Home | History | Annotate | Download | only in base
      1 /*
      2  * Copyright (C) 2011 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "mutex.h"
     18 
     19 #include <errno.h>
     20 #include <sys/time.h>
     21 
     22 #include "android-base/stringprintf.h"
     23 
     24 #include "atomic.h"
     25 #include "base/logging.h"
     26 #include "base/time_utils.h"
     27 #include "base/systrace.h"
     28 #include "base/value_object.h"
     29 #include "mutex-inl.h"
     30 #include "scoped_thread_state_change-inl.h"
     31 #include "thread-inl.h"
     32 
     33 namespace art {
     34 
     35 using android::base::StringPrintf;
     36 
     37 static Atomic<Locks::ClientCallback*> safe_to_call_abort_callback(nullptr);
     38 
     39 Mutex* Locks::abort_lock_ = nullptr;
     40 Mutex* Locks::alloc_tracker_lock_ = nullptr;
     41 Mutex* Locks::allocated_monitor_ids_lock_ = nullptr;
     42 Mutex* Locks::allocated_thread_ids_lock_ = nullptr;
     43 ReaderWriterMutex* Locks::breakpoint_lock_ = nullptr;
     44 ReaderWriterMutex* Locks::classlinker_classes_lock_ = nullptr;
     45 Mutex* Locks::deoptimization_lock_ = nullptr;
     46 ReaderWriterMutex* Locks::heap_bitmap_lock_ = nullptr;
     47 Mutex* Locks::instrument_entrypoints_lock_ = nullptr;
     48 Mutex* Locks::intern_table_lock_ = nullptr;
     49 Mutex* Locks::jni_function_table_lock_ = nullptr;
     50 Mutex* Locks::jni_libraries_lock_ = nullptr;
     51 Mutex* Locks::logging_lock_ = nullptr;
     52 Mutex* Locks::modify_ldt_lock_ = nullptr;
     53 MutatorMutex* Locks::mutator_lock_ = nullptr;
     54 Mutex* Locks::profiler_lock_ = nullptr;
     55 ReaderWriterMutex* Locks::verifier_deps_lock_ = nullptr;
     56 ReaderWriterMutex* Locks::oat_file_manager_lock_ = nullptr;
     57 Mutex* Locks::host_dlopen_handles_lock_ = nullptr;
     58 Mutex* Locks::reference_processor_lock_ = nullptr;
     59 Mutex* Locks::reference_queue_cleared_references_lock_ = nullptr;
     60 Mutex* Locks::reference_queue_finalizer_references_lock_ = nullptr;
     61 Mutex* Locks::reference_queue_phantom_references_lock_ = nullptr;
     62 Mutex* Locks::reference_queue_soft_references_lock_ = nullptr;
     63 Mutex* Locks::reference_queue_weak_references_lock_ = nullptr;
     64 Mutex* Locks::runtime_shutdown_lock_ = nullptr;
     65 Mutex* Locks::cha_lock_ = nullptr;
     66 Mutex* Locks::thread_list_lock_ = nullptr;
     67 ConditionVariable* Locks::thread_exit_cond_ = nullptr;
     68 Mutex* Locks::thread_suspend_count_lock_ = nullptr;
     69 Mutex* Locks::trace_lock_ = nullptr;
     70 Mutex* Locks::unexpected_signal_lock_ = nullptr;
     71 Uninterruptible Roles::uninterruptible_;
     72 ReaderWriterMutex* Locks::jni_globals_lock_ = nullptr;
     73 Mutex* Locks::jni_weak_globals_lock_ = nullptr;
     74 ReaderWriterMutex* Locks::dex_lock_ = nullptr;
     75 std::vector<BaseMutex*> Locks::expected_mutexes_on_weak_ref_access_;
     76 Atomic<const BaseMutex*> Locks::expected_mutexes_on_weak_ref_access_guard_;
     77 
     78 struct AllMutexData {
     79   // A guard for all_mutexes_ that's not a mutex (Mutexes must CAS to acquire and busy wait).
     80   Atomic<const BaseMutex*> all_mutexes_guard;
     81   // All created mutexes guarded by all_mutexes_guard_.
     82   std::set<BaseMutex*>* all_mutexes;
     83   AllMutexData() : all_mutexes(nullptr) {}
     84 };
     85 static struct AllMutexData gAllMutexData[kAllMutexDataSize];
     86 
     87 #if ART_USE_FUTEXES
     88 static bool ComputeRelativeTimeSpec(timespec* result_ts, const timespec& lhs, const timespec& rhs) {
     89   const int32_t one_sec = 1000 * 1000 * 1000;  // one second in nanoseconds.
     90   result_ts->tv_sec = lhs.tv_sec - rhs.tv_sec;
     91   result_ts->tv_nsec = lhs.tv_nsec - rhs.tv_nsec;
     92   if (result_ts->tv_nsec < 0) {
     93     result_ts->tv_sec--;
     94     result_ts->tv_nsec += one_sec;
     95   } else if (result_ts->tv_nsec > one_sec) {
     96     result_ts->tv_sec++;
     97     result_ts->tv_nsec -= one_sec;
     98   }
     99   return result_ts->tv_sec < 0;
    100 }
    101 #endif
    102 
    103 class ScopedAllMutexesLock FINAL {
    104  public:
    105   explicit ScopedAllMutexesLock(const BaseMutex* mutex) : mutex_(mutex) {
    106     while (!gAllMutexData->all_mutexes_guard.CompareExchangeWeakAcquire(0, mutex)) {
    107       NanoSleep(100);
    108     }
    109   }
    110 
    111   ~ScopedAllMutexesLock() {
    112     while (!gAllMutexData->all_mutexes_guard.CompareExchangeWeakRelease(mutex_, 0)) {
    113       NanoSleep(100);
    114     }
    115   }
    116 
    117  private:
    118   const BaseMutex* const mutex_;
    119 };
    120 
    121 class Locks::ScopedExpectedMutexesOnWeakRefAccessLock FINAL {
    122  public:
    123   explicit ScopedExpectedMutexesOnWeakRefAccessLock(const BaseMutex* mutex) : mutex_(mutex) {
    124     while (!Locks::expected_mutexes_on_weak_ref_access_guard_.CompareExchangeWeakAcquire(0,
    125                                                                                          mutex)) {
    126       NanoSleep(100);
    127     }
    128   }
    129 
    130   ~ScopedExpectedMutexesOnWeakRefAccessLock() {
    131     while (!Locks::expected_mutexes_on_weak_ref_access_guard_.CompareExchangeWeakRelease(mutex_,
    132                                                                                          0)) {
    133       NanoSleep(100);
    134     }
    135   }
    136 
    137  private:
    138   const BaseMutex* const mutex_;
    139 };
    140 
    141 // Scoped class that generates events at the beginning and end of lock contention.
    142 class ScopedContentionRecorder FINAL : public ValueObject {
    143  public:
    144   ScopedContentionRecorder(BaseMutex* mutex, uint64_t blocked_tid, uint64_t owner_tid)
    145       : mutex_(kLogLockContentions ? mutex : nullptr),
    146         blocked_tid_(kLogLockContentions ? blocked_tid : 0),
    147         owner_tid_(kLogLockContentions ? owner_tid : 0),
    148         start_nano_time_(kLogLockContentions ? NanoTime() : 0) {
    149     if (ATRACE_ENABLED()) {
    150       std::string msg = StringPrintf("Lock contention on %s (owner tid: %" PRIu64 ")",
    151                                      mutex->GetName(), owner_tid);
    152       ATRACE_BEGIN(msg.c_str());
    153     }
    154   }
    155 
    156   ~ScopedContentionRecorder() {
    157     ATRACE_END();
    158     if (kLogLockContentions) {
    159       uint64_t end_nano_time = NanoTime();
    160       mutex_->RecordContention(blocked_tid_, owner_tid_, end_nano_time - start_nano_time_);
    161     }
    162   }
    163 
    164  private:
    165   BaseMutex* const mutex_;
    166   const uint64_t blocked_tid_;
    167   const uint64_t owner_tid_;
    168   const uint64_t start_nano_time_;
    169 };
    170 
    171 BaseMutex::BaseMutex(const char* name, LockLevel level)
    172     : level_(level),
    173       name_(name),
    174       should_respond_to_empty_checkpoint_request_(false) {
    175   if (kLogLockContentions) {
    176     ScopedAllMutexesLock mu(this);
    177     std::set<BaseMutex*>** all_mutexes_ptr = &gAllMutexData->all_mutexes;
    178     if (*all_mutexes_ptr == nullptr) {
    179       // We leak the global set of all mutexes to avoid ordering issues in global variable
    180       // construction/destruction.
    181       *all_mutexes_ptr = new std::set<BaseMutex*>();
    182     }
    183     (*all_mutexes_ptr)->insert(this);
    184   }
    185 }
    186 
    187 BaseMutex::~BaseMutex() {
    188   if (kLogLockContentions) {
    189     ScopedAllMutexesLock mu(this);
    190     gAllMutexData->all_mutexes->erase(this);
    191   }
    192 }
    193 
    194 void BaseMutex::DumpAll(std::ostream& os) {
    195   if (kLogLockContentions) {
    196     os << "Mutex logging:\n";
    197     ScopedAllMutexesLock mu(reinterpret_cast<const BaseMutex*>(-1));
    198     std::set<BaseMutex*>* all_mutexes = gAllMutexData->all_mutexes;
    199     if (all_mutexes == nullptr) {
    200       // No mutexes have been created yet during at startup.
    201       return;
    202     }
    203     typedef std::set<BaseMutex*>::const_iterator It;
    204     os << "(Contended)\n";
    205     for (It it = all_mutexes->begin(); it != all_mutexes->end(); ++it) {
    206       BaseMutex* mutex = *it;
    207       if (mutex->HasEverContended()) {
    208         mutex->Dump(os);
    209         os << "\n";
    210       }
    211     }
    212     os << "(Never contented)\n";
    213     for (It it = all_mutexes->begin(); it != all_mutexes->end(); ++it) {
    214       BaseMutex* mutex = *it;
    215       if (!mutex->HasEverContended()) {
    216         mutex->Dump(os);
    217         os << "\n";
    218       }
    219     }
    220   }
    221 }
    222 
    223 void BaseMutex::CheckSafeToWait(Thread* self) {
    224   if (self == nullptr) {
    225     CheckUnattachedThread(level_);
    226     return;
    227   }
    228   if (kDebugLocking) {
    229     CHECK(self->GetHeldMutex(level_) == this || level_ == kMonitorLock)
    230         << "Waiting on unacquired mutex: " << name_;
    231     bool bad_mutexes_held = false;
    232     for (int i = kLockLevelCount - 1; i >= 0; --i) {
    233       if (i != level_) {
    234         BaseMutex* held_mutex = self->GetHeldMutex(static_cast<LockLevel>(i));
    235         // We expect waits to happen while holding the thread list suspend thread lock.
    236         if (held_mutex != nullptr) {
    237           LOG(ERROR) << "Holding \"" << held_mutex->name_ << "\" "
    238                      << "(level " << LockLevel(i) << ") while performing wait on "
    239                      << "\"" << name_ << "\" (level " << level_ << ")";
    240           bad_mutexes_held = true;
    241         }
    242       }
    243     }
    244     if (gAborting == 0) {  // Avoid recursive aborts.
    245       CHECK(!bad_mutexes_held);
    246     }
    247   }
    248 }
    249 
    250 void BaseMutex::ContentionLogData::AddToWaitTime(uint64_t value) {
    251   if (kLogLockContentions) {
    252     // Atomically add value to wait_time.
    253     wait_time.FetchAndAddSequentiallyConsistent(value);
    254   }
    255 }
    256 
    257 void BaseMutex::RecordContention(uint64_t blocked_tid,
    258                                  uint64_t owner_tid,
    259                                  uint64_t nano_time_blocked) {
    260   if (kLogLockContentions) {
    261     ContentionLogData* data = contention_log_data_;
    262     ++(data->contention_count);
    263     data->AddToWaitTime(nano_time_blocked);
    264     ContentionLogEntry* log = data->contention_log;
    265     // This code is intentionally racy as it is only used for diagnostics.
    266     uint32_t slot = data->cur_content_log_entry.LoadRelaxed();
    267     if (log[slot].blocked_tid == blocked_tid &&
    268         log[slot].owner_tid == blocked_tid) {
    269       ++log[slot].count;
    270     } else {
    271       uint32_t new_slot;
    272       do {
    273         slot = data->cur_content_log_entry.LoadRelaxed();
    274         new_slot = (slot + 1) % kContentionLogSize;
    275       } while (!data->cur_content_log_entry.CompareExchangeWeakRelaxed(slot, new_slot));
    276       log[new_slot].blocked_tid = blocked_tid;
    277       log[new_slot].owner_tid = owner_tid;
    278       log[new_slot].count.StoreRelaxed(1);
    279     }
    280   }
    281 }
    282 
    283 void BaseMutex::DumpContention(std::ostream& os) const {
    284   if (kLogLockContentions) {
    285     const ContentionLogData* data = contention_log_data_;
    286     const ContentionLogEntry* log = data->contention_log;
    287     uint64_t wait_time = data->wait_time.LoadRelaxed();
    288     uint32_t contention_count = data->contention_count.LoadRelaxed();
    289     if (contention_count == 0) {
    290       os << "never contended";
    291     } else {
    292       os << "contended " << contention_count
    293          << " total wait of contender " << PrettyDuration(wait_time)
    294          << " average " << PrettyDuration(wait_time / contention_count);
    295       SafeMap<uint64_t, size_t> most_common_blocker;
    296       SafeMap<uint64_t, size_t> most_common_blocked;
    297       for (size_t i = 0; i < kContentionLogSize; ++i) {
    298         uint64_t blocked_tid = log[i].blocked_tid;
    299         uint64_t owner_tid = log[i].owner_tid;
    300         uint32_t count = log[i].count.LoadRelaxed();
    301         if (count > 0) {
    302           auto it = most_common_blocked.find(blocked_tid);
    303           if (it != most_common_blocked.end()) {
    304             most_common_blocked.Overwrite(blocked_tid, it->second + count);
    305           } else {
    306             most_common_blocked.Put(blocked_tid, count);
    307           }
    308           it = most_common_blocker.find(owner_tid);
    309           if (it != most_common_blocker.end()) {
    310             most_common_blocker.Overwrite(owner_tid, it->second + count);
    311           } else {
    312             most_common_blocker.Put(owner_tid, count);
    313           }
    314         }
    315       }
    316       uint64_t max_tid = 0;
    317       size_t max_tid_count = 0;
    318       for (const auto& pair : most_common_blocked) {
    319         if (pair.second > max_tid_count) {
    320           max_tid = pair.first;
    321           max_tid_count = pair.second;
    322         }
    323       }
    324       if (max_tid != 0) {
    325         os << " sample shows most blocked tid=" << max_tid;
    326       }
    327       max_tid = 0;
    328       max_tid_count = 0;
    329       for (const auto& pair : most_common_blocker) {
    330         if (pair.second > max_tid_count) {
    331           max_tid = pair.first;
    332           max_tid_count = pair.second;
    333         }
    334       }
    335       if (max_tid != 0) {
    336         os << " sample shows tid=" << max_tid << " owning during this time";
    337       }
    338     }
    339   }
    340 }
    341 
    342 
    343 Mutex::Mutex(const char* name, LockLevel level, bool recursive)
    344     : BaseMutex(name, level), recursive_(recursive), recursion_count_(0) {
    345 #if ART_USE_FUTEXES
    346   DCHECK_EQ(0, state_.LoadRelaxed());
    347   DCHECK_EQ(0, num_contenders_.LoadRelaxed());
    348 #else
    349   CHECK_MUTEX_CALL(pthread_mutex_init, (&mutex_, nullptr));
    350 #endif
    351   exclusive_owner_ = 0;
    352 }
    353 
    354 // Helper to allow checking shutdown while locking for thread safety.
    355 static bool IsSafeToCallAbortSafe() {
    356   MutexLock mu(Thread::Current(), *Locks::runtime_shutdown_lock_);
    357   return Locks::IsSafeToCallAbortRacy();
    358 }
    359 
    360 Mutex::~Mutex() {
    361   bool safe_to_call_abort = Locks::IsSafeToCallAbortRacy();
    362 #if ART_USE_FUTEXES
    363   if (state_.LoadRelaxed() != 0) {
    364     LOG(safe_to_call_abort ? FATAL : WARNING)
    365         << "destroying mutex with owner: " << exclusive_owner_;
    366   } else {
    367     if (exclusive_owner_ != 0) {
    368       LOG(safe_to_call_abort ? FATAL : WARNING)
    369           << "unexpectedly found an owner on unlocked mutex " << name_;
    370     }
    371     if (num_contenders_.LoadSequentiallyConsistent() != 0) {
    372       LOG(safe_to_call_abort ? FATAL : WARNING)
    373           << "unexpectedly found a contender on mutex " << name_;
    374     }
    375   }
    376 #else
    377   // We can't use CHECK_MUTEX_CALL here because on shutdown a suspended daemon thread
    378   // may still be using locks.
    379   int rc = pthread_mutex_destroy(&mutex_);
    380   if (rc != 0) {
    381     errno = rc;
    382     PLOG(safe_to_call_abort ? FATAL : WARNING)
    383         << "pthread_mutex_destroy failed for " << name_;
    384   }
    385 #endif
    386 }
    387 
    388 void Mutex::ExclusiveLock(Thread* self) {
    389   DCHECK(self == nullptr || self == Thread::Current());
    390   if (kDebugLocking && !recursive_) {
    391     AssertNotHeld(self);
    392   }
    393   if (!recursive_ || !IsExclusiveHeld(self)) {
    394 #if ART_USE_FUTEXES
    395     bool done = false;
    396     do {
    397       int32_t cur_state = state_.LoadRelaxed();
    398       if (LIKELY(cur_state == 0)) {
    399         // Change state from 0 to 1 and impose load/store ordering appropriate for lock acquisition.
    400         done = state_.CompareExchangeWeakAcquire(0 /* cur_state */, 1 /* new state */);
    401       } else {
    402         // Failed to acquire, hang up.
    403         ScopedContentionRecorder scr(this, SafeGetTid(self), GetExclusiveOwnerTid());
    404         num_contenders_++;
    405         if (UNLIKELY(should_respond_to_empty_checkpoint_request_)) {
    406           self->CheckEmptyCheckpointFromMutex();
    407         }
    408         if (futex(state_.Address(), FUTEX_WAIT, 1, nullptr, nullptr, 0) != 0) {
    409           // EAGAIN and EINTR both indicate a spurious failure, try again from the beginning.
    410           // We don't use TEMP_FAILURE_RETRY so we can intentionally retry to acquire the lock.
    411           if ((errno != EAGAIN) && (errno != EINTR)) {
    412             PLOG(FATAL) << "futex wait failed for " << name_;
    413           }
    414         }
    415         num_contenders_--;
    416       }
    417     } while (!done);
    418     DCHECK_EQ(state_.LoadRelaxed(), 1);
    419 #else
    420     CHECK_MUTEX_CALL(pthread_mutex_lock, (&mutex_));
    421 #endif
    422     DCHECK_EQ(exclusive_owner_, 0U);
    423     exclusive_owner_ = SafeGetTid(self);
    424     RegisterAsLocked(self);
    425   }
    426   recursion_count_++;
    427   if (kDebugLocking) {
    428     CHECK(recursion_count_ == 1 || recursive_) << "Unexpected recursion count on mutex: "
    429         << name_ << " " << recursion_count_;
    430     AssertHeld(self);
    431   }
    432 }
    433 
    434 bool Mutex::ExclusiveTryLock(Thread* self) {
    435   DCHECK(self == nullptr || self == Thread::Current());
    436   if (kDebugLocking && !recursive_) {
    437     AssertNotHeld(self);
    438   }
    439   if (!recursive_ || !IsExclusiveHeld(self)) {
    440 #if ART_USE_FUTEXES
    441     bool done = false;
    442     do {
    443       int32_t cur_state = state_.LoadRelaxed();
    444       if (cur_state == 0) {
    445         // Change state from 0 to 1 and impose load/store ordering appropriate for lock acquisition.
    446         done = state_.CompareExchangeWeakAcquire(0 /* cur_state */, 1 /* new state */);
    447       } else {
    448         return false;
    449       }
    450     } while (!done);
    451     DCHECK_EQ(state_.LoadRelaxed(), 1);
    452 #else
    453     int result = pthread_mutex_trylock(&mutex_);
    454     if (result == EBUSY) {
    455       return false;
    456     }
    457     if (result != 0) {
    458       errno = result;
    459       PLOG(FATAL) << "pthread_mutex_trylock failed for " << name_;
    460     }
    461 #endif
    462     DCHECK_EQ(exclusive_owner_, 0U);
    463     exclusive_owner_ = SafeGetTid(self);
    464     RegisterAsLocked(self);
    465   }
    466   recursion_count_++;
    467   if (kDebugLocking) {
    468     CHECK(recursion_count_ == 1 || recursive_) << "Unexpected recursion count on mutex: "
    469         << name_ << " " << recursion_count_;
    470     AssertHeld(self);
    471   }
    472   return true;
    473 }
    474 
    475 void Mutex::ExclusiveUnlock(Thread* self) {
    476   if (kIsDebugBuild && self != nullptr && self != Thread::Current()) {
    477     std::string name1 = "<null>";
    478     std::string name2 = "<null>";
    479     if (self != nullptr) {
    480       self->GetThreadName(name1);
    481     }
    482     if (Thread::Current() != nullptr) {
    483       Thread::Current()->GetThreadName(name2);
    484     }
    485     LOG(FATAL) << GetName() << " level=" << level_ << " self=" << name1
    486                << " Thread::Current()=" << name2;
    487   }
    488   AssertHeld(self);
    489   DCHECK_NE(exclusive_owner_, 0U);
    490   recursion_count_--;
    491   if (!recursive_ || recursion_count_ == 0) {
    492     if (kDebugLocking) {
    493       CHECK(recursion_count_ == 0 || recursive_) << "Unexpected recursion count on mutex: "
    494           << name_ << " " << recursion_count_;
    495     }
    496     RegisterAsUnlocked(self);
    497 #if ART_USE_FUTEXES
    498     bool done = false;
    499     do {
    500       int32_t cur_state = state_.LoadRelaxed();
    501       if (LIKELY(cur_state == 1)) {
    502         // We're no longer the owner.
    503         exclusive_owner_ = 0;
    504         // Change state to 0 and impose load/store ordering appropriate for lock release.
    505         // Note, the relaxed loads below musn't reorder before the CompareExchange.
    506         // TODO: the ordering here is non-trivial as state is split across 3 fields, fix by placing
    507         // a status bit into the state on contention.
    508         done =  state_.CompareExchangeWeakSequentiallyConsistent(cur_state, 0 /* new state */);
    509         if (LIKELY(done)) {  // Spurious fail?
    510           // Wake a contender.
    511           if (UNLIKELY(num_contenders_.LoadRelaxed() > 0)) {
    512             futex(state_.Address(), FUTEX_WAKE, 1, nullptr, nullptr, 0);
    513           }
    514         }
    515       } else {
    516         // Logging acquires the logging lock, avoid infinite recursion in that case.
    517         if (this != Locks::logging_lock_) {
    518           LOG(FATAL) << "Unexpected state_ in unlock " << cur_state << " for " << name_;
    519         } else {
    520           LogHelper::LogLineLowStack(__FILE__,
    521                                      __LINE__,
    522                                      ::android::base::FATAL_WITHOUT_ABORT,
    523                                      StringPrintf("Unexpected state_ %d in unlock for %s",
    524                                                   cur_state, name_).c_str());
    525           _exit(1);
    526         }
    527       }
    528     } while (!done);
    529 #else
    530     exclusive_owner_ = 0;
    531     CHECK_MUTEX_CALL(pthread_mutex_unlock, (&mutex_));
    532 #endif
    533   }
    534 }
    535 
    536 void Mutex::Dump(std::ostream& os) const {
    537   os << (recursive_ ? "recursive " : "non-recursive ")
    538       << name_
    539       << " level=" << static_cast<int>(level_)
    540       << " rec=" << recursion_count_
    541       << " owner=" << GetExclusiveOwnerTid() << " ";
    542   DumpContention(os);
    543 }
    544 
    545 std::ostream& operator<<(std::ostream& os, const Mutex& mu) {
    546   mu.Dump(os);
    547   return os;
    548 }
    549 
    550 void Mutex::WakeupToRespondToEmptyCheckpoint() {
    551 #if ART_USE_FUTEXES
    552   // Wake up all the waiters so they will respond to the emtpy checkpoint.
    553   DCHECK(should_respond_to_empty_checkpoint_request_);
    554   if (UNLIKELY(num_contenders_.LoadRelaxed() > 0)) {
    555     futex(state_.Address(), FUTEX_WAKE, -1, nullptr, nullptr, 0);
    556   }
    557 #else
    558   LOG(FATAL) << "Non futex case isn't supported.";
    559 #endif
    560 }
    561 
    562 ReaderWriterMutex::ReaderWriterMutex(const char* name, LockLevel level)
    563     : BaseMutex(name, level)
    564 #if ART_USE_FUTEXES
    565     , state_(0), num_pending_readers_(0), num_pending_writers_(0)
    566 #endif
    567 {  // NOLINT(whitespace/braces)
    568 #if !ART_USE_FUTEXES
    569   CHECK_MUTEX_CALL(pthread_rwlock_init, (&rwlock_, nullptr));
    570 #endif
    571   exclusive_owner_ = 0;
    572 }
    573 
    574 ReaderWriterMutex::~ReaderWriterMutex() {
    575 #if ART_USE_FUTEXES
    576   CHECK_EQ(state_.LoadRelaxed(), 0);
    577   CHECK_EQ(exclusive_owner_, 0U);
    578   CHECK_EQ(num_pending_readers_.LoadRelaxed(), 0);
    579   CHECK_EQ(num_pending_writers_.LoadRelaxed(), 0);
    580 #else
    581   // We can't use CHECK_MUTEX_CALL here because on shutdown a suspended daemon thread
    582   // may still be using locks.
    583   int rc = pthread_rwlock_destroy(&rwlock_);
    584   if (rc != 0) {
    585     errno = rc;
    586     bool is_safe_to_call_abort = IsSafeToCallAbortSafe();
    587     PLOG(is_safe_to_call_abort ? FATAL : WARNING) << "pthread_rwlock_destroy failed for " << name_;
    588   }
    589 #endif
    590 }
    591 
    592 void ReaderWriterMutex::ExclusiveLock(Thread* self) {
    593   DCHECK(self == nullptr || self == Thread::Current());
    594   AssertNotExclusiveHeld(self);
    595 #if ART_USE_FUTEXES
    596   bool done = false;
    597   do {
    598     int32_t cur_state = state_.LoadRelaxed();
    599     if (LIKELY(cur_state == 0)) {
    600       // Change state from 0 to -1 and impose load/store ordering appropriate for lock acquisition.
    601       done =  state_.CompareExchangeWeakAcquire(0 /* cur_state*/, -1 /* new state */);
    602     } else {
    603       // Failed to acquire, hang up.
    604       ScopedContentionRecorder scr(this, SafeGetTid(self), GetExclusiveOwnerTid());
    605       ++num_pending_writers_;
    606       if (UNLIKELY(should_respond_to_empty_checkpoint_request_)) {
    607         self->CheckEmptyCheckpointFromMutex();
    608       }
    609       if (futex(state_.Address(), FUTEX_WAIT, cur_state, nullptr, nullptr, 0) != 0) {
    610         // EAGAIN and EINTR both indicate a spurious failure, try again from the beginning.
    611         // We don't use TEMP_FAILURE_RETRY so we can intentionally retry to acquire the lock.
    612         if ((errno != EAGAIN) && (errno != EINTR)) {
    613           PLOG(FATAL) << "futex wait failed for " << name_;
    614         }
    615       }
    616       --num_pending_writers_;
    617     }
    618   } while (!done);
    619   DCHECK_EQ(state_.LoadRelaxed(), -1);
    620 #else
    621   CHECK_MUTEX_CALL(pthread_rwlock_wrlock, (&rwlock_));
    622 #endif
    623   DCHECK_EQ(exclusive_owner_, 0U);
    624   exclusive_owner_ = SafeGetTid(self);
    625   RegisterAsLocked(self);
    626   AssertExclusiveHeld(self);
    627 }
    628 
    629 void ReaderWriterMutex::ExclusiveUnlock(Thread* self) {
    630   DCHECK(self == nullptr || self == Thread::Current());
    631   AssertExclusiveHeld(self);
    632   RegisterAsUnlocked(self);
    633   DCHECK_NE(exclusive_owner_, 0U);
    634 #if ART_USE_FUTEXES
    635   bool done = false;
    636   do {
    637     int32_t cur_state = state_.LoadRelaxed();
    638     if (LIKELY(cur_state == -1)) {
    639       // We're no longer the owner.
    640       exclusive_owner_ = 0;
    641       // Change state from -1 to 0 and impose load/store ordering appropriate for lock release.
    642       // Note, the relaxed loads below musn't reorder before the CompareExchange.
    643       // TODO: the ordering here is non-trivial as state is split across 3 fields, fix by placing
    644       // a status bit into the state on contention.
    645       done =  state_.CompareExchangeWeakSequentiallyConsistent(-1 /* cur_state*/, 0 /* new state */);
    646       if (LIKELY(done)) {  // Weak CAS may fail spuriously.
    647         // Wake any waiters.
    648         if (UNLIKELY(num_pending_readers_.LoadRelaxed() > 0 ||
    649                      num_pending_writers_.LoadRelaxed() > 0)) {
    650           futex(state_.Address(), FUTEX_WAKE, -1, nullptr, nullptr, 0);
    651         }
    652       }
    653     } else {
    654       LOG(FATAL) << "Unexpected state_:" << cur_state << " for " << name_;
    655     }
    656   } while (!done);
    657 #else
    658   exclusive_owner_ = 0;
    659   CHECK_MUTEX_CALL(pthread_rwlock_unlock, (&rwlock_));
    660 #endif
    661 }
    662 
    663 #if HAVE_TIMED_RWLOCK
    664 bool ReaderWriterMutex::ExclusiveLockWithTimeout(Thread* self, int64_t ms, int32_t ns) {
    665   DCHECK(self == nullptr || self == Thread::Current());
    666 #if ART_USE_FUTEXES
    667   bool done = false;
    668   timespec end_abs_ts;
    669   InitTimeSpec(true, CLOCK_MONOTONIC, ms, ns, &end_abs_ts);
    670   do {
    671     int32_t cur_state = state_.LoadRelaxed();
    672     if (cur_state == 0) {
    673       // Change state from 0 to -1 and impose load/store ordering appropriate for lock acquisition.
    674       done =  state_.CompareExchangeWeakAcquire(0 /* cur_state */, -1 /* new state */);
    675     } else {
    676       // Failed to acquire, hang up.
    677       timespec now_abs_ts;
    678       InitTimeSpec(true, CLOCK_MONOTONIC, 0, 0, &now_abs_ts);
    679       timespec rel_ts;
    680       if (ComputeRelativeTimeSpec(&rel_ts, end_abs_ts, now_abs_ts)) {
    681         return false;  // Timed out.
    682       }
    683       ScopedContentionRecorder scr(this, SafeGetTid(self), GetExclusiveOwnerTid());
    684       ++num_pending_writers_;
    685       if (UNLIKELY(should_respond_to_empty_checkpoint_request_)) {
    686         self->CheckEmptyCheckpointFromMutex();
    687       }
    688       if (futex(state_.Address(), FUTEX_WAIT, cur_state, &rel_ts, nullptr, 0) != 0) {
    689         if (errno == ETIMEDOUT) {
    690           --num_pending_writers_;
    691           return false;  // Timed out.
    692         } else if ((errno != EAGAIN) && (errno != EINTR)) {
    693           // EAGAIN and EINTR both indicate a spurious failure,
    694           // recompute the relative time out from now and try again.
    695           // We don't use TEMP_FAILURE_RETRY so we can recompute rel_ts;
    696           PLOG(FATAL) << "timed futex wait failed for " << name_;
    697         }
    698       }
    699       --num_pending_writers_;
    700     }
    701   } while (!done);
    702 #else
    703   timespec ts;
    704   InitTimeSpec(true, CLOCK_REALTIME, ms, ns, &ts);
    705   int result = pthread_rwlock_timedwrlock(&rwlock_, &ts);
    706   if (result == ETIMEDOUT) {
    707     return false;
    708   }
    709   if (result != 0) {
    710     errno = result;
    711     PLOG(FATAL) << "pthread_rwlock_timedwrlock failed for " << name_;
    712   }
    713 #endif
    714   exclusive_owner_ = SafeGetTid(self);
    715   RegisterAsLocked(self);
    716   AssertSharedHeld(self);
    717   return true;
    718 }
    719 #endif
    720 
    721 #if ART_USE_FUTEXES
    722 void ReaderWriterMutex::HandleSharedLockContention(Thread* self, int32_t cur_state) {
    723   // Owner holds it exclusively, hang up.
    724   ScopedContentionRecorder scr(this, GetExclusiveOwnerTid(), SafeGetTid(self));
    725   ++num_pending_readers_;
    726   if (UNLIKELY(should_respond_to_empty_checkpoint_request_)) {
    727     self->CheckEmptyCheckpointFromMutex();
    728   }
    729   if (futex(state_.Address(), FUTEX_WAIT, cur_state, nullptr, nullptr, 0) != 0) {
    730     if (errno != EAGAIN && errno != EINTR) {
    731       PLOG(FATAL) << "futex wait failed for " << name_;
    732     }
    733   }
    734   --num_pending_readers_;
    735 }
    736 #endif
    737 
    738 bool ReaderWriterMutex::SharedTryLock(Thread* self) {
    739   DCHECK(self == nullptr || self == Thread::Current());
    740 #if ART_USE_FUTEXES
    741   bool done = false;
    742   do {
    743     int32_t cur_state = state_.LoadRelaxed();
    744     if (cur_state >= 0) {
    745       // Add as an extra reader and impose load/store ordering appropriate for lock acquisition.
    746       done =  state_.CompareExchangeWeakAcquire(cur_state, cur_state + 1);
    747     } else {
    748       // Owner holds it exclusively.
    749       return false;
    750     }
    751   } while (!done);
    752 #else
    753   int result = pthread_rwlock_tryrdlock(&rwlock_);
    754   if (result == EBUSY) {
    755     return false;
    756   }
    757   if (result != 0) {
    758     errno = result;
    759     PLOG(FATAL) << "pthread_mutex_trylock failed for " << name_;
    760   }
    761 #endif
    762   RegisterAsLocked(self);
    763   AssertSharedHeld(self);
    764   return true;
    765 }
    766 
    767 bool ReaderWriterMutex::IsSharedHeld(const Thread* self) const {
    768   DCHECK(self == nullptr || self == Thread::Current());
    769   bool result;
    770   if (UNLIKELY(self == nullptr)) {  // Handle unattached threads.
    771     result = IsExclusiveHeld(self);  // TODO: a better best effort here.
    772   } else {
    773     result = (self->GetHeldMutex(level_) == this);
    774   }
    775   return result;
    776 }
    777 
    778 void ReaderWriterMutex::Dump(std::ostream& os) const {
    779   os << name_
    780       << " level=" << static_cast<int>(level_)
    781       << " owner=" << GetExclusiveOwnerTid()
    782 #if ART_USE_FUTEXES
    783       << " state=" << state_.LoadSequentiallyConsistent()
    784       << " num_pending_writers=" << num_pending_writers_.LoadSequentiallyConsistent()
    785       << " num_pending_readers=" << num_pending_readers_.LoadSequentiallyConsistent()
    786 #endif
    787       << " ";
    788   DumpContention(os);
    789 }
    790 
    791 std::ostream& operator<<(std::ostream& os, const ReaderWriterMutex& mu) {
    792   mu.Dump(os);
    793   return os;
    794 }
    795 
    796 std::ostream& operator<<(std::ostream& os, const MutatorMutex& mu) {
    797   mu.Dump(os);
    798   return os;
    799 }
    800 
    801 void ReaderWriterMutex::WakeupToRespondToEmptyCheckpoint() {
    802 #if ART_USE_FUTEXES
    803   // Wake up all the waiters so they will respond to the emtpy checkpoint.
    804   DCHECK(should_respond_to_empty_checkpoint_request_);
    805   if (UNLIKELY(num_pending_readers_.LoadRelaxed() > 0 ||
    806                num_pending_writers_.LoadRelaxed() > 0)) {
    807     futex(state_.Address(), FUTEX_WAKE, -1, nullptr, nullptr, 0);
    808   }
    809 #else
    810   LOG(FATAL) << "Non futex case isn't supported.";
    811 #endif
    812 }
    813 
    814 ConditionVariable::ConditionVariable(const char* name, Mutex& guard)
    815     : name_(name), guard_(guard) {
    816 #if ART_USE_FUTEXES
    817   DCHECK_EQ(0, sequence_.LoadRelaxed());
    818   num_waiters_ = 0;
    819 #else
    820   pthread_condattr_t cond_attrs;
    821   CHECK_MUTEX_CALL(pthread_condattr_init, (&cond_attrs));
    822 #if !defined(__APPLE__)
    823   // Apple doesn't have CLOCK_MONOTONIC or pthread_condattr_setclock.
    824   CHECK_MUTEX_CALL(pthread_condattr_setclock, (&cond_attrs, CLOCK_MONOTONIC));
    825 #endif
    826   CHECK_MUTEX_CALL(pthread_cond_init, (&cond_, &cond_attrs));
    827 #endif
    828 }
    829 
    830 ConditionVariable::~ConditionVariable() {
    831 #if ART_USE_FUTEXES
    832   if (num_waiters_!= 0) {
    833     bool is_safe_to_call_abort = IsSafeToCallAbortSafe();
    834     LOG(is_safe_to_call_abort ? FATAL : WARNING)
    835         << "ConditionVariable::~ConditionVariable for " << name_
    836         << " called with " << num_waiters_ << " waiters.";
    837   }
    838 #else
    839   // We can't use CHECK_MUTEX_CALL here because on shutdown a suspended daemon thread
    840   // may still be using condition variables.
    841   int rc = pthread_cond_destroy(&cond_);
    842   if (rc != 0) {
    843     errno = rc;
    844     bool is_safe_to_call_abort = IsSafeToCallAbortSafe();
    845     PLOG(is_safe_to_call_abort ? FATAL : WARNING) << "pthread_cond_destroy failed for " << name_;
    846   }
    847 #endif
    848 }
    849 
    850 void ConditionVariable::Broadcast(Thread* self) {
    851   DCHECK(self == nullptr || self == Thread::Current());
    852   // TODO: enable below, there's a race in thread creation that causes false failures currently.
    853   // guard_.AssertExclusiveHeld(self);
    854   DCHECK_EQ(guard_.GetExclusiveOwnerTid(), SafeGetTid(self));
    855 #if ART_USE_FUTEXES
    856   if (num_waiters_ > 0) {
    857     sequence_++;  // Indicate the broadcast occurred.
    858     bool done = false;
    859     do {
    860       int32_t cur_sequence = sequence_.LoadRelaxed();
    861       // Requeue waiters onto mutex. The waiter holds the contender count on the mutex high ensuring
    862       // mutex unlocks will awaken the requeued waiter thread.
    863       done = futex(sequence_.Address(), FUTEX_CMP_REQUEUE, 0,
    864                    reinterpret_cast<const timespec*>(std::numeric_limits<int32_t>::max()),
    865                    guard_.state_.Address(), cur_sequence) != -1;
    866       if (!done) {
    867         if (errno != EAGAIN && errno != EINTR) {
    868           PLOG(FATAL) << "futex cmp requeue failed for " << name_;
    869         }
    870       }
    871     } while (!done);
    872   }
    873 #else
    874   CHECK_MUTEX_CALL(pthread_cond_broadcast, (&cond_));
    875 #endif
    876 }
    877 
    878 void ConditionVariable::Signal(Thread* self) {
    879   DCHECK(self == nullptr || self == Thread::Current());
    880   guard_.AssertExclusiveHeld(self);
    881 #if ART_USE_FUTEXES
    882   if (num_waiters_ > 0) {
    883     sequence_++;  // Indicate a signal occurred.
    884     // Futex wake 1 waiter who will then come and in contend on mutex. It'd be nice to requeue them
    885     // to avoid this, however, requeueing can only move all waiters.
    886     int num_woken = futex(sequence_.Address(), FUTEX_WAKE, 1, nullptr, nullptr, 0);
    887     // Check something was woken or else we changed sequence_ before they had chance to wait.
    888     CHECK((num_woken == 0) || (num_woken == 1));
    889   }
    890 #else
    891   CHECK_MUTEX_CALL(pthread_cond_signal, (&cond_));
    892 #endif
    893 }
    894 
    895 void ConditionVariable::Wait(Thread* self) {
    896   guard_.CheckSafeToWait(self);
    897   WaitHoldingLocks(self);
    898 }
    899 
    900 void ConditionVariable::WaitHoldingLocks(Thread* self) {
    901   DCHECK(self == nullptr || self == Thread::Current());
    902   guard_.AssertExclusiveHeld(self);
    903   unsigned int old_recursion_count = guard_.recursion_count_;
    904 #if ART_USE_FUTEXES
    905   num_waiters_++;
    906   // Ensure the Mutex is contended so that requeued threads are awoken.
    907   guard_.num_contenders_++;
    908   guard_.recursion_count_ = 1;
    909   int32_t cur_sequence = sequence_.LoadRelaxed();
    910   guard_.ExclusiveUnlock(self);
    911   if (futex(sequence_.Address(), FUTEX_WAIT, cur_sequence, nullptr, nullptr, 0) != 0) {
    912     // Futex failed, check it is an expected error.
    913     // EAGAIN == EWOULDBLK, so we let the caller try again.
    914     // EINTR implies a signal was sent to this thread.
    915     if ((errno != EINTR) && (errno != EAGAIN)) {
    916       PLOG(FATAL) << "futex wait failed for " << name_;
    917     }
    918   }
    919   if (self != nullptr) {
    920     JNIEnvExt* const env = self->GetJniEnv();
    921     if (UNLIKELY(env != nullptr && env->runtime_deleted)) {
    922       CHECK(self->IsDaemon());
    923       // If the runtime has been deleted, then we cannot proceed. Just sleep forever. This may
    924       // occur for user daemon threads that get a spurious wakeup. This occurs for test 132 with
    925       // --host and --gdb.
    926       // After we wake up, the runtime may have been shutdown, which means that this condition may
    927       // have been deleted. It is not safe to retry the wait.
    928       SleepForever();
    929     }
    930   }
    931   guard_.ExclusiveLock(self);
    932   CHECK_GE(num_waiters_, 0);
    933   num_waiters_--;
    934   // We awoke and so no longer require awakes from the guard_'s unlock.
    935   CHECK_GE(guard_.num_contenders_.LoadRelaxed(), 0);
    936   guard_.num_contenders_--;
    937 #else
    938   uint64_t old_owner = guard_.exclusive_owner_;
    939   guard_.exclusive_owner_ = 0;
    940   guard_.recursion_count_ = 0;
    941   CHECK_MUTEX_CALL(pthread_cond_wait, (&cond_, &guard_.mutex_));
    942   guard_.exclusive_owner_ = old_owner;
    943 #endif
    944   guard_.recursion_count_ = old_recursion_count;
    945 }
    946 
    947 bool ConditionVariable::TimedWait(Thread* self, int64_t ms, int32_t ns) {
    948   DCHECK(self == nullptr || self == Thread::Current());
    949   bool timed_out = false;
    950   guard_.AssertExclusiveHeld(self);
    951   guard_.CheckSafeToWait(self);
    952   unsigned int old_recursion_count = guard_.recursion_count_;
    953 #if ART_USE_FUTEXES
    954   timespec rel_ts;
    955   InitTimeSpec(false, CLOCK_REALTIME, ms, ns, &rel_ts);
    956   num_waiters_++;
    957   // Ensure the Mutex is contended so that requeued threads are awoken.
    958   guard_.num_contenders_++;
    959   guard_.recursion_count_ = 1;
    960   int32_t cur_sequence = sequence_.LoadRelaxed();
    961   guard_.ExclusiveUnlock(self);
    962   if (futex(sequence_.Address(), FUTEX_WAIT, cur_sequence, &rel_ts, nullptr, 0) != 0) {
    963     if (errno == ETIMEDOUT) {
    964       // Timed out we're done.
    965       timed_out = true;
    966     } else if ((errno == EAGAIN) || (errno == EINTR)) {
    967       // A signal or ConditionVariable::Signal/Broadcast has come in.
    968     } else {
    969       PLOG(FATAL) << "timed futex wait failed for " << name_;
    970     }
    971   }
    972   guard_.ExclusiveLock(self);
    973   CHECK_GE(num_waiters_, 0);
    974   num_waiters_--;
    975   // We awoke and so no longer require awakes from the guard_'s unlock.
    976   CHECK_GE(guard_.num_contenders_.LoadRelaxed(), 0);
    977   guard_.num_contenders_--;
    978 #else
    979 #if !defined(__APPLE__)
    980   int clock = CLOCK_MONOTONIC;
    981 #else
    982   int clock = CLOCK_REALTIME;
    983 #endif
    984   uint64_t old_owner = guard_.exclusive_owner_;
    985   guard_.exclusive_owner_ = 0;
    986   guard_.recursion_count_ = 0;
    987   timespec ts;
    988   InitTimeSpec(true, clock, ms, ns, &ts);
    989   int rc = TEMP_FAILURE_RETRY(pthread_cond_timedwait(&cond_, &guard_.mutex_, &ts));
    990   if (rc == ETIMEDOUT) {
    991     timed_out = true;
    992   } else if (rc != 0) {
    993     errno = rc;
    994     PLOG(FATAL) << "TimedWait failed for " << name_;
    995   }
    996   guard_.exclusive_owner_ = old_owner;
    997 #endif
    998   guard_.recursion_count_ = old_recursion_count;
    999   return timed_out;
   1000 }
   1001 
   1002 void Locks::Init() {
   1003   if (logging_lock_ != nullptr) {
   1004     // Already initialized.
   1005     if (kRuntimeISA == kX86 || kRuntimeISA == kX86_64) {
   1006       DCHECK(modify_ldt_lock_ != nullptr);
   1007     } else {
   1008       DCHECK(modify_ldt_lock_ == nullptr);
   1009     }
   1010     DCHECK(abort_lock_ != nullptr);
   1011     DCHECK(alloc_tracker_lock_ != nullptr);
   1012     DCHECK(allocated_monitor_ids_lock_ != nullptr);
   1013     DCHECK(allocated_thread_ids_lock_ != nullptr);
   1014     DCHECK(breakpoint_lock_ != nullptr);
   1015     DCHECK(classlinker_classes_lock_ != nullptr);
   1016     DCHECK(deoptimization_lock_ != nullptr);
   1017     DCHECK(heap_bitmap_lock_ != nullptr);
   1018     DCHECK(oat_file_manager_lock_ != nullptr);
   1019     DCHECK(verifier_deps_lock_ != nullptr);
   1020     DCHECK(host_dlopen_handles_lock_ != nullptr);
   1021     DCHECK(intern_table_lock_ != nullptr);
   1022     DCHECK(jni_function_table_lock_ != nullptr);
   1023     DCHECK(jni_libraries_lock_ != nullptr);
   1024     DCHECK(logging_lock_ != nullptr);
   1025     DCHECK(mutator_lock_ != nullptr);
   1026     DCHECK(profiler_lock_ != nullptr);
   1027     DCHECK(cha_lock_ != nullptr);
   1028     DCHECK(thread_list_lock_ != nullptr);
   1029     DCHECK(thread_suspend_count_lock_ != nullptr);
   1030     DCHECK(trace_lock_ != nullptr);
   1031     DCHECK(unexpected_signal_lock_ != nullptr);
   1032     DCHECK(dex_lock_ != nullptr);
   1033   } else {
   1034     // Create global locks in level order from highest lock level to lowest.
   1035     LockLevel current_lock_level = kInstrumentEntrypointsLock;
   1036     DCHECK(instrument_entrypoints_lock_ == nullptr);
   1037     instrument_entrypoints_lock_ = new Mutex("instrument entrypoint lock", current_lock_level);
   1038 
   1039     #define UPDATE_CURRENT_LOCK_LEVEL(new_level) \
   1040       if ((new_level) >= current_lock_level) { \
   1041         /* Do not use CHECKs or FATAL here, abort_lock_ is not setup yet. */ \
   1042         fprintf(stderr, "New local level %d is not less than current level %d\n", \
   1043                 new_level, current_lock_level); \
   1044         exit(1); \
   1045       } \
   1046       current_lock_level = new_level;
   1047 
   1048     UPDATE_CURRENT_LOCK_LEVEL(kMutatorLock);
   1049     DCHECK(mutator_lock_ == nullptr);
   1050     mutator_lock_ = new MutatorMutex("mutator lock", current_lock_level);
   1051 
   1052     UPDATE_CURRENT_LOCK_LEVEL(kHeapBitmapLock);
   1053     DCHECK(heap_bitmap_lock_ == nullptr);
   1054     heap_bitmap_lock_ = new ReaderWriterMutex("heap bitmap lock", current_lock_level);
   1055 
   1056     UPDATE_CURRENT_LOCK_LEVEL(kTraceLock);
   1057     DCHECK(trace_lock_ == nullptr);
   1058     trace_lock_ = new Mutex("trace lock", current_lock_level);
   1059 
   1060     UPDATE_CURRENT_LOCK_LEVEL(kRuntimeShutdownLock);
   1061     DCHECK(runtime_shutdown_lock_ == nullptr);
   1062     runtime_shutdown_lock_ = new Mutex("runtime shutdown lock", current_lock_level);
   1063 
   1064     UPDATE_CURRENT_LOCK_LEVEL(kProfilerLock);
   1065     DCHECK(profiler_lock_ == nullptr);
   1066     profiler_lock_ = new Mutex("profiler lock", current_lock_level);
   1067 
   1068     UPDATE_CURRENT_LOCK_LEVEL(kDeoptimizationLock);
   1069     DCHECK(deoptimization_lock_ == nullptr);
   1070     deoptimization_lock_ = new Mutex("Deoptimization lock", current_lock_level);
   1071 
   1072     UPDATE_CURRENT_LOCK_LEVEL(kAllocTrackerLock);
   1073     DCHECK(alloc_tracker_lock_ == nullptr);
   1074     alloc_tracker_lock_ = new Mutex("AllocTracker lock", current_lock_level);
   1075 
   1076     UPDATE_CURRENT_LOCK_LEVEL(kThreadListLock);
   1077     DCHECK(thread_list_lock_ == nullptr);
   1078     thread_list_lock_ = new Mutex("thread list lock", current_lock_level);
   1079 
   1080     UPDATE_CURRENT_LOCK_LEVEL(kJniLoadLibraryLock);
   1081     DCHECK(jni_libraries_lock_ == nullptr);
   1082     jni_libraries_lock_ = new Mutex("JNI shared libraries map lock", current_lock_level);
   1083 
   1084     UPDATE_CURRENT_LOCK_LEVEL(kBreakpointLock);
   1085     DCHECK(breakpoint_lock_ == nullptr);
   1086     breakpoint_lock_ = new ReaderWriterMutex("breakpoint lock", current_lock_level);
   1087 
   1088     UPDATE_CURRENT_LOCK_LEVEL(kCHALock);
   1089     DCHECK(cha_lock_ == nullptr);
   1090     cha_lock_ = new Mutex("CHA lock", current_lock_level);
   1091 
   1092     UPDATE_CURRENT_LOCK_LEVEL(kClassLinkerClassesLock);
   1093     DCHECK(classlinker_classes_lock_ == nullptr);
   1094     classlinker_classes_lock_ = new ReaderWriterMutex("ClassLinker classes lock",
   1095                                                       current_lock_level);
   1096 
   1097     UPDATE_CURRENT_LOCK_LEVEL(kMonitorPoolLock);
   1098     DCHECK(allocated_monitor_ids_lock_ == nullptr);
   1099     allocated_monitor_ids_lock_ =  new Mutex("allocated monitor ids lock", current_lock_level);
   1100 
   1101     UPDATE_CURRENT_LOCK_LEVEL(kAllocatedThreadIdsLock);
   1102     DCHECK(allocated_thread_ids_lock_ == nullptr);
   1103     allocated_thread_ids_lock_ =  new Mutex("allocated thread ids lock", current_lock_level);
   1104 
   1105     if (kRuntimeISA == kX86 || kRuntimeISA == kX86_64) {
   1106       UPDATE_CURRENT_LOCK_LEVEL(kModifyLdtLock);
   1107       DCHECK(modify_ldt_lock_ == nullptr);
   1108       modify_ldt_lock_ = new Mutex("modify_ldt lock", current_lock_level);
   1109     }
   1110 
   1111     UPDATE_CURRENT_LOCK_LEVEL(kDexLock);
   1112     DCHECK(dex_lock_ == nullptr);
   1113     dex_lock_ = new ReaderWriterMutex("ClassLinker dex lock", current_lock_level);
   1114 
   1115     UPDATE_CURRENT_LOCK_LEVEL(kOatFileManagerLock);
   1116     DCHECK(oat_file_manager_lock_ == nullptr);
   1117     oat_file_manager_lock_ = new ReaderWriterMutex("OatFile manager lock", current_lock_level);
   1118 
   1119     UPDATE_CURRENT_LOCK_LEVEL(kVerifierDepsLock);
   1120     DCHECK(verifier_deps_lock_ == nullptr);
   1121     verifier_deps_lock_ = new ReaderWriterMutex("verifier deps lock", current_lock_level);
   1122 
   1123     UPDATE_CURRENT_LOCK_LEVEL(kHostDlOpenHandlesLock);
   1124     DCHECK(host_dlopen_handles_lock_ == nullptr);
   1125     host_dlopen_handles_lock_ = new Mutex("host dlopen handles lock", current_lock_level);
   1126 
   1127     UPDATE_CURRENT_LOCK_LEVEL(kInternTableLock);
   1128     DCHECK(intern_table_lock_ == nullptr);
   1129     intern_table_lock_ = new Mutex("InternTable lock", current_lock_level);
   1130 
   1131     UPDATE_CURRENT_LOCK_LEVEL(kReferenceProcessorLock);
   1132     DCHECK(reference_processor_lock_ == nullptr);
   1133     reference_processor_lock_ = new Mutex("ReferenceProcessor lock", current_lock_level);
   1134 
   1135     UPDATE_CURRENT_LOCK_LEVEL(kReferenceQueueClearedReferencesLock);
   1136     DCHECK(reference_queue_cleared_references_lock_ == nullptr);
   1137     reference_queue_cleared_references_lock_ = new Mutex("ReferenceQueue cleared references lock", current_lock_level);
   1138 
   1139     UPDATE_CURRENT_LOCK_LEVEL(kReferenceQueueWeakReferencesLock);
   1140     DCHECK(reference_queue_weak_references_lock_ == nullptr);
   1141     reference_queue_weak_references_lock_ = new Mutex("ReferenceQueue cleared references lock", current_lock_level);
   1142 
   1143     UPDATE_CURRENT_LOCK_LEVEL(kReferenceQueueFinalizerReferencesLock);
   1144     DCHECK(reference_queue_finalizer_references_lock_ == nullptr);
   1145     reference_queue_finalizer_references_lock_ = new Mutex("ReferenceQueue finalizer references lock", current_lock_level);
   1146 
   1147     UPDATE_CURRENT_LOCK_LEVEL(kReferenceQueuePhantomReferencesLock);
   1148     DCHECK(reference_queue_phantom_references_lock_ == nullptr);
   1149     reference_queue_phantom_references_lock_ = new Mutex("ReferenceQueue phantom references lock", current_lock_level);
   1150 
   1151     UPDATE_CURRENT_LOCK_LEVEL(kReferenceQueueSoftReferencesLock);
   1152     DCHECK(reference_queue_soft_references_lock_ == nullptr);
   1153     reference_queue_soft_references_lock_ = new Mutex("ReferenceQueue soft references lock", current_lock_level);
   1154 
   1155     UPDATE_CURRENT_LOCK_LEVEL(kJniGlobalsLock);
   1156     DCHECK(jni_globals_lock_ == nullptr);
   1157     jni_globals_lock_ =
   1158         new ReaderWriterMutex("JNI global reference table lock", current_lock_level);
   1159 
   1160     UPDATE_CURRENT_LOCK_LEVEL(kJniWeakGlobalsLock);
   1161     DCHECK(jni_weak_globals_lock_ == nullptr);
   1162     jni_weak_globals_lock_ = new Mutex("JNI weak global reference table lock", current_lock_level);
   1163 
   1164     UPDATE_CURRENT_LOCK_LEVEL(kJniFunctionTableLock);
   1165     DCHECK(jni_function_table_lock_ == nullptr);
   1166     jni_function_table_lock_ = new Mutex("JNI function table lock", current_lock_level);
   1167 
   1168     UPDATE_CURRENT_LOCK_LEVEL(kAbortLock);
   1169     DCHECK(abort_lock_ == nullptr);
   1170     abort_lock_ = new Mutex("abort lock", current_lock_level, true);
   1171 
   1172     UPDATE_CURRENT_LOCK_LEVEL(kThreadSuspendCountLock);
   1173     DCHECK(thread_suspend_count_lock_ == nullptr);
   1174     thread_suspend_count_lock_ = new Mutex("thread suspend count lock", current_lock_level);
   1175 
   1176     UPDATE_CURRENT_LOCK_LEVEL(kUnexpectedSignalLock);
   1177     DCHECK(unexpected_signal_lock_ == nullptr);
   1178     unexpected_signal_lock_ = new Mutex("unexpected signal lock", current_lock_level, true);
   1179 
   1180     UPDATE_CURRENT_LOCK_LEVEL(kLoggingLock);
   1181     DCHECK(logging_lock_ == nullptr);
   1182     logging_lock_ = new Mutex("logging lock", current_lock_level, true);
   1183 
   1184     #undef UPDATE_CURRENT_LOCK_LEVEL
   1185 
   1186     // List of mutexes that we may hold when accessing a weak ref.
   1187     AddToExpectedMutexesOnWeakRefAccess(dex_lock_, /*need_lock*/ false);
   1188     AddToExpectedMutexesOnWeakRefAccess(classlinker_classes_lock_, /*need_lock*/ false);
   1189     AddToExpectedMutexesOnWeakRefAccess(jni_libraries_lock_, /*need_lock*/ false);
   1190 
   1191     InitConditions();
   1192   }
   1193 }
   1194 
   1195 void Locks::InitConditions() {
   1196   thread_exit_cond_ = new ConditionVariable("thread exit condition variable", *thread_list_lock_);
   1197 }
   1198 
   1199 void Locks::SetClientCallback(ClientCallback* safe_to_call_abort_cb) {
   1200   safe_to_call_abort_callback.StoreRelease(safe_to_call_abort_cb);
   1201 }
   1202 
   1203 // Helper to allow checking shutdown while ignoring locking requirements.
   1204 bool Locks::IsSafeToCallAbortRacy() {
   1205   Locks::ClientCallback* safe_to_call_abort_cb = safe_to_call_abort_callback.LoadAcquire();
   1206   return safe_to_call_abort_cb != nullptr && safe_to_call_abort_cb();
   1207 }
   1208 
   1209 void Locks::AddToExpectedMutexesOnWeakRefAccess(BaseMutex* mutex, bool need_lock) {
   1210   if (need_lock) {
   1211     ScopedExpectedMutexesOnWeakRefAccessLock mu(mutex);
   1212     mutex->SetShouldRespondToEmptyCheckpointRequest(true);
   1213     expected_mutexes_on_weak_ref_access_.push_back(mutex);
   1214   } else {
   1215     mutex->SetShouldRespondToEmptyCheckpointRequest(true);
   1216     expected_mutexes_on_weak_ref_access_.push_back(mutex);
   1217   }
   1218 }
   1219 
   1220 void Locks::RemoveFromExpectedMutexesOnWeakRefAccess(BaseMutex* mutex, bool need_lock) {
   1221   if (need_lock) {
   1222     ScopedExpectedMutexesOnWeakRefAccessLock mu(mutex);
   1223     mutex->SetShouldRespondToEmptyCheckpointRequest(false);
   1224     std::vector<BaseMutex*>& list = expected_mutexes_on_weak_ref_access_;
   1225     auto it = std::find(list.begin(), list.end(), mutex);
   1226     DCHECK(it != list.end());
   1227     list.erase(it);
   1228   } else {
   1229     mutex->SetShouldRespondToEmptyCheckpointRequest(false);
   1230     std::vector<BaseMutex*>& list = expected_mutexes_on_weak_ref_access_;
   1231     auto it = std::find(list.begin(), list.end(), mutex);
   1232     DCHECK(it != list.end());
   1233     list.erase(it);
   1234   }
   1235 }
   1236 
   1237 bool Locks::IsExpectedOnWeakRefAccess(BaseMutex* mutex) {
   1238   ScopedExpectedMutexesOnWeakRefAccessLock mu(mutex);
   1239   std::vector<BaseMutex*>& list = expected_mutexes_on_weak_ref_access_;
   1240   return std::find(list.begin(), list.end(), mutex) != list.end();
   1241 }
   1242 
   1243 }  // namespace art
   1244