1 /* 2 * Copyright (C) 2007 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 // #define LOG_NDEBUG 0 18 #define LOG_TAG "libutils.threads" 19 20 #include <assert.h> 21 #include <utils/Thread.h> 22 #include <utils/AndroidThreads.h> 23 24 #if !defined(_WIN32) 25 # include <sys/resource.h> 26 #else 27 # include <windows.h> 28 # include <stdint.h> 29 # include <process.h> 30 # define HAVE_CREATETHREAD // Cygwin, vs. HAVE__BEGINTHREADEX for MinGW 31 #endif 32 33 #if defined(__linux__) 34 #include <sys/prctl.h> 35 #endif 36 37 #include <utils/Log.h> 38 39 #include <cutils/sched_policy.h> 40 41 #if defined(__ANDROID__) 42 # define __android_unused 43 #else 44 # define __android_unused __attribute__((__unused__)) 45 #endif 46 47 /* 48 * =========================================================================== 49 * Thread wrappers 50 * =========================================================================== 51 */ 52 53 using namespace android; 54 55 // ---------------------------------------------------------------------------- 56 #if !defined(_WIN32) 57 // ---------------------------------------------------------------------------- 58 59 /* 60 * Create and run a new thread. 61 * 62 * We create it "detached", so it cleans up after itself. 63 */ 64 65 typedef void* (*android_pthread_entry)(void*); 66 67 struct thread_data_t { 68 thread_func_t entryFunction; 69 void* userData; 70 int priority; 71 char * threadName; 72 73 // we use this trampoline when we need to set the priority with 74 // nice/setpriority, and name with prctl. 75 static int trampoline(const thread_data_t* t) { 76 thread_func_t f = t->entryFunction; 77 void* u = t->userData; 78 int prio = t->priority; 79 char * name = t->threadName; 80 delete t; 81 setpriority(PRIO_PROCESS, 0, prio); 82 if (prio >= ANDROID_PRIORITY_BACKGROUND) { 83 set_sched_policy(0, SP_BACKGROUND); 84 } else { 85 set_sched_policy(0, SP_FOREGROUND); 86 } 87 88 if (name) { 89 androidSetThreadName(name); 90 free(name); 91 } 92 return f(u); 93 } 94 }; 95 96 void androidSetThreadName(const char* name) { 97 #if defined(__linux__) 98 // Mac OS doesn't have this, and we build libutil for the host too 99 int hasAt = 0; 100 int hasDot = 0; 101 const char *s = name; 102 while (*s) { 103 if (*s == '.') hasDot = 1; 104 else if (*s == '@') hasAt = 1; 105 s++; 106 } 107 int len = s - name; 108 if (len < 15 || hasAt || !hasDot) { 109 s = name; 110 } else { 111 s = name + len - 15; 112 } 113 prctl(PR_SET_NAME, (unsigned long) s, 0, 0, 0); 114 #endif 115 } 116 117 int androidCreateRawThreadEtc(android_thread_func_t entryFunction, 118 void *userData, 119 const char* threadName __android_unused, 120 int32_t threadPriority, 121 size_t threadStackSize, 122 android_thread_id_t *threadId) 123 { 124 pthread_attr_t attr; 125 pthread_attr_init(&attr); 126 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); 127 128 #if defined(__ANDROID__) /* valgrind is rejecting RT-priority create reqs */ 129 if (threadPriority != PRIORITY_DEFAULT || threadName != NULL) { 130 // Now that the pthread_t has a method to find the associated 131 // android_thread_id_t (pid) from pthread_t, it would be possible to avoid 132 // this trampoline in some cases as the parent could set the properties 133 // for the child. However, there would be a race condition because the 134 // child becomes ready immediately, and it doesn't work for the name. 135 // prctl(PR_SET_NAME) only works for self; prctl(PR_SET_THREAD_NAME) was 136 // proposed but not yet accepted. 137 thread_data_t* t = new thread_data_t; 138 t->priority = threadPriority; 139 t->threadName = threadName ? strdup(threadName) : NULL; 140 t->entryFunction = entryFunction; 141 t->userData = userData; 142 entryFunction = (android_thread_func_t)&thread_data_t::trampoline; 143 userData = t; 144 } 145 #endif 146 147 if (threadStackSize) { 148 pthread_attr_setstacksize(&attr, threadStackSize); 149 } 150 151 errno = 0; 152 pthread_t thread; 153 int result = pthread_create(&thread, &attr, 154 (android_pthread_entry)entryFunction, userData); 155 pthread_attr_destroy(&attr); 156 if (result != 0) { 157 ALOGE("androidCreateRawThreadEtc failed (entry=%p, res=%d, %s)\n" 158 "(android threadPriority=%d)", 159 entryFunction, result, strerror(errno), threadPriority); 160 return 0; 161 } 162 163 // Note that *threadID is directly available to the parent only, as it is 164 // assigned after the child starts. Use memory barrier / lock if the child 165 // or other threads also need access. 166 if (threadId != NULL) { 167 *threadId = (android_thread_id_t)thread; // XXX: this is not portable 168 } 169 return 1; 170 } 171 172 #if defined(__ANDROID__) 173 static pthread_t android_thread_id_t_to_pthread(android_thread_id_t thread) 174 { 175 return (pthread_t) thread; 176 } 177 #endif 178 179 android_thread_id_t androidGetThreadId() 180 { 181 return (android_thread_id_t)pthread_self(); 182 } 183 184 // ---------------------------------------------------------------------------- 185 #else // !defined(_WIN32) 186 // ---------------------------------------------------------------------------- 187 188 /* 189 * Trampoline to make us __stdcall-compliant. 190 * 191 * We're expected to delete "vDetails" when we're done. 192 */ 193 struct threadDetails { 194 int (*func)(void*); 195 void* arg; 196 }; 197 static __stdcall unsigned int threadIntermediary(void* vDetails) 198 { 199 struct threadDetails* pDetails = (struct threadDetails*) vDetails; 200 int result; 201 202 result = (*(pDetails->func))(pDetails->arg); 203 204 delete pDetails; 205 206 ALOG(LOG_VERBOSE, "thread", "thread exiting\n"); 207 return (unsigned int) result; 208 } 209 210 /* 211 * Create and run a new thread. 212 */ 213 static bool doCreateThread(android_thread_func_t fn, void* arg, android_thread_id_t *id) 214 { 215 HANDLE hThread; 216 struct threadDetails* pDetails = new threadDetails; // must be on heap 217 unsigned int thrdaddr; 218 219 pDetails->func = fn; 220 pDetails->arg = arg; 221 222 #if defined(HAVE__BEGINTHREADEX) 223 hThread = (HANDLE) _beginthreadex(NULL, 0, threadIntermediary, pDetails, 0, 224 &thrdaddr); 225 if (hThread == 0) 226 #elif defined(HAVE_CREATETHREAD) 227 hThread = CreateThread(NULL, 0, 228 (LPTHREAD_START_ROUTINE) threadIntermediary, 229 (void*) pDetails, 0, (DWORD*) &thrdaddr); 230 if (hThread == NULL) 231 #endif 232 { 233 ALOG(LOG_WARN, "thread", "WARNING: thread create failed\n"); 234 return false; 235 } 236 237 #if defined(HAVE_CREATETHREAD) 238 /* close the management handle */ 239 CloseHandle(hThread); 240 #endif 241 242 if (id != NULL) { 243 *id = (android_thread_id_t)thrdaddr; 244 } 245 246 return true; 247 } 248 249 int androidCreateRawThreadEtc(android_thread_func_t fn, 250 void *userData, 251 const char* /*threadName*/, 252 int32_t /*threadPriority*/, 253 size_t /*threadStackSize*/, 254 android_thread_id_t *threadId) 255 { 256 return doCreateThread( fn, userData, threadId); 257 } 258 259 android_thread_id_t androidGetThreadId() 260 { 261 return (android_thread_id_t)GetCurrentThreadId(); 262 } 263 264 // ---------------------------------------------------------------------------- 265 #endif // !defined(_WIN32) 266 267 // ---------------------------------------------------------------------------- 268 269 int androidCreateThread(android_thread_func_t fn, void* arg) 270 { 271 return createThreadEtc(fn, arg); 272 } 273 274 int androidCreateThreadGetID(android_thread_func_t fn, void *arg, android_thread_id_t *id) 275 { 276 return createThreadEtc(fn, arg, "android:unnamed_thread", 277 PRIORITY_DEFAULT, 0, id); 278 } 279 280 static android_create_thread_fn gCreateThreadFn = androidCreateRawThreadEtc; 281 282 int androidCreateThreadEtc(android_thread_func_t entryFunction, 283 void *userData, 284 const char* threadName, 285 int32_t threadPriority, 286 size_t threadStackSize, 287 android_thread_id_t *threadId) 288 { 289 return gCreateThreadFn(entryFunction, userData, threadName, 290 threadPriority, threadStackSize, threadId); 291 } 292 293 void androidSetCreateThreadFunc(android_create_thread_fn func) 294 { 295 gCreateThreadFn = func; 296 } 297 298 #if defined(__ANDROID__) 299 int androidSetThreadPriority(pid_t tid, int pri) 300 { 301 int rc = 0; 302 int lasterr = 0; 303 304 if (pri >= ANDROID_PRIORITY_BACKGROUND) { 305 rc = set_sched_policy(tid, SP_BACKGROUND); 306 } else if (getpriority(PRIO_PROCESS, tid) >= ANDROID_PRIORITY_BACKGROUND) { 307 rc = set_sched_policy(tid, SP_FOREGROUND); 308 } 309 310 if (rc) { 311 lasterr = errno; 312 } 313 314 if (setpriority(PRIO_PROCESS, tid, pri) < 0) { 315 rc = INVALID_OPERATION; 316 } else { 317 errno = lasterr; 318 } 319 320 return rc; 321 } 322 323 int androidGetThreadPriority(pid_t tid) { 324 return getpriority(PRIO_PROCESS, tid); 325 } 326 327 #endif 328 329 namespace android { 330 331 /* 332 * =========================================================================== 333 * Mutex class 334 * =========================================================================== 335 */ 336 337 #if !defined(_WIN32) 338 // implemented as inlines in threads.h 339 #else 340 341 Mutex::Mutex() 342 { 343 HANDLE hMutex; 344 345 assert(sizeof(hMutex) == sizeof(mState)); 346 347 hMutex = CreateMutex(NULL, FALSE, NULL); 348 mState = (void*) hMutex; 349 } 350 351 Mutex::Mutex(const char* name) 352 { 353 // XXX: name not used for now 354 HANDLE hMutex; 355 356 assert(sizeof(hMutex) == sizeof(mState)); 357 358 hMutex = CreateMutex(NULL, FALSE, NULL); 359 mState = (void*) hMutex; 360 } 361 362 Mutex::Mutex(int type, const char* name) 363 { 364 // XXX: type and name not used for now 365 HANDLE hMutex; 366 367 assert(sizeof(hMutex) == sizeof(mState)); 368 369 hMutex = CreateMutex(NULL, FALSE, NULL); 370 mState = (void*) hMutex; 371 } 372 373 Mutex::~Mutex() 374 { 375 CloseHandle((HANDLE) mState); 376 } 377 378 status_t Mutex::lock() 379 { 380 DWORD dwWaitResult; 381 dwWaitResult = WaitForSingleObject((HANDLE) mState, INFINITE); 382 return dwWaitResult != WAIT_OBJECT_0 ? -1 : NO_ERROR; 383 } 384 385 void Mutex::unlock() 386 { 387 if (!ReleaseMutex((HANDLE) mState)) 388 ALOG(LOG_WARN, "thread", "WARNING: bad result from unlocking mutex\n"); 389 } 390 391 status_t Mutex::tryLock() 392 { 393 DWORD dwWaitResult; 394 395 dwWaitResult = WaitForSingleObject((HANDLE) mState, 0); 396 if (dwWaitResult != WAIT_OBJECT_0 && dwWaitResult != WAIT_TIMEOUT) 397 ALOG(LOG_WARN, "thread", "WARNING: bad result from try-locking mutex\n"); 398 return (dwWaitResult == WAIT_OBJECT_0) ? 0 : -1; 399 } 400 401 #endif // !defined(_WIN32) 402 403 404 /* 405 * =========================================================================== 406 * Condition class 407 * =========================================================================== 408 */ 409 410 #if !defined(_WIN32) 411 // implemented as inlines in threads.h 412 #else 413 414 /* 415 * Windows doesn't have a condition variable solution. It's possible 416 * to create one, but it's easy to get it wrong. For a discussion, and 417 * the origin of this implementation, see: 418 * 419 * http://www.cs.wustl.edu/~schmidt/win32-cv-1.html 420 * 421 * The implementation shown on the page does NOT follow POSIX semantics. 422 * As an optimization they require acquiring the external mutex before 423 * calling signal() and broadcast(), whereas POSIX only requires grabbing 424 * it before calling wait(). The implementation here has been un-optimized 425 * to have the correct behavior. 426 */ 427 typedef struct WinCondition { 428 // Number of waiting threads. 429 int waitersCount; 430 431 // Serialize access to waitersCount. 432 CRITICAL_SECTION waitersCountLock; 433 434 // Semaphore used to queue up threads waiting for the condition to 435 // become signaled. 436 HANDLE sema; 437 438 // An auto-reset event used by the broadcast/signal thread to wait 439 // for all the waiting thread(s) to wake up and be released from 440 // the semaphore. 441 HANDLE waitersDone; 442 443 // This mutex wouldn't be necessary if we required that the caller 444 // lock the external mutex before calling signal() and broadcast(). 445 // I'm trying to mimic pthread semantics though. 446 HANDLE internalMutex; 447 448 // Keeps track of whether we were broadcasting or signaling. This 449 // allows us to optimize the code if we're just signaling. 450 bool wasBroadcast; 451 452 status_t wait(WinCondition* condState, HANDLE hMutex, nsecs_t* abstime) 453 { 454 // Increment the wait count, avoiding race conditions. 455 EnterCriticalSection(&condState->waitersCountLock); 456 condState->waitersCount++; 457 //printf("+++ wait: incr waitersCount to %d (tid=%ld)\n", 458 // condState->waitersCount, getThreadId()); 459 LeaveCriticalSection(&condState->waitersCountLock); 460 461 DWORD timeout = INFINITE; 462 if (abstime) { 463 nsecs_t reltime = *abstime - systemTime(); 464 if (reltime < 0) 465 reltime = 0; 466 timeout = reltime/1000000; 467 } 468 469 // Atomically release the external mutex and wait on the semaphore. 470 DWORD res = 471 SignalObjectAndWait(hMutex, condState->sema, timeout, FALSE); 472 473 //printf("+++ wait: awake (tid=%ld)\n", getThreadId()); 474 475 // Reacquire lock to avoid race conditions. 476 EnterCriticalSection(&condState->waitersCountLock); 477 478 // No longer waiting. 479 condState->waitersCount--; 480 481 // Check to see if we're the last waiter after a broadcast. 482 bool lastWaiter = (condState->wasBroadcast && condState->waitersCount == 0); 483 484 //printf("+++ wait: lastWaiter=%d (wasBc=%d wc=%d)\n", 485 // lastWaiter, condState->wasBroadcast, condState->waitersCount); 486 487 LeaveCriticalSection(&condState->waitersCountLock); 488 489 // If we're the last waiter thread during this particular broadcast 490 // then signal broadcast() that we're all awake. It'll drop the 491 // internal mutex. 492 if (lastWaiter) { 493 // Atomically signal the "waitersDone" event and wait until we 494 // can acquire the internal mutex. We want to do this in one step 495 // because it ensures that everybody is in the mutex FIFO before 496 // any thread has a chance to run. Without it, another thread 497 // could wake up, do work, and hop back in ahead of us. 498 SignalObjectAndWait(condState->waitersDone, condState->internalMutex, 499 INFINITE, FALSE); 500 } else { 501 // Grab the internal mutex. 502 WaitForSingleObject(condState->internalMutex, INFINITE); 503 } 504 505 // Release the internal and grab the external. 506 ReleaseMutex(condState->internalMutex); 507 WaitForSingleObject(hMutex, INFINITE); 508 509 return res == WAIT_OBJECT_0 ? NO_ERROR : -1; 510 } 511 } WinCondition; 512 513 /* 514 * Constructor. Set up the WinCondition stuff. 515 */ 516 Condition::Condition() 517 { 518 WinCondition* condState = new WinCondition; 519 520 condState->waitersCount = 0; 521 condState->wasBroadcast = false; 522 // semaphore: no security, initial value of 0 523 condState->sema = CreateSemaphore(NULL, 0, 0x7fffffff, NULL); 524 InitializeCriticalSection(&condState->waitersCountLock); 525 // auto-reset event, not signaled initially 526 condState->waitersDone = CreateEvent(NULL, FALSE, FALSE, NULL); 527 // used so we don't have to lock external mutex on signal/broadcast 528 condState->internalMutex = CreateMutex(NULL, FALSE, NULL); 529 530 mState = condState; 531 } 532 533 /* 534 * Destructor. Free Windows resources as well as our allocated storage. 535 */ 536 Condition::~Condition() 537 { 538 WinCondition* condState = (WinCondition*) mState; 539 if (condState != NULL) { 540 CloseHandle(condState->sema); 541 CloseHandle(condState->waitersDone); 542 delete condState; 543 } 544 } 545 546 547 status_t Condition::wait(Mutex& mutex) 548 { 549 WinCondition* condState = (WinCondition*) mState; 550 HANDLE hMutex = (HANDLE) mutex.mState; 551 552 return ((WinCondition*)mState)->wait(condState, hMutex, NULL); 553 } 554 555 status_t Condition::waitRelative(Mutex& mutex, nsecs_t reltime) 556 { 557 WinCondition* condState = (WinCondition*) mState; 558 HANDLE hMutex = (HANDLE) mutex.mState; 559 nsecs_t absTime = systemTime()+reltime; 560 561 return ((WinCondition*)mState)->wait(condState, hMutex, &absTime); 562 } 563 564 /* 565 * Signal the condition variable, allowing one thread to continue. 566 */ 567 void Condition::signal() 568 { 569 WinCondition* condState = (WinCondition*) mState; 570 571 // Lock the internal mutex. This ensures that we don't clash with 572 // broadcast(). 573 WaitForSingleObject(condState->internalMutex, INFINITE); 574 575 EnterCriticalSection(&condState->waitersCountLock); 576 bool haveWaiters = (condState->waitersCount > 0); 577 LeaveCriticalSection(&condState->waitersCountLock); 578 579 // If no waiters, then this is a no-op. Otherwise, knock the semaphore 580 // down a notch. 581 if (haveWaiters) 582 ReleaseSemaphore(condState->sema, 1, 0); 583 584 // Release internal mutex. 585 ReleaseMutex(condState->internalMutex); 586 } 587 588 /* 589 * Signal the condition variable, allowing all threads to continue. 590 * 591 * First we have to wake up all threads waiting on the semaphore, then 592 * we wait until all of the threads have actually been woken before 593 * releasing the internal mutex. This ensures that all threads are woken. 594 */ 595 void Condition::broadcast() 596 { 597 WinCondition* condState = (WinCondition*) mState; 598 599 // Lock the internal mutex. This keeps the guys we're waking up 600 // from getting too far. 601 WaitForSingleObject(condState->internalMutex, INFINITE); 602 603 EnterCriticalSection(&condState->waitersCountLock); 604 bool haveWaiters = false; 605 606 if (condState->waitersCount > 0) { 607 haveWaiters = true; 608 condState->wasBroadcast = true; 609 } 610 611 if (haveWaiters) { 612 // Wake up all the waiters. 613 ReleaseSemaphore(condState->sema, condState->waitersCount, 0); 614 615 LeaveCriticalSection(&condState->waitersCountLock); 616 617 // Wait for all awakened threads to acquire the counting semaphore. 618 // The last guy who was waiting sets this. 619 WaitForSingleObject(condState->waitersDone, INFINITE); 620 621 // Reset wasBroadcast. (No crit section needed because nobody 622 // else can wake up to poke at it.) 623 condState->wasBroadcast = 0; 624 } else { 625 // nothing to do 626 LeaveCriticalSection(&condState->waitersCountLock); 627 } 628 629 // Release internal mutex. 630 ReleaseMutex(condState->internalMutex); 631 } 632 633 #endif // !defined(_WIN32) 634 635 // ---------------------------------------------------------------------------- 636 637 /* 638 * This is our thread object! 639 */ 640 641 Thread::Thread(bool canCallJava) 642 : mCanCallJava(canCallJava), 643 mThread(thread_id_t(-1)), 644 mLock("Thread::mLock"), 645 mStatus(NO_ERROR), 646 mExitPending(false), mRunning(false) 647 #if defined(__ANDROID__) 648 , mTid(-1) 649 #endif 650 { 651 } 652 653 Thread::~Thread() 654 { 655 } 656 657 status_t Thread::readyToRun() 658 { 659 return NO_ERROR; 660 } 661 662 status_t Thread::run(const char* name, int32_t priority, size_t stack) 663 { 664 LOG_ALWAYS_FATAL_IF(name == nullptr, "thread name not provided to Thread::run"); 665 666 Mutex::Autolock _l(mLock); 667 668 if (mRunning) { 669 // thread already started 670 return INVALID_OPERATION; 671 } 672 673 // reset status and exitPending to their default value, so we can 674 // try again after an error happened (either below, or in readyToRun()) 675 mStatus = NO_ERROR; 676 mExitPending = false; 677 mThread = thread_id_t(-1); 678 679 // hold a strong reference on ourself 680 mHoldSelf = this; 681 682 mRunning = true; 683 684 bool res; 685 if (mCanCallJava) { 686 res = createThreadEtc(_threadLoop, 687 this, name, priority, stack, &mThread); 688 } else { 689 res = androidCreateRawThreadEtc(_threadLoop, 690 this, name, priority, stack, &mThread); 691 } 692 693 if (res == false) { 694 mStatus = UNKNOWN_ERROR; // something happened! 695 mRunning = false; 696 mThread = thread_id_t(-1); 697 mHoldSelf.clear(); // "this" may have gone away after this. 698 699 return UNKNOWN_ERROR; 700 } 701 702 // Do not refer to mStatus here: The thread is already running (may, in fact 703 // already have exited with a valid mStatus result). The NO_ERROR indication 704 // here merely indicates successfully starting the thread and does not 705 // imply successful termination/execution. 706 return NO_ERROR; 707 708 // Exiting scope of mLock is a memory barrier and allows new thread to run 709 } 710 711 int Thread::_threadLoop(void* user) 712 { 713 Thread* const self = static_cast<Thread*>(user); 714 715 sp<Thread> strong(self->mHoldSelf); 716 wp<Thread> weak(strong); 717 self->mHoldSelf.clear(); 718 719 #if defined(__ANDROID__) 720 // this is very useful for debugging with gdb 721 self->mTid = gettid(); 722 #endif 723 724 bool first = true; 725 726 do { 727 bool result; 728 if (first) { 729 first = false; 730 self->mStatus = self->readyToRun(); 731 result = (self->mStatus == NO_ERROR); 732 733 if (result && !self->exitPending()) { 734 // Binder threads (and maybe others) rely on threadLoop 735 // running at least once after a successful ::readyToRun() 736 // (unless, of course, the thread has already been asked to exit 737 // at that point). 738 // This is because threads are essentially used like this: 739 // (new ThreadSubclass())->run(); 740 // The caller therefore does not retain a strong reference to 741 // the thread and the thread would simply disappear after the 742 // successful ::readyToRun() call instead of entering the 743 // threadLoop at least once. 744 result = self->threadLoop(); 745 } 746 } else { 747 result = self->threadLoop(); 748 } 749 750 // establish a scope for mLock 751 { 752 Mutex::Autolock _l(self->mLock); 753 if (result == false || self->mExitPending) { 754 self->mExitPending = true; 755 self->mRunning = false; 756 // clear thread ID so that requestExitAndWait() does not exit if 757 // called by a new thread using the same thread ID as this one. 758 self->mThread = thread_id_t(-1); 759 // note that interested observers blocked in requestExitAndWait are 760 // awoken by broadcast, but blocked on mLock until break exits scope 761 self->mThreadExitedCondition.broadcast(); 762 break; 763 } 764 } 765 766 // Release our strong reference, to let a chance to the thread 767 // to die a peaceful death. 768 strong.clear(); 769 // And immediately, re-acquire a strong reference for the next loop 770 strong = weak.promote(); 771 } while(strong != 0); 772 773 return 0; 774 } 775 776 void Thread::requestExit() 777 { 778 Mutex::Autolock _l(mLock); 779 mExitPending = true; 780 } 781 782 status_t Thread::requestExitAndWait() 783 { 784 Mutex::Autolock _l(mLock); 785 if (mThread == getThreadId()) { 786 ALOGW( 787 "Thread (this=%p): don't call waitForExit() from this " 788 "Thread object's thread. It's a guaranteed deadlock!", 789 this); 790 791 return WOULD_BLOCK; 792 } 793 794 mExitPending = true; 795 796 while (mRunning == true) { 797 mThreadExitedCondition.wait(mLock); 798 } 799 // This next line is probably not needed any more, but is being left for 800 // historical reference. Note that each interested party will clear flag. 801 mExitPending = false; 802 803 return mStatus; 804 } 805 806 status_t Thread::join() 807 { 808 Mutex::Autolock _l(mLock); 809 if (mThread == getThreadId()) { 810 ALOGW( 811 "Thread (this=%p): don't call join() from this " 812 "Thread object's thread. It's a guaranteed deadlock!", 813 this); 814 815 return WOULD_BLOCK; 816 } 817 818 while (mRunning == true) { 819 mThreadExitedCondition.wait(mLock); 820 } 821 822 return mStatus; 823 } 824 825 bool Thread::isRunning() const { 826 Mutex::Autolock _l(mLock); 827 return mRunning; 828 } 829 830 #if defined(__ANDROID__) 831 pid_t Thread::getTid() const 832 { 833 // mTid is not defined until the child initializes it, and the caller may need it earlier 834 Mutex::Autolock _l(mLock); 835 pid_t tid; 836 if (mRunning) { 837 pthread_t pthread = android_thread_id_t_to_pthread(mThread); 838 tid = pthread_gettid_np(pthread); 839 } else { 840 ALOGW("Thread (this=%p): getTid() is undefined before run()", this); 841 tid = -1; 842 } 843 return tid; 844 } 845 #endif 846 847 bool Thread::exitPending() const 848 { 849 Mutex::Autolock _l(mLock); 850 return mExitPending; 851 } 852 853 854 855 }; // namespace android 856