_STARTSEQ 3
   6475 #define SEL_GOOGLE_PROTOBUF_METHODOPTIONS_UNINTERPRETED_OPTION_ENDSEQ 4
   6476 #define SEL_GOOGLE_PROTOBUF_METHODOPTIONS_UNINTERPRETED_OPTION_ENDSUBMSG 5
   6477 
   6478 /* google.protobuf.ServiceDescriptorProto */
   6479 #define SEL_GOOGLE_PROTOBUF_SERVICEDESCRIPTORPROTO_METHOD_STARTSUBMSG 2
   6480 #define SEL_GOOGLE_PROTOBUF_SERVICEDESCRIPTORPROTO_OPTIONS_STARTSUBMSG 3
   6481 #define SEL_GOOGLE_PROTOBUF_SERVICEDESCRIPTORPROTO_METHOD_STARTSEQ 4
   6482 #define SEL_GOOGLE_PROTOBUF_SERVICEDESCRIPTORPROTO_METHOD_ENDSEQ 5
   6483 #define SEL_GOOGLE_PROTOBUF_SERVICEDESCRIPTORPROTO_METHOD_ENDSUBMSG 6
   6484 #define SEL_GOOGLE_PROTOBUF_SERVICEDESCRIPTORPROTO_OPTIONS_ENDSUBMSG 7
   6485 #define SEL_GOOGLE_PROTOBUF_SERVICEDESCRIPTORPROTO_NAME_STRING 8
   6486 #define SEL_GOOGLE_PROTOBUF_SERVICEDESCRIPTORPROTO_NAME_STARTSTR 9
   6487 #define SEL_GOOGLE_PROTOBUF_SERVICEDESCRIPTORPROTO_NAME_ENDSTR 10
   6488 
   6489 /* google.protobuf.ServiceOptions */
   6490 #define SEL_GOOGLE_PROTOBUF_SERVICEOPTIONS_UNINTERPRETED_OPTION_STARTSUBMSG 2
   6491 #define SEL_GOOGLE_PROTOBUF_SERVICEOPTIONS_UNINTERPRETED_OPTION_STARTSEQ 3
   6492 #define SEL_GOOGLE_PROTOBUF_SERVICEOPTIONS_UNINTERPRETED_OPTION_ENDSEQ 4
   6493 #define SEL_GOOGLE_PROTOBUF_SERVICEOPTIONS_UNINTERPRETED_OPTION_ENDSUBMSG 5
   6494 
   6495 /* google.protobuf.SourceCodeInfo */
   6496 #define SEL_GOOGLE_PROTOBUF_SOURCECODEINFO_LOCATION_STARTSUBMSG 2
   6497 #define SEL_GOOGLE_PROTOBUF_SOURCECODEINFO_LOCATION_STARTSEQ 3
   6498 #define SEL_GOOGLE_PROTOBUF_SOURCECODEINFO_LOCATION_ENDSEQ 4
   6499 #define SEL_GOOGLE_PROTOBUF_SOURCECODEINFO_LOCATION_ENDSUBMSG 5
   6500 
   6501 /* google.protobuf.SourceCodeInfo.Location */
   6502 #define SEL_GOOGLE_PROTOBUF_SOURCECODEINFO_LOCATION_PATH_STARTSEQ 2
   6503 #define SEL_GOOGLE_PROTOBUF_SOURCECODEINFO_LOCATION_PATH_ENDSEQ 3
   6504 #define SEL_GOOGLE_PROTOBUF_SOURCECODEINFO_LOCATION_PATH_INT32 4
   6505 #define SEL_GOOGLE_PROTOBUF_SOURCECODEINFO_LOCATION_SPAN_STARTSEQ 5
   6506 #define SEL_GOOGLE_PROTOBUF_SOURCECODEINFO_LOCATION_SPAN_ENDSEQ 6
   6507 #define SEL_GOOGLE_PROTOBUF_SOURCECODEINFO_LOCATION_SPAN_INT32 7
   6508 #define SEL_GOOGLE_PROTOBUF_SOURCECODEINFO_LOCATION_LEADING_COMMENTS_STRING 8
   6509 #define SEL_GOOGLE_PROTOBUF_SOURCECODEINFO_LOCATION_LEADING_COMMENTS_STARTSTR 9
   6510 #define SEL_GOOGLE_PROTOBUF_SOURCECODEINFO_LOCATION_LEADING_COMMENTS_ENDSTR 10
   6511 #define SEL_GOOGLE_PROTOBUF_SOURCECODEINFO_LOCATION_TRAILING_COMMENTS_STRING 11
   6512 #define SEL_GOOGLE_PROTOBUF_SOURCECODEINFO_LOCATION_TRAILING_COMMENTS_STARTSTR 12
   6513 #define SEL_GOOGLE_PROTOBUF_SOURCECODEINFO_LOCATION_TRAILING_COMMENTS_ENDSTR 13
   6514 
   6515 /* google.protobuf.UninterpretedOption */
   6516 #define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_NAME_STARTSUBMSG 2
   6517 #define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_NAME_STARTSEQ 3
   6518 #define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_NAME_ENDSEQ 4
   6519 #define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_NAME_ENDSUBMSG 5
   6520 #define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_IDENTIFIER_VALUE_STRING 6
   6521 #define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_IDENTIFIER_VALUE_STARTSTR 7
   6522 #define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_IDENTIFIER_VALUE_ENDSTR 8
   6523 #define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_POSITIVE_INT_VALUE_UINT64 9
   6524 #define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_NEGATIVE_INT_VALUE_INT64 10
   6525 #define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_DOUBLE_VALUE_DOUBLE 11
   6526 #define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_STRING_VALUE_STRING 12
   6527 #define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_STRING_VALUE_STARTSTR 13
   6528 #define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_STRING_VALUE_ENDSTR 14
   6529 #define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_AGGREGATE_VALUE_STRING 15
   6530 #define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_AGGREGATE_VALUE_STARTSTR 16
   6531 #define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_AGGREGATE_VALUE_ENDSTR 17
   6532 
   6533 /* google.protobuf.UninterpretedOption.NamePart */
   6534 #define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_NAMEPART_NAME_PART_STRING 2
   6535 #define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_NAMEPART_NAME_PART_STARTSTR 3
   6536 #define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_NAMEPART_NAME_PART_ENDSTR 4
   6537 #define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_NAMEPART_IS_EXTENSION_BOOL 5
   6538 
   6539 const upb_symtab *upbdefs_google_protobuf_descriptor(const void *owner);
   6540 
   6541 /* MessageDefs */
   6542 UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_DescriptorProto(const upb_symtab *s) {
   6543   const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.DescriptorProto");
   6544   assert(m);
   6545   return m;
   6546 }
   6547 UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_DescriptorProto_ExtensionRange(const upb_symtab *s) {
   6548   const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.DescriptorProto.ExtensionRange");
   6549   assert(m);
   6550   return m;
   6551 }
   6552 UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_EnumDescriptorProto(const upb_symtab *s) {
   6553   const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.EnumDescriptorProto");
   6554   assert(m);
   6555   return m;
   6556 }
   6557 UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_EnumOptions(const upb_symtab *s) {
   6558   const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.EnumOptions");
   6559   assert(m);
   6560   return m;
   6561 }
   6562 UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_EnumValueDescriptorProto(const upb_symtab *s) {
   6563   const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.EnumValueDescriptorProto");
   6564   assert(m);
   6565   return m;
   6566 }
   6567 UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_EnumValueOptions(const upb_symtab *s) {
   6568   const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.EnumValueOptions");
   6569   assert(m);
   6570   return m;
   6571 }
   6572 UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_FieldDescriptorProto(const upb_symtab *s) {
   6573   const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.FieldDescriptorProto");
   6574   assert(m);
   6575   return m;
   6576 }
   6577 UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_FieldOptions(const upb_symtab *s) {
   6578   const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.FieldOptions");
   6579   assert(m);
   6580   return m;
   6581 }
   6582 UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_FileDescriptorProto(const upb_symtab *s) {
   6583   const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.FileDescriptorProto");
   6584   assert(m);
   6585   return m;
   6586 }
   6587 UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_FileDescriptorSet(const upb_symtab *s) {
   6588   const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.FileDescriptorSet");
   6589   assert(m);
   6590   return m;
   6591 }
   6592 UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_FileOptions(const upb_symtab *s) {
   6593   const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.FileOptions");
   6594   assert(m);
   6595   return m;
   6596 }
   6597 UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_MessageOptions(const upb_symtab *s) {
   6598   const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.MessageOptions");
   6599   assert(m);
   6600   return m;
   6601 }
   6602 UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_MethodDescriptorProto(const upb_symtab *s) {
   6603   const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.MethodDescriptorProto");
   6604   assert(m);
   6605   return m;
   6606 }
   6607 UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_MethodOptions(const upb_symtab *s) {
   6608   const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.MethodOptions");
   6609   assert(m);
   6610   return m;
   6611 }
   6612 UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_ServiceDescriptorProto(const upb_symtab *s) {
   6613   const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.ServiceDescriptorProto");
   6614   assert(m);
   6615   return m;
   6616 }
   6617 UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_ServiceOptions(const upb_symtab *s) {
   6618   const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.ServiceOptions");
   6619   assert(m);
   6620   return m;
   6621 }
   6622 UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_SourceCodeInfo(const upb_symtab *s) {
   6623   const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.SourceCodeInfo");
   6624   assert(m);
   6625   return m;
   6626 }
   6627 UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_SourceCodeInfo_Location(const upb_symtab *s) {
   6628   const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.SourceCodeInfo.Location");
   6629   assert(m);
   6630   return m;
   6631 }
   6632 UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_UninterpretedOption(const upb_symtab *s) {
   6633   const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.UninterpretedOption");
   6634   assert(m);
   6635   return m;
   6636 }
   6637 UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_UninterpretedOption_NamePart(const upb_symtab *s) {
   6638   const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.UninterpretedOption.NamePart");
   6639   assert(m);
   6640   return m;
   6641 }
   6642 
   6643 
   6644 /* EnumDefs */
   6645 UPB_INLINE const upb_enumdef *upbdefs_google_protobuf_FieldDescriptorProto_Label(const upb_symtab *s) {
   6646   const upb_enumdef *e = upb_symtab_lookupenum(s, "google.protobuf.FieldDescriptorProto.Label");
   6647   assert(e);
   6648   return e;
   6649 }
   6650 UPB_INLINE const upb_enumdef *upbdefs_google_protobuf_FieldDescriptorProto_Type(const upb_symtab *s) {
   6651   const upb_enumdef *e = upb_symtab_lookupenum(s, "google.protobuf.FieldDescriptorProto.Type");
   6652   assert(e);
   6653   return e;
   6654 }
   6655 UPB_INLINE const upb_enumdef *upbdefs_google_protobuf_FieldOptions_CType(const upb_symtab *s) {
   6656   const upb_enumdef *e = upb_symtab_lookupenum(s, "google.protobuf.FieldOptions.CType");
   6657   assert(e);
   6658   return e;
   6659 }
   6660 UPB_INLINE const upb_enumdef *upbdefs_google_protobuf_FileOptions_OptimizeMode(const upb_symtab *s) {
   6661   const upb_enumdef *e = upb_symtab_lookupenum(s, "google.protobuf.FileOptions.OptimizeMode");
   6662   assert(e);
   6663   return e;
   6664 }
   6665 
   6666 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_ExtensionRange_end(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_DescriptorProto_ExtensionRange(s), 2); }
   6667 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_ExtensionRange_start(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_DescriptorProto_ExtensionRange(s), 1); }
   6668 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_enum_type(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_DescriptorProto(s), 4); }
   6669 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_extension(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_DescriptorProto(s), 6); }
   6670 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_extension_range(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_DescriptorProto(s), 5); }
   6671 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_field(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_DescriptorProto(s), 2); }
   6672 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_name(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_DescriptorProto(s), 1); }
   6673 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_nested_type(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_DescriptorProto(s), 3); }
   6674 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_options(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_DescriptorProto(s), 7); }
   6675 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumDescriptorProto_name(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_EnumDescriptorProto(s), 1); }
   6676 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumDescriptorProto_options(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_EnumDescriptorProto(s), 3); }
   6677 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumDescriptorProto_value(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_EnumDescriptorProto(s), 2); }
   6678 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumOptions_allow_alias(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_EnumOptions(s), 2); }
   6679 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumOptions_uninterpreted_option(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_EnumOptions(s), 999); }
   6680 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumValueDescriptorProto_name(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_EnumValueDescriptorProto(s), 1); }
   6681 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumValueDescriptorProto_number(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_EnumValueDescriptorProto(s), 2); }
   6682 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumValueDescriptorProto_options(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_EnumValueDescriptorProto(s), 3); }
   6683 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumValueOptions_uninterpreted_option(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_EnumValueOptions(s), 999); }
   6684 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_default_value(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FieldDescriptorProto(s), 7); }
   6685 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_extendee(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FieldDescriptorProto(s), 2); }
   6686 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_label(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FieldDescriptorProto(s), 4); }
   6687 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_name(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FieldDescriptorProto(s), 1); }
   6688 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_number(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FieldDescriptorProto(s), 3); }
   6689 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_options(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FieldDescriptorProto(s), 8); }
   6690 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_type(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FieldDescriptorProto(s), 5); }
   6691 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_type_name(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FieldDescriptorProto(s), 6); }
   6692 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_ctype(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FieldOptions(s), 1); }
   6693 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_deprecated(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FieldOptions(s), 3); }
   6694 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_experimental_map_key(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FieldOptions(s), 9); }
   6695 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_lazy(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FieldOptions(s), 5); }
   6696 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_packed(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FieldOptions(s), 2); }
   6697 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_uninterpreted_option(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FieldOptions(s), 999); }
   6698 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_weak(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FieldOptions(s), 10); }
   6699 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_dependency(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileDescriptorProto(s), 3); }
   6700 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_enum_type(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileDescriptorProto(s), 5); }
   6701 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_extension(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileDescriptorProto(s), 7); }
   6702 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_message_type(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileDescriptorProto(s), 4); }
   6703 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_name(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileDescriptorProto(s), 1); }
   6704 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_options(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileDescriptorProto(s), 8); }
   6705 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_package(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileDescriptorProto(s), 2); }
   6706 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_public_dependency(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileDescriptorProto(s), 10); }
   6707 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_service(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileDescriptorProto(s), 6); }
   6708 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_source_code_info(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileDescriptorProto(s), 9); }
   6709 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_weak_dependency(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileDescriptorProto(s), 11); }
   6710 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorSet_file(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileDescriptorSet(s), 1); }
   6711 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_cc_generic_services(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileOptions(s), 16); }
   6712 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_go_package(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileOptions(s), 11); }
   6713 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_java_generate_equals_and_hash(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileOptions(s), 20); }
   6714 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_java_generic_services(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileOptions(s), 17); }
   6715 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_java_multiple_files(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileOptions(s), 10); }
   6716 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_java_outer_classname(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileOptions(s), 8); }
   6717 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_java_package(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileOptions(s), 1); }
   6718 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_optimize_for(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileOptions(s), 9); }
   6719 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_py_generic_services(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileOptions(s), 18); }
   6720 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_uninterpreted_option(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileOptions(s), 999); }
   6721 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MessageOptions_message_set_wire_format(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_MessageOptions(s), 1); }
   6722 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MessageOptions_no_standard_descriptor_accessor(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_MessageOptions(s), 2); }
   6723 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MessageOptions_uninterpreted_option(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_MessageOptions(s), 999); }
   6724 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodDescriptorProto_input_type(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_MethodDescriptorProto(s), 2); }
   6725 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodDescriptorProto_name(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_MethodDescriptorProto(s), 1); }
   6726 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodDescriptorProto_options(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_MethodDescriptorProto(s), 4); }
   6727 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodDescriptorProto_output_type(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_MethodDescriptorProto(s), 3); }
   6728 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodOptions_uninterpreted_option(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_MethodOptions(s), 999); }
   6729 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_ServiceDescriptorProto_method(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_ServiceDescriptorProto(s), 2); }
   6730 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_ServiceDescriptorProto_name(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_ServiceDescriptorProto(s), 1); }
   6731 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_ServiceDescriptorProto_options(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_ServiceDescriptorProto(s), 3); }
   6732 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_ServiceOptions_uninterpreted_option(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_ServiceOptions(s), 999); }
   6733 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_SourceCodeInfo_Location_leading_comments(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_SourceCodeInfo_Location(s), 3); }
   6734 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_SourceCodeInfo_Location_path(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_SourceCodeInfo_Location(s), 1); }
   6735 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_SourceCodeInfo_Location_span(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_SourceCodeInfo_Location(s), 2); }
   6736 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_SourceCodeInfo_Location_trailing_comments(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_SourceCodeInfo_Location(s), 4); }
   6737 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_SourceCodeInfo_location(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_SourceCodeInfo(s), 1); }
   6738 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_NamePart_is_extension(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_UninterpretedOption_NamePart(s), 2); }
   6739 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_NamePart_name_part(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_UninterpretedOption_NamePart(s), 1); }
   6740 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_aggregate_value(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_UninterpretedOption(s), 8); }
   6741 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_double_value(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_UninterpretedOption(s), 6); }
   6742 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_identifier_value(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_UninterpretedOption(s), 3); }
   6743 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_name(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_UninterpretedOption(s), 2); }
   6744 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_negative_int_value(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_UninterpretedOption(s), 5); }
   6745 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_positive_int_value(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_UninterpretedOption(s), 4); }
   6746 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_string_value(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_UninterpretedOption(s), 7); }
   6747 
   6748 UPB_END_EXTERN_C
   6749 
   6750 #ifdef __cplusplus
   6751 
   6752 namespace upbdefs {
   6753 namespace google {
   6754 namespace protobuf {
   6755 namespace descriptor {
   6756 inline upb::reffed_ptr<const upb::SymbolTable> SymbolTable() {
   6757   const upb::SymbolTable* s = upbdefs_google_protobuf_descriptor(&s);
   6758   return upb::reffed_ptr<const upb::SymbolTable>(s, &s);
   6759 }
   6760 }  /* namespace descriptor */
   6761 }  /* namespace protobuf */
   6762 }  /* namespace google */
   6763 
   6764 #define RETURN_REFFED(type, func) \
   6765     const type* obj = func(upbdefs::google::protobuf::descriptor::SymbolTable().get()); \
   6766     return upb::reffed_ptr<const type>(obj);
   6767 
   6768 namespace google {
   6769 namespace protobuf {
   6770 namespace DescriptorProto {
   6771 inline upb::reffed_ptr<const upb::MessageDef> MessageDef() { RETURN_REFFED(upb::MessageDef, upbdefs_google_protobuf_DescriptorProto) }
   6772 inline upb::reffed_ptr<const upb::FieldDef> enum_type() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_DescriptorProto_enum_type) }
   6773 inline upb::reffed_ptr<const upb::FieldDef> extension() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_DescriptorProto_extension) }
   6774 inline upb::reffed_ptr<const upb::FieldDef> extension_range() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_DescriptorProto_extension_range) }
   6775 inline upb::reffed_ptr<const upb::FieldDef> field() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_DescriptorProto_field) }
   6776 inline upb::reffed_ptr<const upb::FieldDef> name() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_DescriptorProto_name) }
   6777 inline upb::reffed_ptr<const upb::FieldDef> nested_type() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_DescriptorProto_nested_type) }
   6778 inline upb::reffed_ptr<const upb::FieldDef> options() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_DescriptorProto_options) }
   6779 }  /* namespace DescriptorProto */
   6780 }  /* namespace protobuf */
   6781 }  /* namespace google */
   6782 
   6783 namespace google {
   6784 namespace protobuf {
   6785 namespace DescriptorProto {
   6786 namespace ExtensionRange {
   6787 inline upb::reffed_ptr<const upb::MessageDef> MessageDef() { RETURN_REFFED(upb::MessageDef, upbdefs_google_protobuf_DescriptorProto_ExtensionRange) }
   6788 inline upb::reffed_ptr<const upb::FieldDef> end() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_DescriptorProto_ExtensionRange_end) }
   6789 inline upb::reffed_ptr<const upb::FieldDef> start() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_DescriptorProto_ExtensionRange_start) }
   6790 }  /* namespace ExtensionRange */
   6791 }  /* namespace DescriptorProto */
   6792 }  /* namespace protobuf */
   6793 }  /* namespace google */
   6794 
   6795 namespace google {
   6796 namespace protobuf {
   6797 namespace EnumDescriptorProto {
   6798 inline upb::reffed_ptr<const upb::MessageDef> MessageDef() { RETURN_REFFED(upb::MessageDef, upbdefs_google_protobuf_EnumDescriptorProto) }
   6799 inline upb::reffed_ptr<const upb::FieldDef> name() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_EnumDescriptorProto_name) }
   6800 inline upb::reffed_ptr<const upb::FieldDef> options() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_EnumDescriptorProto_options) }
   6801 inline upb::reffed_ptr<const upb::FieldDef> value() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_EnumDescriptorProto_value) }
   6802 }  /* namespace EnumDescriptorProto */
   6803 }  /* namespace protobuf */
   6804 }  /* namespace google */
   6805 
   6806 namespace google {
   6807 namespace protobuf {
   6808 namespace EnumOptions {
   6809 inline upb::reffed_ptr<const upb::MessageDef> MessageDef() { RETURN_REFFED(upb::MessageDef, upbdefs_google_protobuf_EnumOptions) }
   6810 inline upb::reffed_ptr<const upb::FieldDef> allow_alias() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_EnumOptions_allow_alias) }
   6811 inline upb::reffed_ptr<const upb::FieldDef> uninterpreted_option() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_EnumOptions_uninterpreted_option) }
   6812 }  /* namespace EnumOptions */
   6813 }  /* namespace protobuf */
   6814 }  /* namespace google */
   6815 
   6816 namespace google {
   6817 namespace protobuf {
   6818 namespace EnumValueDescriptorProto {
   6819 inline upb::reffed_ptr<const upb::MessageDef> MessageDef() { RETURN_REFFED(upb::MessageDef, upbdefs_google_protobuf_EnumValueDescriptorProto) }
   6820 inline upb::reffed_ptr<const upb::FieldDef> name() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_EnumValueDescriptorProto_name) }
   6821 inline upb::reffed_ptr<const upb::FieldDef> number() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_EnumValueDescriptorProto_number) }
   6822 inline upb::reffed_ptr<const upb::FieldDef> options() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_EnumValueDescriptorProto_options) }
   6823 }  /* namespace EnumValueDescriptorProto */
   6824 }  /* namespace protobuf */
   6825 }  /* namespace google */
   6826 
   6827 namespace google {
   6828 namespace protobuf {
   6829 namespace EnumValueOptions {
   6830 inline upb::reffed_ptr<const upb::MessageDef> MessageDef() { RETURN_REFFED(upb::MessageDef, upbdefs_google_protobuf_EnumValueOptions) }
   6831 inline upb::reffed_ptr<const upb::FieldDef> uninterpreted_option() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_EnumValueOptions_uninterpreted_option) }
   6832 }  /* namespace EnumValueOptions */
   6833 }  /* namespace protobuf */
   6834 }  /* namespace google */
   6835 
   6836 namespace google {
   6837 namespace protobuf {
   6838 namespace FieldDescriptorProto {
   6839 inline upb::reffed_ptr<const upb::MessageDef> MessageDef() { RETURN_REFFED(upb::MessageDef, upbdefs_google_protobuf_FieldDescriptorProto) }
   6840 inline upb::reffed_ptr<const upb::FieldDef> default_value() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FieldDescriptorProto_default_value) }
   6841 inline upb::reffed_ptr<const upb::FieldDef> extendee() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FieldDescriptorProto_extendee) }
   6842 inline upb::reffed_ptr<const upb::FieldDef> label() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FieldDescriptorProto_label) }
   6843 inline upb::reffed_ptr<const upb::FieldDef> name() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FieldDescriptorProto_name) }
   6844 inline upb::reffed_ptr<const upb::FieldDef> number() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FieldDescriptorProto_number) }
   6845 inline upb::reffed_ptr<const upb::FieldDef> options() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FieldDescriptorProto_options) }
   6846 inline upb::reffed_ptr<const upb::FieldDef> type() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FieldDescriptorProto_type) }
   6847 inline upb::reffed_ptr<const upb::FieldDef> type_name() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FieldDescriptorProto_type_name) }
   6848 inline upb::reffed_ptr<const upb::EnumDef> Label() { RETURN_REFFED(upb::EnumDef, upbdefs_google_protobuf_FieldDescriptorProto_Label) }
   6849 inline upb::reffed_ptr<const upb::EnumDef> Type() { RETURN_REFFED(upb::EnumDef, upbdefs_google_protobuf_FieldDescriptorProto_Type) }
   6850 }  /* namespace FieldDescriptorProto */
   6851 }  /* namespace protobuf */
   6852 }  /* namespace google */
   6853 
   6854 namespace google {
   6855 namespace protobuf {
   6856 namespace FieldOptions {
   6857 inline upb::reffed_ptr<const upb::MessageDef> MessageDef() { RETURN_REFFED(upb::MessageDef, upbdefs_google_protobuf_FieldOptions) }
   6858 inline upb::reffed_ptr<const upb::FieldDef> ctype() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FieldOptions_ctype) }
   6859 inline upb::reffed_ptr<const upb::FieldDef> deprecated() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FieldOptions_deprecated) }
   6860 inline upb::reffed_ptr<const upb::FieldDef> experimental_map_key() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FieldOptions_experimental_map_key) }
   6861 inline upb::reffed_ptr<const upb::FieldDef> lazy() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FieldOptions_lazy) }
   6862 inline upb::reffed_ptr<const upb::FieldDef> packed() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FieldOptions_packed) }
   6863 inline upb::reffed_ptr<const upb::FieldDef> uninterpreted_option() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FieldOptions_uninterpreted_option) }
   6864 inline upb::reffed_ptr<const upb::FieldDef> weak() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FieldOptions_weak) }
   6865 inline upb::reffed_ptr<const upb::EnumDef> CType() { RETURN_REFFED(upb::EnumDef, upbdefs_google_protobuf_FieldOptions_CType) }
   6866 }  /* namespace FieldOptions */
   6867 }  /* namespace protobuf */
   6868 }  /* namespace google */
   6869 
   6870 namespace google {
   6871 namespace protobuf {
   6872 namespace FileDescriptorProto {
   6873 inline upb::reffed_ptr<const upb::MessageDef> MessageDef() { RETURN_REFFED(upb::MessageDef, upbdefs_google_protobuf_FileDescriptorProto) }
   6874 inline upb::reffed_ptr<const upb::FieldDef> dependency() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FileDescriptorProto_dependency) }
   6875 inline upb::reffed_ptr<const upb::FieldDef> enum_type() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FileDescriptorProto_enum_type) }
   6876 inline upb::reffed_ptr<const upb::FieldDef> extension() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FileDescriptorProto_extension) }
   6877 inline upb::reffed_ptr<const upb::FieldDef> message_type() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FileDescriptorProto_message_type) }
   6878 inline upb::reffed_ptr<const upb::FieldDef> name() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FileDescriptorProto_name) }
   6879 inline upb::reffed_ptr<const upb::FieldDef> options() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FileDescriptorProto_options) }
   6880 inline upb::reffed_ptr<const upb::FieldDef> package() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FileDescriptorProto_package) }
   6881 inline upb::reffed_ptr<const upb::FieldDef> public_dependency() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FileDescriptorProto_public_dependency) }
   6882 inline upb::reffed_ptr<const upb::FieldDef> service() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FileDescriptorProto_service) }
   6883 inline upb::reffed_ptr<const upb::FieldDef> source_code_info() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FileDescriptorProto_source_code_info) }
   6884 inline upb::reffed_ptr<const upb::FieldDef> weak_dependency() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FileDescriptorProto_weak_dependency) }
   6885 }  /* namespace FileDescriptorProto */
   6886 }  /* namespace protobuf */
   6887 }  /* namespace google */
   6888 
   6889 namespace google {
   6890 namespace protobuf {
   6891 namespace FileDescriptorSet {
   6892 inline upb::reffed_ptr<const upb::MessageDef> MessageDef() { RETURN_REFFED(upb::MessageDef, upbdefs_google_protobuf_FileDescriptorSet) }
   6893 inline upb::reffed_ptr<const upb::FieldDef> file() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FileDescriptorSet_file) }
   6894 }  /* namespace FileDescriptorSet */
   6895 }  /* namespace protobuf */
   6896 }  /* namespace google */
   6897 
   6898 namespace google {
   6899 namespace protobuf {
   6900 namespace FileOptions {
   6901 inline upb::reffed_ptr<const upb::MessageDef> MessageDef() { RETURN_REFFED(upb::MessageDef, upbdefs_google_protobuf_FileOptions) }
   6902 inline upb::reffed_ptr<const upb::FieldDef> cc_generic_services() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FileOptions_cc_generic_services) }
   6903 inline upb::reffed_ptr<const upb::FieldDef> go_package() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FileOptions_go_package) }
   6904 inline upb::reffed_ptr<const upb::FieldDef> java_generate_equals_and_hash() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FileOptions_java_generate_equals_and_hash) }
   6905 inline upb::reffed_ptr<const upb::FieldDef> java_generic_services() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FileOptions_java_generic_services) }
   6906 inline upb::reffed_ptr<const upb::FieldDef> java_multiple_files() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FileOptions_java_multiple_files) }
   6907 inline upb::reffed_ptr<const upb::FieldDef> java_outer_classname() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FileOptions_java_outer_classname) }
   6908 inline upb::reffed_ptr<const upb::FieldDef> java_package() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FileOptions_java_package) }
   6909 inline upb::reffed_ptr<const upb::FieldDef> optimize_for() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FileOptions_optimize_for) }
   6910 inline upb::reffed_ptr<const upb::FieldDef> py_generic_services() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FileOptions_py_generic_services) }
   6911 inline upb::reffed_ptr<const upb::FieldDef> uninterpreted_option() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FileOptions_uninterpreted_option) }
   6912 inline upb::reffed_ptr<const upb::EnumDef> OptimizeMode() { RETURN_REFFED(upb::EnumDef, upbdefs_google_protobuf_FileOptions_OptimizeMode) }
   6913 }  /* namespace FileOptions */
   6914 }  /* namespace protobuf */
   6915 }  /* namespace google */
   6916 
   6917 namespace google {
   6918 namespace protobuf {
   6919 namespace MessageOptions {
   6920 inline upb::reffed_ptr<const upb::MessageDef> MessageDef() { RETURN_REFFED(upb::MessageDef, upbdefs_google_protobuf_MessageOptions) }
   6921 inline upb::reffed_ptr<const upb::FieldDef> message_set_wire_format() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_MessageOptions_message_set_wire_format) }
   6922 inline upb::reffed_ptr<const upb::FieldDef> no_standard_descriptor_accessor() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_MessageOptions_no_standard_descriptor_accessor) }
   6923 inline upb::reffed_ptr<const upb::FieldDef> uninterpreted_option() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_MessageOptions_uninterpreted_option) }
   6924 }  /* namespace MessageOptions */
   6925 }  /* namespace protobuf */
   6926 }  /* namespace google */
   6927 
   6928 namespace google {
   6929 namespace protobuf {
   6930 namespace MethodDescriptorProto {
   6931 inline upb::reffed_ptr<const upb::MessageDef> MessageDef() { RETURN_REFFED(upb::MessageDef, upbdefs_google_protobuf_MethodDescriptorProto) }
   6932 inline upb::reffed_ptr<const upb::FieldDef> input_type() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_MethodDescriptorProto_input_type) }
   6933 inline upb::reffed_ptr<const upb::FieldDef> name() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_MethodDescriptorProto_name) }
   6934 inline upb::reffed_ptr<const upb::FieldDef> options() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_MethodDescriptorProto_options) }
   6935 inline upb::reffed_ptr<const upb::FieldDef> output_type() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_MethodDescriptorProto_output_type) }
   6936 }  /* namespace MethodDescriptorProto */
   6937 }  /* namespace protobuf */
   6938 }  /* namespace google */
   6939 
   6940 namespace google {
   6941 namespace protobuf {
   6942 namespace MethodOptions {
   6943 inline upb::reffed_ptr<const upb::MessageDef> MessageDef() { RETURN_REFFED(upb::MessageDef, upbdefs_google_protobuf_MethodOptions) }
   6944 inline upb::reffed_ptr<const upb::FieldDef> uninterpreted_option() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_MethodOptions_uninterpreted_option) }
   6945 }  /* namespace MethodOptions */
   6946 }  /* namespace protobuf */
   6947 }  /* namespace google */
   6948 
   6949 namespace google {
   6950 namespace protobuf {
   6951 namespace ServiceDescriptorProto {
   6952 inline upb::reffed_ptr<const upb::MessageDef> MessageDef() { RETURN_REFFED(upb::MessageDef, upbdefs_google_protobuf_ServiceDescriptorProto) }
   6953 inline upb::reffed_ptr<const upb::FieldDef> method() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_ServiceDescriptorProto_method) }
   6954 inline upb::reffed_ptr<const upb::FieldDef> name() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_ServiceDescriptorProto_name) }
   6955 inline upb::reffed_ptr<const upb::FieldDef> options() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_ServiceDescriptorProto_options) }
   6956 }  /* namespace ServiceDescriptorProto */
   6957 }  /* namespace protobuf */
   6958 }  /* namespace google */
   6959 
   6960 namespace google {
   6961 namespace protobuf {
   6962 namespace ServiceOptions {
   6963 inline upb::reffed_ptr<const upb::MessageDef> MessageDef() { RETURN_REFFED(upb::MessageDef, upbdefs_google_protobuf_ServiceOptions) }
   6964 inline upb::reffed_ptr<const upb::FieldDef> uninterpreted_option() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_ServiceOptions_uninterpreted_option) }
   6965 }  /* namespace ServiceOptions */
   6966 }  /* namespace protobuf */
   6967 }  /* namespace google */
   6968 
   6969 namespace google {
   6970 namespace protobuf {
   6971 namespace SourceCodeInfo {
   6972 inline upb::reffed_ptr<const upb::MessageDef> MessageDef() { RETURN_REFFED(upb::MessageDef, upbdefs_google_protobuf_SourceCodeInfo) }
   6973 inline upb::reffed_ptr<const upb::FieldDef> location() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_SourceCodeInfo_location) }
   6974 }  /* namespace SourceCodeInfo */
   6975 }  /* namespace protobuf */
   6976 }  /* namespace google */
   6977 
   6978 namespace google {
   6979 namespace protobuf {
   6980 namespace SourceCodeInfo {
   6981 namespace Location {
   6982 inline upb::reffed_ptr<const upb::MessageDef> MessageDef() { RETURN_REFFED(upb::MessageDef, upbdefs_google_protobuf_SourceCodeInfo_Location) }
   6983 inline upb::reffed_ptr<const upb::FieldDef> leading_comments() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_SourceCodeInfo_Location_leading_comments) }
   6984 inline upb::reffed_ptr<const upb::FieldDef> path() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_SourceCodeInfo_Location_path) }
   6985 inline upb::reffed_ptr<const upb::FieldDef> span() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_SourceCodeInfo_Location_span) }
   6986 inline upb::reffed_ptr<const upb::FieldDef> trailing_comments() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_SourceCodeInfo_Location_trailing_comments) }
   6987 }  /* namespace Location */
   6988 }  /* namespace SourceCodeInfo */
   6989 }  /* namespace protobuf */
   6990 }  /* namespace google */
   6991 
   6992 namespace google {
   6993 namespace protobuf {
   6994 namespace UninterpretedOption {
   6995 inline upb::reffed_ptr<const upb::MessageDef> MessageDef() { RETURN_REFFED(upb::MessageDef, upbdefs_google_protobuf_UninterpretedOption) }
   6996 inline upb::reffed_ptr<const upb::FieldDef> aggregate_value() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_UninterpretedOption_aggregate_value) }
   6997 inline upb::reffed_ptr<const upb::FieldDef> double_value() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_UninterpretedOption_double_value) }
   6998 inline upb::reffed_ptr<const upb::FieldDef> identifier_value() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_UninterpretedOption_identifier_value) }
   6999 inline upb::reffed_ptr<const upb::FieldDef> name() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_UninterpretedOption_name) }
   7000 inline upb::reffed_ptr<const upb::FieldDef> negative_int_value() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_UninterpretedOption_negative_int_value) }
   7001 inline upb::reffed_ptr<const upb::FieldDef> positive_int_value() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_UninterpretedOption_positive_int_value) }
   7002 inline upb::reffed_ptr<const upb::FieldDef> string_value() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_UninterpretedOption_string_value) }
   7003 }  /* namespace UninterpretedOption */
   7004 }  /* namespace protobuf */
   7005 }  /* namespace google */
   7006 
   7007 namespace google {
   7008 namespace protobuf {
   7009 namespace UninterpretedOption {
   7010 namespace NamePart {
   7011 inline upb::reffed_ptr<const upb::MessageDef> MessageDef() { RETURN_REFFED(upb::MessageDef, upbdefs_google_protobuf_UninterpretedOption_NamePart) }
   7012 inline upb::reffed_ptr<const upb::FieldDef> is_extension() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_UninterpretedOption_NamePart_is_extension) }
   7013 inline upb::reffed_ptr<const upb::FieldDef> name_part() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_UninterpretedOption_NamePart_name_part) }
   7014 }  /* namespace NamePart */
   7015 }  /* namespace UninterpretedOption */
   7016 }  /* namespace protobuf */
   7017 }  /* namespace google */
   7018 
   7019 }  /* namespace upbdefs */
   7020 
   7021 
   7022 #undef RETURN_REFFED
   7023 #endif /* __cplusplus */
   7024 
   7025 #endif  /* GOOGLE_PROTOBUF_DESCRIPTOR_UPB_H_ */
   7026 /*
   7027 ** Internal-only definitions for the decoder.
   7028 */
   7029 
   7030 #ifndef UPB_DECODER_INT_H_
   7031 #define UPB_DECODER_INT_H_
   7032 
   7033 #include <stdlib.h>
   7034 /*
   7035 ** upb::pb::Decoder
   7036 **
   7037 ** A high performance, streaming, resumable decoder for the binary protobuf
   7038 ** format.
   7039 **
   7040 ** This interface works the same regardless of what decoder backend is being
   7041 ** used.  A client of this class does not need to know whether decoding is using
   7042 ** a JITted decoder (DynASM, LLVM, etc) or an interpreted decoder.  By default,
   7043 ** it will always use the fastest available decoder.  However, you can call
   7044 ** set_allow_jit(false) to disable any JIT decoder that might be available.
   7045 ** This is primarily useful for testing purposes.
   7046 */
   7047 
   7048 #ifndef UPB_DECODER_H_
   7049 #define UPB_DECODER_H_
   7050 
   7051 
   7052 #ifdef __cplusplus
   7053 namespace upb {
   7054 namespace pb {
   7055 class CodeCache;
   7056 class Decoder;
   7057 class DecoderMethod;
   7058 class DecoderMethodOptions;
   7059 }  /* namespace pb */
   7060 }  /* namespace upb */
   7061 #endif
   7062 
   7063 UPB_DECLARE_TYPE(upb::pb::CodeCache, upb_pbcodecache)
   7064 UPB_DECLARE_TYPE(upb::pb::Decoder, upb_pbdecoder)
   7065 UPB_DECLARE_TYPE(upb::pb::DecoderMethodOptions, upb_pbdecodermethodopts)
   7066 
   7067 UPB_DECLARE_DERIVED_TYPE(upb::pb::DecoderMethod, upb::RefCounted,
   7068                          upb_pbdecodermethod, upb_refcounted)
   7069 
   7070 #ifdef __cplusplus
   7071 
   7072 /* The parameters one uses to construct a DecoderMethod.
   7073  * TODO(haberman): move allowjit here?  Seems more convenient for users.
   7074  * TODO(haberman): move this to be heap allocated for ABI stability. */
   7075 class upb::pb::DecoderMethodOptions {
   7076  public:
   7077   /* Parameter represents the destination handlers that this method will push
   7078    * to. */
   7079   explicit DecoderMethodOptions(const Handlers* dest_handlers);
   7080 
   7081   /* Should the decoder push submessages to lazy handlers for fields that have
   7082    * them?  The caller should set this iff the lazy handlers expect data that is
   7083    * in protobuf binary format and the caller wishes to lazy parse it. */
   7084   void set_lazy(bool lazy);
   7085 #else
   7086 struct upb_pbdecodermethodopts {
   7087 #endif
   7088   const upb_handlers *handlers;
   7089   bool lazy;
   7090 };
   7091 
   7092 #ifdef __cplusplus
   7093 
   7094 /* Represents the code to parse a protobuf according to a destination
   7095  * Handlers. */
   7096 class upb::pb::DecoderMethod {
   7097  public:
   7098   /* Include base methods from upb::ReferenceCounted. */
   7099   UPB_REFCOUNTED_CPPMETHODS
   7100 
   7101   /* The destination handlers that are statically bound to this method.
   7102    * This method is only capable of outputting to a sink that uses these
   7103    * handlers. */
   7104   const Handlers* dest_handlers() const;
   7105 
   7106   /* The input handlers for this decoder method. */
   7107   const BytesHandler* input_handler() const;
   7108 
   7109   /* Whether this method is native. */
   7110   bool is_native() const;
   7111 
   7112   /* Convenience method for generating a DecoderMethod without explicitly
   7113    * creating a CodeCache. */
   7114   static reffed_ptr<const DecoderMethod> New(const DecoderMethodOptions& opts);
   7115 
   7116  private:
   7117   UPB_DISALLOW_POD_OPS(DecoderMethod, upb::pb::DecoderMethod)
   7118 };
   7119 
   7120 #endif
   7121 
   7122 /* Preallocation hint: decoder won't allocate more bytes than this when first
   7123  * constructed.  This hint may be an overestimate for some build configurations.
   7124  * But if the decoder library is upgraded without recompiling the application,
   7125  * it may be an underestimate. */
   7126 #define UPB_PB_DECODER_SIZE 4408
   7127 
   7128 #ifdef __cplusplus
   7129 
   7130 /* A Decoder receives binary protobuf data on its input sink and pushes the
   7131  * decoded data to its output sink. */
   7132 class upb::pb::Decoder {
   7133  public:
   7134   /* Constructs a decoder instance for the given method, which must outlive this
   7135    * decoder.  Any errors during parsing will be set on the given status, which
   7136    * must also outlive this decoder.
   7137    *
   7138    * The sink must match the given method. */
   7139   static Decoder* Create(Environment* env, const DecoderMethod* method,
   7140                          Sink* output);
   7141 
   7142   /* Returns the DecoderMethod this decoder is parsing from. */
   7143   const DecoderMethod* method() const;
   7144 
   7145   /* The sink on which this decoder receives input. */
   7146   BytesSink* input();
   7147 
   7148   /* Returns number of bytes successfully parsed.
   7149    *
   7150    * This can be useful for determining the stream position where an error
   7151    * occurred.
   7152    *
   7153    * This value may not be up-to-date when called from inside a parsing
   7154    * callback. */
   7155   uint64_t BytesParsed() const;
   7156 
   7157   /* Gets/sets the parsing nexting limit.  If the total number of nested
   7158    * submessages and repeated fields hits this limit, parsing will fail.  This
   7159    * is a resource limit that controls the amount of memory used by the parsing
   7160    * stack.
   7161    *
   7162    * Setting the limit will fail if the parser is currently suspended at a depth
   7163    * greater than this, or if memory allocation of the stack fails. */
   7164   size_t max_nesting() const;
   7165   bool set_max_nesting(size_t max);
   7166 
   7167   void Reset();
   7168 
   7169   static const size_t kSize = UPB_PB_DECODER_SIZE;
   7170 
   7171  private:
   7172   UPB_DISALLOW_POD_OPS(Decoder, upb::pb::Decoder)
   7173 };
   7174 
   7175 #endif  /* __cplusplus */
   7176 
   7177 #ifdef __cplusplus
   7178 
   7179 /* A class for caching protobuf processing code, whether bytecode for the
   7180  * interpreted decoder or machine code for the JIT.
   7181  *
   7182  * This class is not thread-safe.
   7183  *
   7184  * TODO(haberman): move this to be heap allocated for ABI stability. */
   7185 class upb::pb::CodeCache {
   7186  public:
   7187   CodeCache();
   7188   ~CodeCache();
   7189 
   7190   /* Whether the cache is allowed to generate machine code.  Defaults to true.
   7191    * There is no real reason to turn it off except for testing or if you are
   7192    * having a specific problem with the JIT.
   7193    *
   7194    * Note that allow_jit = true does not *guarantee* that the code will be JIT
   7195    * compiled.  If this platform is not supported or the JIT was not compiled
   7196    * in, the code may still be interpreted. */
   7197   bool allow_jit() const;
   7198 
   7199   /* This may only be called when the object is first constructed, and prior to
   7200    * any code generation, otherwise returns false and does nothing. */
   7201   bool set_allow_jit(bool allow);
   7202 
   7203   /* Returns a DecoderMethod that can push data to the given handlers.
   7204    * If a suitable method already exists, it will be returned from the cache.
   7205    *
   7206    * Specifying the destination handlers here allows the DecoderMethod to be
   7207    * statically bound to the destination handlers if possible, which can allow
   7208    * more efficient decoding.  However the returned method may or may not
   7209    * actually be statically bound.  But in all cases, the returned method can
   7210    * push data to the given handlers. */
   7211   const DecoderMethod *GetDecoderMethod(const DecoderMethodOptions& opts);
   7212 
   7213   /* If/when someone needs to explicitly create a dynamically-bound
   7214    * DecoderMethod*, we can add a method to get it here. */
   7215 
   7216  private:
   7217   UPB_DISALLOW_COPY_AND_ASSIGN(CodeCache)
   7218 #else
   7219 struct upb_pbcodecache {
   7220 #endif
   7221   bool allow_jit_;
   7222 
   7223   /* Array of mgroups. */
   7224   upb_inttable groups;
   7225 };
   7226 
   7227 UPB_BEGIN_EXTERN_C
   7228 
   7229 upb_pbdecoder *upb_pbdecoder_create(upb_env *e,
   7230                                     const upb_pbdecodermethod *method,
   7231                                     upb_sink *output);
   7232 const upb_pbdecodermethod *upb_pbdecoder_method(const upb_pbdecoder *d);
   7233 upb_bytessink *upb_pbdecoder_input(upb_pbdecoder *d);
   7234 uint64_t upb_pbdecoder_bytesparsed(const upb_pbdecoder *d);
   7235 size_t upb_pbdecoder_maxnesting(const upb_pbdecoder *d);
   7236 bool upb_pbdecoder_setmaxnesting(upb_pbdecoder *d, size_t max);
   7237 void upb_pbdecoder_reset(upb_pbdecoder *d);
   7238 
   7239 void upb_pbdecodermethodopts_init(upb_pbdecodermethodopts *opts,
   7240                                   const upb_handlers *h);
   7241 void upb_pbdecodermethodopts_setlazy(upb_pbdecodermethodopts *opts, bool lazy);
   7242 
   7243 
   7244 /* Include refcounted methods like upb_pbdecodermethod_ref(). */
   7245 UPB_REFCOUNTED_CMETHODS(upb_pbdecodermethod, upb_pbdecodermethod_upcast)
   7246 
   7247 const upb_handlers *upb_pbdecodermethod_desthandlers(
   7248     const upb_pbdecodermethod *m);
   7249 const upb_byteshandler *upb_pbdecodermethod_inputhandler(
   7250     const upb_pbdecodermethod *m);
   7251 bool upb_pbdecodermethod_isnative(const upb_pbdecodermethod *m);
   7252 const upb_pbdecodermethod *upb_pbdecodermethod_new(
   7253     const upb_pbdecodermethodopts *opts, const void *owner);
   7254 
   7255 void upb_pbcodecache_init(upb_pbcodecache *c);
   7256 void upb_pbcodecache_uninit(upb_pbcodecache *c);
   7257 bool upb_pbcodecache_allowjit(const upb_pbcodecache *c);
   7258 bool upb_pbcodecache_setallowjit(upb_pbcodecache *c, bool allow);
   7259 const upb_pbdecodermethod *upb_pbcodecache_getdecodermethod(
   7260     upb_pbcodecache *c, const upb_pbdecodermethodopts *opts);
   7261 
   7262 UPB_END_EXTERN_C
   7263 
   7264 #ifdef __cplusplus
   7265 
   7266 namespace upb {
   7267 
   7268 namespace pb {
   7269 
   7270 /* static */
   7271 inline Decoder* Decoder::Create(Environment* env, const DecoderMethod* m,
   7272                                 Sink* sink) {
   7273   return upb_pbdecoder_create(env, m, sink);
   7274 }
   7275 inline const DecoderMethod* Decoder::method() const {
   7276   return upb_pbdecoder_method(this);
   7277 }
   7278 inline BytesSink* Decoder::input() {
   7279   return upb_pbdecoder_input(this);
   7280 }
   7281 inline uint64_t Decoder::BytesParsed() const {
   7282   return upb_pbdecoder_bytesparsed(this);
   7283 }
   7284 inline size_t Decoder::max_nesting() const {
   7285   return upb_pbdecoder_maxnesting(this);
   7286 }
   7287 inline bool Decoder::set_max_nesting(size_t max) {
   7288   return upb_pbdecoder_setmaxnesting(this, max);
   7289 }
   7290 inline void Decoder::Reset() { upb_pbdecoder_reset(this); }
   7291 
   7292 inline DecoderMethodOptions::DecoderMethodOptions(const Handlers* h) {
   7293   upb_pbdecodermethodopts_init(this, h);
   7294 }
   7295 inline void DecoderMethodOptions::set_lazy(bool lazy) {
   7296   upb_pbdecodermethodopts_setlazy(this, lazy);
   7297 }
   7298 
   7299 inline const Handlers* DecoderMethod::dest_handlers() const {
   7300   return upb_pbdecodermethod_desthandlers(this);
   7301 }
   7302 inline const BytesHandler* DecoderMethod::input_handler() const {
   7303   return upb_pbdecodermethod_inputhandler(this);
   7304 }
   7305 inline bool DecoderMethod::is_native() const {
   7306   return upb_pbdecodermethod_isnative(this);
   7307 }
   7308 /* static */
   7309 inline reffed_ptr<const DecoderMethod> DecoderMethod::New(
   7310     const DecoderMethodOptions &opts) {
   7311   const upb_pbdecodermethod *m = upb_pbdecodermethod_new(&opts, &m);
   7312   return reffed_ptr<const DecoderMethod>(m, &m);
   7313 }
   7314 
   7315 inline CodeCache::CodeCache() {
   7316   upb_pbcodecache_init(this);
   7317 }
   7318 inline CodeCache::~CodeCache() {
   7319   upb_pbcodecache_uninit(this);
   7320 }
   7321 inline bool CodeCache::allow_jit() const {
   7322   return upb_pbcodecache_allowjit(this);
   7323 }
   7324 inline bool CodeCache::set_allow_jit(bool allow) {
   7325   return upb_pbcodecache_setallowjit(this, allow);
   7326 }
   7327 inline const DecoderMethod *CodeCache::GetDecoderMethod(
   7328     const DecoderMethodOptions& opts) {
   7329   return upb_pbcodecache_getdecodermethod(this, &opts);
   7330 }
   7331 
   7332 }  /* namespace pb */
   7333 }  /* namespace upb */
   7334 
   7335 #endif  /* __cplusplus */
   7336 
   7337 #endif  /* UPB_DECODER_H_ */
   7338 
   7339 /* C++ names are not actually used since this type isn't exposed to users. */
   7340 #ifdef __cplusplus
   7341 namespace upb {
   7342 namespace pb {
   7343 class MessageGroup;
   7344 }  /* namespace pb */
   7345 }  /* namespace upb */
   7346 #endif
   7347 UPB_DECLARE_DERIVED_TYPE(upb::pb::MessageGroup, upb::RefCounted,
   7348                          mgroup, upb_refcounted)
   7349 
   7350 /* Opcode definitions.  The canonical meaning of each opcode is its
   7351  * implementation in the interpreter (the JIT is written to match this).
   7352  *
   7353  * All instructions have the opcode in the low byte.
   7354  * Instruction format for most instructions is:
   7355  *
   7356  * +-------------------+--------+
   7357  * |     arg (24)      | op (8) |
   7358  * +-------------------+--------+
   7359  *
   7360  * Exceptions are indicated below.  A few opcodes are multi-word. */
   7361 typedef enum {
   7362   /* Opcodes 1-8, 13, 15-18 parse their respective descriptor types.
   7363    * Arg for all of these is the upb selector for this field. */
   7364 #define T(type) OP_PARSE_ ## type = UPB_DESCRIPTOR_TYPE_ ## type
   7365   T(DOUBLE), T(FLOAT), T(INT64), T(UINT64), T(INT32), T(FIXED64), T(FIXED32),
   7366   T(BOOL), T(UINT32), T(SFIXED32), T(SFIXED64), T(SINT32), T(SINT64),
   7367 #undef T
   7368   OP_STARTMSG       = 9,   /* No arg. */
   7369   OP_ENDMSG         = 10,  /* No arg. */
   7370   OP_STARTSEQ       = 11,
   7371   OP_ENDSEQ         = 12,
   7372   OP_STARTSUBMSG    = 14,
   7373   OP_ENDSUBMSG      = 19,
   7374   OP_STARTSTR       = 20,
   7375   OP_STRING         = 21,
   7376   OP_ENDSTR         = 22,
   7377 
   7378   OP_PUSHTAGDELIM   = 23,  /* No arg. */
   7379   OP_PUSHLENDELIM   = 24,  /* No arg. */
   7380   OP_POP            = 25,  /* No arg. */
   7381   OP_SETDELIM       = 26,  /* No arg. */
   7382   OP_SETBIGGROUPNUM = 27,  /* two words:
   7383                             *   | unused (24)     | opc (8) |
   7384                             *   |        groupnum (32)      | */
   7385   OP_CHECKDELIM     = 28,
   7386   OP_CALL           = 29,
   7387   OP_RET            = 30,
   7388   OP_BRANCH         = 31,
   7389 
   7390   /* Different opcodes depending on how many bytes expected. */
   7391   OP_TAG1           = 32,  /* | match tag (16) | jump target (8) | opc (8) | */
   7392   OP_TAG2           = 33,  /* | match tag (16) | jump target (8) | opc (8) | */
   7393   OP_TAGN           = 34,  /* three words: */
   7394                            /*   | unused (16) | jump target(8) | opc (8) | */
   7395                            /*   |           match tag 1 (32)             | */
   7396                            /*   |           match tag 2 (32)             | */
   7397 
   7398   OP_SETDISPATCH    = 35,  /* N words: */
   7399                            /*   | unused (24)         | opc | */
   7400                            /*   | upb_inttable* (32 or 64)  | */
   7401 
   7402   OP_DISPATCH       = 36,  /* No arg. */
   7403 
   7404   OP_HALT           = 37   /* No arg. */
   7405 } opcode;
   7406 
   7407 #define OP_MAX OP_HALT
   7408 
   7409 UPB_INLINE opcode getop(uint32_t instr) { return instr & 0xff; }
   7410 
   7411 /* Method group; represents a set of decoder methods that had their code
   7412  * emitted together, and must therefore be freed together.  Immutable once
   7413  * created.  It is possible we may want to expose this to users at some point.
   7414  *
   7415  * Overall ownership of Decoder objects looks like this:
   7416  *
   7417  *                +----------+
   7418  *                |          | <---> DecoderMethod
   7419  *                | method   |
   7420  * CodeCache ---> |  group   | <---> DecoderMethod
   7421  *                |          |
   7422  *                | (mgroup) | <---> DecoderMethod
   7423  *                +----------+
   7424  */
   7425 struct mgroup {
   7426   upb_refcounted base;
   7427 
   7428   /* Maps upb_msgdef/upb_handlers -> upb_pbdecodermethod.  We own refs on the
   7429    * methods. */
   7430   upb_inttable methods;
   7431 
   7432   /* When we add the ability to link to previously existing mgroups, we'll
   7433    * need an array of mgroups we reference here, and own refs on them. */
   7434 
   7435   /* The bytecode for our methods, if any exists.  Owned by us. */
   7436   uint32_t *bytecode;
   7437   uint32_t *bytecode_end;
   7438 
   7439 #ifdef UPB_USE_JIT_X64
   7440   /* JIT-generated machine code, if any. */
   7441   upb_string_handlerfunc *jit_code;
   7442   /* The size of the jit_code (required to munmap()). */
   7443   size_t jit_size;
   7444   char *debug_info;
   7445   void *dl;
   7446 #endif
   7447 };
   7448 
   7449 /* The maximum that any submessages can be nested.  Matches proto2's limit.
   7450  * This specifies the size of the decoder's statically-sized array and therefore
   7451  * setting it high will cause the upb::pb::Decoder object to be larger.
   7452  *
   7453  * If necessary we can add a runtime-settable property to Decoder that allow
   7454  * this to be larger than the compile-time setting, but this would add
   7455  * complexity, particularly since we would have to decide how/if to give users
   7456  * the ability to set a custom memory allocation function. */
   7457 #define UPB_DECODER_MAX_NESTING 64
   7458 
   7459 /* Internal-only struct used by the decoder. */
   7460 typedef struct {
   7461   /* Space optimization note: we store two pointers here that the JIT
   7462    * doesn't need at all; the upb_handlers* inside the sink and
   7463    * the dispatch table pointer.  We can optimze so that the JIT uses
   7464    * smaller stack frames than the interpreter.  The only thing we need
   7465    * to guarantee is that the fallback routines can find end_ofs. */
   7466   upb_sink sink;
   7467 
   7468   /* The absolute stream offset of the end-of-frame delimiter.
   7469    * Non-delimited frames (groups and non-packed repeated fields) reuse the
   7470    * delimiter of their parent, even though the frame may not end there.
   7471    *
   7472    * NOTE: the JIT stores a slightly different value here for non-top frames.
   7473    * It stores the value relative to the end of the enclosed message.  But the
   7474    * top frame is still stored the same way, which is important for ensuring
   7475    * that calls from the JIT into C work correctly. */
   7476   uint64_t end_ofs;
   7477   const uint32_t *base;
   7478 
   7479   /* 0 indicates a length-delimited field.
   7480    * A positive number indicates a known group.
   7481    * A negative number indicates an unknown group. */
   7482   int32_t groupnum;
   7483   upb_inttable *dispatch;  /* Not used by the JIT. */
   7484 } upb_pbdecoder_frame;
   7485 
   7486 struct upb_pbdecodermethod {
   7487   upb_refcounted base;
   7488 
   7489   /* While compiling, the base is relative in "ofs", after compiling it is
   7490    * absolute in "ptr". */
   7491   union {
   7492     uint32_t ofs;     /* PC offset of method. */
   7493     void *ptr;        /* Pointer to bytecode or machine code for this method. */
   7494   } code_base;
   7495 
   7496   /* The decoder method group to which this method belongs.  We own a ref.
   7497    * Owning a ref on the entire group is more coarse-grained than is strictly
   7498    * necessary; all we truly require is that methods we directly reference
   7499    * outlive us, while the group could contain many other messages we don't
   7500    * require.  But the group represents the messages that were
   7501    * allocated+compiled together, so it makes the most sense to free them
   7502    * together also. */
   7503   const upb_refcounted *group;
   7504 
   7505   /* Whether this method is native code or bytecode. */
   7506   bool is_native_;
   7507 
   7508   /* The handler one calls to invoke this method. */
   7509   upb_byteshandler input_handler_;
   7510 
   7511   /* The destination handlers this method is bound to.  We own a ref. */
   7512   const upb_handlers *dest_handlers_;
   7513 
   7514   /* Dispatch table -- used by both bytecode decoder and JIT when encountering a
   7515    * field number that wasn't the one we were expecting to see.  See
   7516    * decoder.int.h for the layout of this table. */
   7517   upb_inttable dispatch;
   7518 };
   7519 
   7520 struct upb_pbdecoder {
   7521   upb_env *env;
   7522 
   7523   /* Our input sink. */
   7524   upb_bytessink input_;
   7525 
   7526   /* The decoder method we are parsing with (owned). */
   7527   const upb_pbdecodermethod *method_;
   7528 
   7529   size_t call_len;
   7530   const uint32_t *pc, *last;
   7531 
   7532   /* Current input buffer and its stream offset. */
   7533   const char *buf, *ptr, *end, *checkpoint;
   7534 
   7535   /* End of the delimited region, relative to ptr, NULL if not in this buf. */
   7536   const char *delim_end;
   7537 
   7538   /* End of the delimited region, relative to ptr, end if not in this buf. */
   7539   const char *data_end;
   7540 
   7541   /* Overall stream offset of "buf." */
   7542   uint64_t bufstart_ofs;
   7543 
   7544   /* Buffer for residual bytes not parsed from the previous buffer.
   7545    * The maximum number of residual bytes we require is 12; a five-byte
   7546    * unknown tag plus an eight-byte value, less one because the value
   7547    * is only a partial value. */
   7548   char residual[12];
   7549   char *residual_end;
   7550 
   7551   /* Bytes of data that should be discarded from the input beore we start
   7552    * parsing again.  We set this when we internally determine that we can
   7553    * safely skip the next N bytes, but this region extends past the current
   7554    * user buffer. */
   7555   size_t skip;
   7556 
   7557   /* Stores the user buffer passed to our decode function. */
   7558   const char *buf_param;
   7559   size_t size_param;
   7560   const upb_bufhandle *handle;
   7561 
   7562   /* Our internal stack. */
   7563   upb_pbdecoder_frame *stack, *top, *limit;
   7564   const uint32_t **callstack;
   7565   size_t stack_size;
   7566 
   7567   upb_status *status;
   7568 
   7569 #ifdef UPB_USE_JIT_X64
   7570   /* Used momentarily by the generated code to store a value while a user
   7571    * function is called. */
   7572   uint32_t tmp_len;
   7573 
   7574   const void *saved_rsp;
   7575 #endif
   7576 };
   7577 
   7578 /* Decoder entry points; used as handlers. */
   7579 void *upb_pbdecoder_startbc(void *closure, const void *pc, size_t size_hint);
   7580 void *upb_pbdecoder_startjit(void *closure, const void *hd, size_t size_hint);
   7581 size_t upb_pbdecoder_decode(void *closure, const void *hd, const char *buf,
   7582                             size_t size, const upb_bufhandle *handle);
   7583 bool upb_pbdecoder_end(void *closure, const void *handler_data);
   7584 
   7585 /* Decoder-internal functions that the JIT calls to handle fallback paths. */
   7586 int32_t upb_pbdecoder_resume(upb_pbdecoder *d, void *p, const char *buf,
   7587                              size_t size, const upb_bufhandle *handle);
   7588 size_t upb_pbdecoder_suspend(upb_pbdecoder *d);
   7589 int32_t upb_pbdecoder_skipunknown(upb_pbdecoder *d, int32_t fieldnum,
   7590                                   uint8_t wire_type);
   7591 int32_t upb_pbdecoder_checktag_slow(upb_pbdecoder *d, uint64_t expected);
   7592 int32_t upb_pbdecoder_decode_varint_slow(upb_pbdecoder *d, uint64_t *u64);
   7593 int32_t upb_pbdecoder_decode_f32(upb_pbdecoder *d, uint32_t *u32);
   7594 int32_t upb_pbdecoder_decode_f64(upb_pbdecoder *d, uint64_t *u64);
   7595 void upb_pbdecoder_seterr(upb_pbdecoder *d, const char *msg);
   7596 
   7597 /* Error messages that are shared between the bytecode and JIT decoders. */
   7598 extern const char *kPbDecoderStackOverflow;
   7599 extern const char *kPbDecoderSubmessageTooLong;
   7600 
   7601 /* Access to decoderplan members needed by the decoder. */
   7602 const char *upb_pbdecoder_getopname(unsigned int op);
   7603 
   7604 /* JIT codegen entry point. */
   7605 void upb_pbdecoder_jit(mgroup *group);
   7606 void upb_pbdecoder_freejit(mgroup *group);
   7607 UPB_REFCOUNTED_CMETHODS(mgroup, mgroup_upcast)
   7608 
   7609 /* A special label that means "do field dispatch for this message and branch to
   7610  * wherever that takes you." */
   7611 #define LABEL_DISPATCH 0
   7612 
   7613 /* A special slot in the dispatch table that stores the epilogue (ENDMSG and/or
   7614  * RET) for branching to when we find an appropriate ENDGROUP tag. */
   7615 #define DISPATCH_ENDMSG 0
   7616 
   7617 /* It's important to use this invalid wire type instead of 0 (which is a valid
   7618  * wire type). */
   7619 #define NO_WIRE_TYPE 0xff
   7620 
   7621 /* The dispatch table layout is:
   7622  *   [field number] -> [ 48-bit offset ][ 8-bit wt2 ][ 8-bit wt1 ]
   7623  *
   7624  * If wt1 matches, jump to the 48-bit offset.  If wt2 matches, lookup
   7625  * (UPB_MAX_FIELDNUMBER + fieldnum) and jump there.
   7626  *
   7627  * We need two wire types because of packed/non-packed compatibility.  A
   7628  * primitive repeated field can use either wire type and be valid.  While we
   7629  * could key the table on fieldnum+wiretype, the table would be 8x sparser.
   7630  *
   7631  * Storing two wire types in the primary value allows us to quickly rule out
   7632  * the second wire type without needing to do a separate lookup (this case is
   7633  * less common than an unknown field). */
   7634 UPB_INLINE uint64_t upb_pbdecoder_packdispatch(uint64_t ofs, uint8_t wt1,
   7635                                                uint8_t wt2) {
   7636   return (ofs << 16) | (wt2 << 8) | wt1;
   7637 }
   7638 
   7639 UPB_INLINE void upb_pbdecoder_unpackdispatch(uint64_t dispatch, uint64_t *ofs,
   7640                                              uint8_t *wt1, uint8_t *wt2) {
   7641   *wt1 = (uint8_t)dispatch;
   7642   *wt2 = (uint8_t)(dispatch >> 8);
   7643   *ofs = dispatch >> 16;
   7644 }
   7645 
   7646 /* All of the functions in decoder.c that return int32_t return values according
   7647  * to the following scheme:
   7648  *   1. negative values indicate a return code from the following list.
   7649  *   2. positive values indicate that error or end of buffer was hit, and
   7650  *      that the decode function should immediately return the given value
   7651  *      (the decoder state has already been suspended and is ready to be
   7652  *      resumed). */
   7653 #define DECODE_OK -1
   7654 #define DECODE_MISMATCH -2  /* Used only from checktag_slow(). */
   7655 #define DECODE_ENDGROUP -3  /* Used only from checkunknown(). */
   7656 
   7657 #define CHECK_RETURN(x) { int32_t ret = x; if (ret >= 0) return ret; }
   7658 
   7659 #endif  /* UPB_DECODER_INT_H_ */
   7660 /*
   7661 ** A number of routines for varint manipulation (we keep them all around to
   7662 ** have multiple approaches available for benchmarking).
   7663 */
   7664 
   7665 #ifndef UPB_VARINT_DECODER_H_
   7666 #define UPB_VARINT_DECODER_H_
   7667 
   7668 #include <assert.h>
   7669 #include <stdint.h>
   7670 #include <string.h>
   7671 
   7672 #ifdef __cplusplus
   7673 extern "C" {
   7674 #endif
   7675 
   7676 /* A list of types as they are encoded on-the-wire. */
   7677 typedef enum {
   7678   UPB_WIRE_TYPE_VARINT      = 0,
   7679   UPB_WIRE_TYPE_64BIT       = 1,
   7680   UPB_WIRE_TYPE_DELIMITED   = 2,
   7681   UPB_WIRE_TYPE_START_GROUP = 3,
   7682   UPB_WIRE_TYPE_END_GROUP   = 4,
   7683   UPB_WIRE_TYPE_32BIT       = 5
   7684 } upb_wiretype_t;
   7685 
   7686 #define UPB_MAX_WIRE_TYPE 5
   7687 
   7688 /* The maximum number of bytes that it takes to encode a 64-bit varint.
   7689  * Note that with a better encoding this could be 9 (TODO: write up a
   7690  * wiki document about this). */
   7691 #define UPB_PB_VARINT_MAX_LEN 10
   7692 
   7693 /* Array of the "native" (ie. non-packed-repeated) wire type for the given a
   7694  * descriptor type (upb_descriptortype_t). */
   7695 extern const uint8_t upb_pb_native_wire_types[];
   7696 
   7697 /* Zig-zag encoding/decoding **************************************************/
   7698 
   7699 UPB_INLINE int32_t upb_zzdec_32(uint32_t n) {
   7700   return (n >> 1) ^ -(int32_t)(n & 1);
   7701 }
   7702 UPB_INLINE int64_t upb_zzdec_64(uint64_t n) {
   7703   return (n >> 1) ^ -(int64_t)(n & 1);
   7704 }
   7705 UPB_INLINE uint32_t upb_zzenc_32(int32_t n) { return (n << 1) ^ (n >> 31); }
   7706 UPB_INLINE uint64_t upb_zzenc_64(int64_t n) { return (n << 1) ^ (n >> 63); }
   7707 
   7708 /* Decoding *******************************************************************/
   7709 
   7710 /* All decoding functions return this struct by value. */
   7711 typedef struct {
   7712   const char *p;  /* NULL if the varint was unterminated. */
   7713   uint64_t val;
   7714 } upb_decoderet;
   7715 
   7716 UPB_INLINE upb_decoderet upb_decoderet_make(const char *p, uint64_t val) {
   7717   upb_decoderet ret;
   7718   ret.p = p;
   7719   ret.val = val;
   7720   return ret;
   7721 }
   7722 
   7723 /* Four functions for decoding a varint of at most eight bytes.  They are all
   7724  * functionally identical, but are implemented in different ways and likely have
   7725  * different performance profiles.  We keep them around for performance testing.
   7726  *
   7727  * Note that these functions may not read byte-by-byte, so they must not be used
   7728  * unless there are at least eight bytes left in the buffer! */
   7729 upb_decoderet upb_vdecode_max8_branch32(upb_decoderet r);
   7730 upb_decoderet upb_vdecode_max8_branch64(upb_decoderet r);
   7731 upb_decoderet upb_vdecode_max8_wright(upb_decoderet r);
   7732 upb_decoderet upb_vdecode_max8_massimino(upb_decoderet r);
   7733 
   7734 /* Template for a function that checks the first two bytes with branching
   7735  * and dispatches 2-10 bytes with a separate function.  Note that this may read
   7736  * up to 10 bytes, so it must not be used unless there are at least ten bytes
   7737  * left in the buffer! */
   7738 #define UPB_VARINT_DECODER_CHECK2(name, decode_max8_function)                  \
   7739 UPB_INLINE upb_decoderet upb_vdecode_check2_ ## name(const char *_p) {         \
   7740   uint8_t *p = (uint8_t*)_p;                                                   \
   7741   upb_decoderet r;                                                             \
   7742   if ((*p & 0x80) == 0) {                                                      \
   7743   /* Common case: one-byte varint. */                                          \
   7744     return upb_decoderet_make(_p + 1, *p & 0x7fU);                             \
   7745   }                                                                            \
   7746   r = upb_decoderet_make(_p + 2, (*p & 0x7fU) | ((*(p + 1) & 0x7fU) << 7));    \
   7747   if ((*(p + 1) & 0x80) == 0) {                                                \
   7748     /* Two-byte varint. */                                                     \
   7749     return r;                                                                  \
   7750   }                                                                            \
   7751   /* Longer varint, fallback to out-of-line function. */                       \
   7752   return decode_max8_function(r);                                              \
   7753 }
   7754 
   7755 UPB_VARINT_DECODER_CHECK2(branch32, upb_vdecode_max8_branch32)
   7756 UPB_VARINT_DECODER_CHECK2(branch64, upb_vdecode_max8_branch64)
   7757 UPB_VARINT_DECODER_CHECK2(wright, upb_vdecode_max8_wright)
   7758 UPB_VARINT_DECODER_CHECK2(massimino, upb_vdecode_max8_massimino)
   7759 #undef UPB_VARINT_DECODER_CHECK2
   7760 
   7761 /* Our canonical functions for decoding varints, based on the currently
   7762  * favored best-performing implementations. */
   7763 UPB_INLINE upb_decoderet upb_vdecode_fast(const char *p) {
   7764   if (sizeof(long) == 8)
   7765     return upb_vdecode_check2_branch64(p);
   7766   else
   7767     return upb_vdecode_check2_branch32(p);
   7768 }
   7769 
   7770 UPB_INLINE upb_decoderet upb_vdecode_max8_fast(upb_decoderet r) {
   7771   return upb_vdecode_max8_massimino(r);
   7772 }
   7773 
   7774 
   7775 /* Encoding *******************************************************************/
   7776 
   7777 UPB_INLINE int upb_value_size(uint64_t val) {
   7778 #ifdef __GNUC__
   7779   int high_bit = 63 - __builtin_clzll(val);  /* 0-based, undef if val == 0. */
   7780 #else
   7781   int high_bit = 0;
   7782   uint64_t tmp = val;
   7783   while(tmp >>= 1) high_bit++;
   7784 #endif
   7785   return val == 0 ? 1 : high_bit / 8 + 1;
   7786 }
   7787 
   7788 /* Encodes a 64-bit varint into buf (which must be >=UPB_PB_VARINT_MAX_LEN
   7789  * bytes long), returning how many bytes were used.
   7790  *
   7791  * TODO: benchmark and optimize if necessary. */
   7792 UPB_INLINE size_t upb_vencode64(uint64_t val, char *buf) {
   7793   size_t i;
   7794   if (val == 0) { buf[0] = 0; return 1; }
   7795   i = 0;
   7796   while (val) {
   7797     uint8_t byte = val & 0x7fU;
   7798     val >>= 7;
   7799     if (val) byte |= 0x80U;
   7800     buf[i++] = byte;
   7801   }
   7802   return i;
   7803 }
   7804 
   7805 UPB_INLINE size_t upb_varint_size(uint64_t val) {
   7806   char buf[UPB_PB_VARINT_MAX_LEN];
   7807   return upb_vencode64(val, buf);
   7808 }
   7809 
   7810 /* Encodes a 32-bit varint, *not* sign-extended. */
   7811 UPB_INLINE uint64_t upb_vencode32(uint32_t val) {
   7812   char buf[UPB_PB_VARINT_MAX_LEN];
   7813   size_t bytes = upb_vencode64(val, buf);
   7814   uint64_t ret = 0;
   7815   assert(bytes <= 5);
   7816   memcpy(&ret, buf, bytes);
   7817   assert(ret <= 0xffffffffffU);
   7818   return ret;
   7819 }
   7820 
   7821 #ifdef __cplusplus
   7822 }  /* extern "C" */
   7823 #endif
   7824 
   7825 #endif  /* UPB_VARINT_DECODER_H_ */
   7826 /*
   7827 ** upb::pb::Encoder (upb_pb_encoder)
   7828 **
   7829 ** Implements a set of upb_handlers that write protobuf data to the binary wire
   7830 ** format.
   7831 **
   7832 ** This encoder implementation does not have any access to any out-of-band or
   7833 ** precomputed lengths for submessages, so it must buffer submessages internally
   7834 ** before it can emit the first byte.
   7835 */
   7836 
   7837 #ifndef UPB_ENCODER_H_
   7838 #define UPB_ENCODER_H_
   7839 
   7840 
   7841 #ifdef __cplusplus
   7842 namespace upb {
   7843 namespace pb {
   7844 class Encoder;
   7845 }  /* namespace pb */
   7846 }  /* namespace upb */
   7847 #endif
   7848 
   7849 UPB_DECLARE_TYPE(upb::pb::Encoder, upb_pb_encoder)
   7850 
   7851 #define UPB_PBENCODER_MAX_NESTING 100
   7852 
   7853 /* upb::pb::Encoder ***********************************************************/
   7854 
   7855 /* Preallocation hint: decoder won't allocate more bytes than this when first
   7856  * constructed.  This hint may be an overestimate for some build configurations.
   7857  * But if the decoder library is upgraded without recompiling the application,
   7858  * it may be an underestimate. */
   7859 #define UPB_PB_ENCODER_SIZE 768
   7860 
   7861 #ifdef __cplusplus
   7862 
   7863 class upb::pb::Encoder {
   7864  public:
   7865   /* Creates a new encoder in the given environment.  The Handlers must have
   7866    * come from NewHandlers() below. */
   7867   static Encoder* Create(Environment* env, const Handlers* handlers,
   7868                          BytesSink* output);
   7869 
   7870   /* The input to the encoder. */
   7871   Sink* input();
   7872 
   7873   /* Creates a new set of handlers for this MessageDef. */
   7874   static reffed_ptr<const Handlers> NewHandlers(const MessageDef* msg);
   7875 
   7876   static const size_t kSize = UPB_PB_ENCODER_SIZE;
   7877 
   7878  private:
   7879   UPB_DISALLOW_POD_OPS(Encoder, upb::pb::Encoder)
   7880 };
   7881 
   7882 #endif
   7883 
   7884 UPB_BEGIN_EXTERN_C
   7885 
   7886 const upb_handlers *upb_pb_encoder_newhandlers(const upb_msgdef *m,
   7887                                                const void *owner);
   7888 upb_sink *upb_pb_encoder_input(upb_pb_encoder *p);
   7889 upb_pb_encoder* upb_pb_encoder_create(upb_env* e, const upb_handlers* h,
   7890                                       upb_bytessink* output);
   7891 
   7892 UPB_END_EXTERN_C
   7893 
   7894 #ifdef __cplusplus
   7895 
   7896 namespace upb {
   7897 namespace pb {
   7898 inline Encoder* Encoder::Create(Environment* env, const Handlers* handlers,
   7899                                 BytesSink* output) {
   7900   return upb_pb_encoder_create(env, handlers, output);
   7901 }
   7902 inline Sink* Encoder::input() {
   7903   return upb_pb_encoder_input(this);
   7904 }
   7905 inline reffed_ptr<const Handlers> Encoder::NewHandlers(
   7906     const upb::MessageDef *md) {
   7907   const Handlers* h = upb_pb_encoder_newhandlers(md, &h);
   7908   return reffed_ptr<const Handlers>(h, &h);
   7909 }
   7910 }  /* namespace pb */
   7911 }  /* namespace upb */
   7912 
   7913 #endif
   7914 
   7915 #endif  /* UPB_ENCODER_H_ */
   7916 /*
   7917 ** upb's core components like upb_decoder and upb_msg are carefully designed to
   7918 ** avoid depending on each other for maximum orthogonality.  In other words,
   7919 ** you can use a upb_decoder to decode into *any* kind of structure; upb_msg is
   7920 ** just one such structure.  A upb_msg can be serialized/deserialized into any
   7921 ** format, protobuf binary format is just one such format.
   7922 **
   7923 ** However, for convenience we provide functions here for doing common
   7924 ** operations like deserializing protobuf binary format into a upb_msg.  The
   7925 ** compromise is that this file drags in almost all of upb as a dependency,
   7926 ** which could be undesirable if you're trying to use a trimmed-down build of
   7927 ** upb.
   7928 **
   7929 ** While these routines are convenient, they do not reuse any encoding/decoding
   7930 ** state.  For example, if a decoder is JIT-based, it will be re-JITted every
   7931 ** time these functions are called.  For this reason, if you are parsing lots
   7932 ** of data and efficiency is an issue, these may not be the best functions to
   7933 ** use (though they are useful for prototyping, before optimizing).
   7934 */
   7935 
   7936 #ifndef UPB_GLUE_H
   7937 #define UPB_GLUE_H
   7938 
   7939 #include <stdbool.h>
   7940 
   7941 #ifdef __cplusplus
   7942 extern "C" {
   7943 #endif
   7944 
   7945 /* Loads all defs from the given protobuf binary descriptor, setting default
   7946  * accessors and a default layout on all messages.  The caller owns the
   7947  * returned array of defs, which will be of length *n.  On error NULL is
   7948  * returned and status is set (if non-NULL). */
   7949 upb_def **upb_load_defs_from_descriptor(const char *str, size_t len, int *n,
   7950                                         void *owner, upb_status *status);
   7951 
   7952 /* Like the previous but also adds the loaded defs to the given symtab. */
   7953 bool upb_load_descriptor_into_symtab(upb_symtab *symtab, const char *str,
   7954                                      size_t len, upb_status *status);
   7955 
   7956 /* Like the previous but also reads the descriptor from the given filename. */
   7957 bool upb_load_descriptor_file_into_symtab(upb_symtab *symtab, const char *fname,
   7958                                           upb_status *status);
   7959 
   7960 /* Reads the given filename into a character string, returning NULL if there
   7961  * was an error. */
   7962 char *upb_readfile(const char *filename, size_t *len);
   7963 
   7964 #ifdef __cplusplus
   7965 }  /* extern "C" */
   7966 
   7967 namespace upb {
   7968 
   7969 /* All routines that load descriptors expect the descriptor to be a
   7970  * FileDescriptorSet. */
   7971 inline bool LoadDescriptorFileIntoSymtab(SymbolTable* s, const char *fname,
   7972                                          Status* status) {
   7973   return upb_load_descriptor_file_into_symtab(s, fname, status);
   7974 }
   7975 
   7976 inline bool LoadDescriptorIntoSymtab(SymbolTable* s, const char* str,
   7977                                      size_t len, Status* status) {
   7978   return upb_load_descriptor_into_symtab(s, str, len, status);
   7979 }
   7980 
   7981 /* Templated so it can accept both string and std::string. */
   7982 template <typename T>
   7983 bool LoadDescriptorIntoSymtab(SymbolTable* s, const T& desc, Status* status) {
   7984   return upb_load_descriptor_into_symtab(s, desc.c_str(), desc.size(), status);
   7985 }
   7986 
   7987 }  /* namespace upb */
   7988 
   7989 #endif
   7990 
   7991 #endif  /* UPB_GLUE_H */
   7992 /*
   7993 ** upb::pb::TextPrinter (upb_textprinter)
   7994 **
   7995 ** Handlers for writing to protobuf text format.
   7996 */
   7997 
   7998 #ifndef UPB_TEXT_H_
   7999 #define UPB_TEXT_H_
   8000 
   8001 
   8002 #ifdef __cplusplus
   8003 namespace upb {
   8004 namespace pb {
   8005 class TextPrinter;
   8006 }  /* namespace pb */
   8007 }  /* namespace upb */
   8008 #endif
   8009 
   8010 UPB_DECLARE_TYPE(upb::pb::TextPrinter, upb_textprinter)
   8011 
   8012 #ifdef __cplusplus
   8013 
   8014 class upb::pb::TextPrinter {
   8015  public:
   8016   /* The given handlers must have come from NewHandlers().  It must outlive the
   8017    * TextPrinter. */
   8018   static TextPrinter *Create(Environment *env, const upb::Handlers *handlers,
   8019                              BytesSink *output);
   8020 
   8021   void SetSingleLineMode(bool single_line);
   8022 
   8023   Sink* input();
   8024 
   8025   /* If handler caching becomes a requirement we can add a code cache as in
   8026    * decoder.h */
   8027   static reffed_ptr<const Handlers> NewHandlers(const MessageDef* md);
   8028 };
   8029 
   8030 #endif
   8031 
   8032 UPB_BEGIN_EXTERN_C
   8033 
   8034 /* C API. */
   8035 upb_textprinter *upb_textprinter_create(upb_env *env, const upb_handlers *h,
   8036                                         upb_bytessink *output);
   8037 void upb_textprinter_setsingleline(upb_textprinter *p, bool single_line);
   8038 upb_sink *upb_textprinter_input(upb_textprinter *p);
   8039 
   8040 const upb_handlers *upb_textprinter_newhandlers(const upb_msgdef *m,
   8041                                                 const void *owner);
   8042 
   8043 UPB_END_EXTERN_C
   8044 
   8045 #ifdef __cplusplus
   8046 
   8047 namespace upb {
   8048 namespace pb {
   8049 inline TextPrinter *TextPrinter::Create(Environment *env,
   8050                                         const upb::Handlers *handlers,
   8051                                         BytesSink *output) {
   8052   return upb_textprinter_create(env, handlers, output);
   8053 }
   8054 inline void TextPrinter::SetSingleLineMode(bool single_line) {
   8055   upb_textprinter_setsingleline(this, single_line);
   8056 }
   8057 inline Sink* TextPrinter::input() {
   8058   return upb_textprinter_input(this);
   8059 }
   8060 inline reffed_ptr<const Handlers> TextPrinter::NewHandlers(
   8061     const MessageDef *md) {
   8062   const Handlers* h = upb_textprinter_newhandlers(md, &h);
   8063   return reffed_ptr<const Handlers>(h, &h);
   8064 }
   8065 }  /* namespace pb */
   8066 }  /* namespace upb */
   8067 
   8068 #endif
   8069 
   8070 #endif  /* UPB_TEXT_H_ */
   8071 /*
   8072 ** upb::json::Parser (upb_json_parser)
   8073 **
   8074 ** Parses JSON according to a specific schema.
   8075 ** Support for parsing arbitrary JSON (schema-less) will be added later.
   8076 */
   8077 
   8078 #ifndef UPB_JSON_PARSER_H_
   8079 #define UPB_JSON_PARSER_H_
   8080 
   8081 
   8082 #ifdef __cplusplus
   8083 namespace upb {
   8084 namespace json {
   8085 class Parser;
   8086 }  /* namespace json */
   8087 }  /* namespace upb */
   8088 #endif
   8089 
   8090 UPB_DECLARE_TYPE(upb::json::Parser, upb_json_parser)
   8091 
   8092 /* upb::json::Parser **********************************************************/
   8093 
   8094 /* Preallocation hint: parser won't allocate more bytes than this when first
   8095  * constructed.  This hint may be an overestimate for some build configurations.
   8096  * But if the parser library is upgraded without recompiling the application,
   8097  * it may be an underestimate. */
   8098 #define UPB_JSON_PARSER_SIZE 3704
   8099 
   8100 #ifdef __cplusplus
   8101 
   8102 /* Parses an incoming BytesStream, pushing the results to the destination
   8103  * sink. */
   8104 class upb::json::Parser {
   8105  public:
   8106   static Parser* Create(Environment* env, Sink* output);
   8107 
   8108   BytesSink* input();
   8109 
   8110  private:
   8111   UPB_DISALLOW_POD_OPS(Parser, upb::json::Parser)
   8112 };
   8113 
   8114 #endif
   8115 
   8116 UPB_BEGIN_EXTERN_C
   8117 
   8118 upb_json_parser *upb_json_parser_create(upb_env *e, upb_sink *output);
   8119 upb_bytessink *upb_json_parser_input(upb_json_parser *p);
   8120 
   8121 UPB_END_EXTERN_C
   8122 
   8123 #ifdef __cplusplus
   8124 
   8125 namespace upb {
   8126 namespace json {
   8127 inline Parser* Parser::Create(Environment* env, Sink* output) {
   8128   return upb_json_parser_create(env, output);
   8129 }
   8130 inline BytesSink* Parser::input() {
   8131   return upb_json_parser_input(this);
   8132 }
   8133 }  /* namespace json */
   8134 }  /* namespace upb */
   8135 
   8136 #endif
   8137 
   8138 
   8139 #endif  /* UPB_JSON_PARSER_H_ */
   8140 /*
   8141 ** upb::json::Printer
   8142 **
   8143 ** Handlers that emit JSON according to a specific protobuf schema.
   8144 */
   8145 
   8146 #ifndef UPB_JSON_TYPED_PRINTER_H_
   8147 #define UPB_JSON_TYPED_PRINTER_H_
   8148 
   8149 
   8150 #ifdef __cplusplus
   8151 namespace upb {
   8152 namespace json {
   8153 class Printer;
   8154 }  /* namespace json */
   8155 }  /* namespace upb */
   8156 #endif
   8157 
   8158 UPB_DECLARE_TYPE(upb::json::Printer, upb_json_printer)
   8159 
   8160 
   8161 /* upb::json::Printer *********************************************************/
   8162 
   8163 #define UPB_JSON_PRINTER_SIZE 168
   8164 
   8165 #ifdef __cplusplus
   8166 
   8167 /* Prints an incoming stream of data to a BytesSink in JSON format. */
   8168 class upb::json::Printer {
   8169  public:
   8170   static Printer* Create(Environment* env, const upb::Handlers* handlers,
   8171                          BytesSink* output);
   8172 
   8173   /* The input to the printer. */
   8174   Sink* input();
   8175 
   8176   /* Returns handlers for printing according to the specified schema. */
   8177   static reffed_ptr<const Handlers> NewHandlers(const upb::MessageDef* md);
   8178 
   8179   static const size_t kSize = UPB_JSON_PRINTER_SIZE;
   8180 
   8181  private:
   8182   UPB_DISALLOW_POD_OPS(Printer, upb::json::Printer)
   8183 };
   8184 
   8185 #endif
   8186 
   8187 UPB_BEGIN_EXTERN_C
   8188 
   8189 /* Native C API. */
   8190 upb_json_printer *upb_json_printer_create(upb_env *e, const upb_handlers *h,
   8191                                           upb_bytessink *output);
   8192 upb_sink *upb_json_printer_input(upb_json_printer *p);
   8193 const upb_handlers *upb_json_printer_newhandlers(const upb_msgdef *md,
   8194                                                  const void *owner);
   8195 
   8196 UPB_END_EXTERN_C
   8197 
   8198 #ifdef __cplusplus
   8199 
   8200 namespace upb {
   8201 namespace json {
   8202 inline Printer* Printer::Create(Environment* env, const upb::Handlers* handlers,
   8203                                 BytesSink* output) {
   8204   return upb_json_printer_create(env, handlers, output);
   8205 }
   8206 inline Sink* Printer::input() { return upb_json_printer_input(this); }
   8207 inline reffed_ptr<const Handlers> Printer::NewHandlers(
   8208     const upb::MessageDef *md) {
   8209   const Handlers* h = upb_json_printer_newhandlers(md, &h);
   8210   return reffed_ptr<const Handlers>(h, &h);
   8211 }
   8212 }  /* namespace json */
   8213 }  /* namespace upb */
   8214 
   8215 #endif
   8216 
   8217 #endif  /* UPB_JSON_TYPED_PRINTER_H_ */
   8218